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Abstract

In this paper, we present PCT-Net, a simple and general
image harmonization method that can be easily applied to
images at full-resolution. The key idea is to learn a param-
eter network that uses downsampled input images to pre-
dict the parameters for pixel-wise color transforms (PCTs)
which are applied to each pixel in the full-resolution image.
We show that affine color transforms are both efficient and
effective, resulting in state-of-the-art harmonization results.
Moreover, we explore both CNNs and Transformers as the
parameter network, and show that Transformers lead to bet-
ter results. We evaluate the proposed method on the public
full-resolution iHarmony4 dataset, which is comprised of
four datasets, and show a reduction of the foreground MSE
(fMSE) and MSE values by more than 20% and an increase
of the PSNR value by 1.4dB, while keeping the architecture
light-weight. In a user study with 20 people, we show that
the method achieves a higher B-T score than two other re-
cent methods.

1. Introduction
Cutting and pasting parts of an image into another im-

age is an important editing task, also referred to as image
compositing. However, creating a composite image by sim-
ply adding a foreground region to a different image will
typically produce unrealistic results due to different condi-
tions at the time the images were taken. In order to reduce
this discrepancy between foreground and background, im-
age harmonization aims to align the colors by modifying the
foreground region.

A variety of approaches have been proposed to solve
this task using traditional statistical techniques as well as
deep learning methods. Nonetheless, most of the research
[5,12–15,17,23,28,30] has solely focused on low-resolution
images (256× 256 pixels), whereas high resolution images
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have become in fact the standard for most real use cases.
Since most approaches are built on convolutional neural
networks (CNN), they would theoretically be able to pro-
cess images of any size. However, due to poor scaling, the
computational cost required for high resolution images ren-
der them effectively impractical.

More recently, some methods have started exploring
high-resolution image harmonization [6,18,22,34] by lever-
aging a network that takes a low-resolution image as its in-
put, but instead of predicting the final image, further pro-
cesses the image according to the output of the network.
While this allows us to apply high resolution image harmo-
nization based on a low-resolution input, current models are
either simplifying the problem for the sake of efficiency or
employ a series of complex operations to improve perfor-
mance. Following the general dual branch approach, we
propose a light-weight model capable of harmonizing im-
ages at high resolutions. As shown in Fig. 1, our method
achieves significant improvements in terms of foreground-
normalized MSE (fMSE), but only requires roughly the
same or less parameters, depending on the backbone.

We are able to outperform state-of-the-art methods on
full resolution image harmonization by interpolating the
network output in parameter space instead of introducing
interpolation errors in the image space. Following the rea-
soning by Xue et al. [34], we argue that the parameter
space contains less high frequency components which cause
higher interpolation errors during upsampling. In contrast
to [34], we greatly reduce the complexity by introducing
pixel-wise color transformations (PCT) and find that a sim-
ple affine transformation is sufficient to achieve significant
improvements. We show that this idea can easily be applied
to both, CNN-based and Transformer-based models, while
outperforming current state-of-the-art models in terms of re-
construction error.

In our approach, the backbone network predicts a set of
parameters for each input pixel. Since this is done in low
resolution, we interpolate the parameter map to match the
full resolution of the original composite image. We then
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Figure 1. Model size vs. performance (fMSE score) compari-
son. Even though our model size is smaller than others, our pro-
posed models achieve better performance on full resolution im-
ages than prior work. The performance is calculated using the
iHarmony4 dataset [7].

apply the same, pre-determined PCT function to each pixel
according to the predicted parameters. In order to find suit-
able parameters that represent an appropriate color trans-
formation, the backbone network needs to consider spatial
and semantic information within the image. When applying
the PCT function, we change each pixel solely based on its
value and the parameters predicted for that pixel position.

Our contributions can be summarized as follows:

• We introduce PCT-Net, an architecture based on a dual
branch approach that is able to handle high-resolution
images. It processes images at full resolution through
a pixel-wise color transformation (PCT).

• To the best of our knowledge, we are the first to use a
Transformer-based architecture for training and testing
at full resolution. We further propose a novel training
strategy for image harmonization where we do not re-
size the images, but instead evaluate the loss function
on the full-resolution images.

• We demonstrate significant improvements in quantita-
tive and qualitative performance compared to existing
approaches, while retaining a light-weight and simple
network architecture.

2. Related Work

Image harmonization describes the process of modi-
fying the colors of the foreground of a composite image
to blend with its background. Traditionally, this problem
has been approached from either an image gradient-based

view [16, 25, 31, 32] in order to seamlessly blend a fore-
ground object with a background image, or from a statisti-
cal perspective by considering the different foreground and
background color distributions [4, 26, 27, 35]. However,
these approaches are limited by the information contained
within a single image. To take advantage of the informa-
tion in multiple images, prior work has used statistics from
image sets in their approaches [21, 39].

Current methods are mostly based on neural networks,
making use of an encoder-decoder CNN architecture based
on U-Net [29], optionally enhanced by attention blocks [8],
such as iSSAM [30]. While Cong et al. [5, 7] framed
the problem as a domain gap task between foreground and
background, Ling et al. [23] considered image harmoniza-
tion as reducing the style discrepancy between inharmo-
nious regions. Guo et al. [12–14] proposed a lighting-
based approach that separately harmonizes an image after
decomposing it into its reflection and illumination compo-
nents. One of the methods employed a Transformer-based
architecture, which improves the performance over archi-
tectures using CNNs. Based on the revision of architec-
tures presented in [8, 33], Sofiiuk et al. [30] introduced se-
mantic information by adding pre-trained HR-Net [36] fea-
tures that are further processed by an encoder-decoder net-
work. Unlike previous methods, Jiang et al. [17] proposed a
framework that does not require any labeled training data at
the expense of overall performance compared to supervised
training. Hang et al. [15] introduced contrastive learning
for image harmonization by combining two different con-
trastive regularization losses that can be used on top of any
existing network. The above methods exclusively focus on
low-resolution images, such as 256×256 pixels. While con-
volutional neural networks can be applied to larger images
regardless of the training image size, the steep increase in
computational cost renders existing approaches unsuitable
for high resolution tasks.

To handle higher resolution images, most image har-
monization approaches downscale the input image, e.g., to
256 × 256 pixels. Instead of predicting new pixel values,
a different output is regressed by a network and is subse-
quently applied to the full resolution image. For example,
Liang et al. [22] trained a network to produce a color curve
based on a low-resolution image that is then applied to the
full-resolution foreground image. Similarly, Ke et al. [18]
proposed a model named Harmonizer, which uses an en-
coder network on a low-resolution image to regress coeffi-
cients controlling various filter operations, such as bright-
ness and contrast. While these two light-weight approaches
are easily adaptable to high resolutions, they are not able
to account for local differences across the foreground re-
gions compared to pixel-to-pixel transformations. Another
recent approach combined pixel-to-pixel as well as RGB-
to-RGB transformations using two separate branches [6].

5918



Parameter 
network

Downsampling Downsampling Upsampling

concatenate

Pixel-wise color 
transformation

Prediction

Fu
ll 

re
so

lu
tio

n 
br

an
ch

Lo
w

 re
so

lu
tio

n 
br

an
ch

Foreground mask Composite image

Foreground mask Composite image Parameter map

Parameter map

Figure 2. Model overview. Our model is composed of two branches, a low-resolution (LR) and a full-resolution (FR) branch. An LR
parameter map is obtained using the trained parameter network. The LR parameter map is upsampled to obtain the FR parameter map. To
harmonize a full-resolution image, pixel values of the FR image foreground region Ĩij are mapped using the pixel-wise color transformation
h (·) taking the parameters of the FR parameter map. The pictures are taken from [7].
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Figure 3. Parameter network architectures. We propose two
networks as backbones to predict the parameter map, a CNN (left)
and a ViT (right). Instead of an image, we modify the architectures
to output a parameter map of depth C. The added blocks are indi-
cated in red.

An encoder-decoder architecture processes a low resolution
image, whereas the input mask and features from the en-
coder are input to a color mapping module [38] that pre-
dicts an RGB-to-RGB transformation. In the final step, the
two branches are combined by a refinement module that
is capable of producing a high-resolution image prediction.
Xue et al. [34] proposed Deep Comprehensible Color Filter
(DCCF), consisting of four neural color filters, the coeffi-
cients of which are predicted by a low-resolution branch
for each pixel. Before applying the neural color filters to
the full resolution composite image, the coefficient map is
scaled to match the final image size.

Image enhancement aims to adjust an image to make it
more suitable for future use, for instance by modifying the
contrast or brightness of an image. Unlike image harmo-

nization, image enhancement affects the entire image, but
have followed comparable dual branch solutions to tackle
high-resolution inputs. For example, Gharbi et al. [11] de-
veloped a deep bilateral learning approach leveraging local
affine color transformations. Mohan et al. [24] introduced
three different deep local parametric filters, which are com-
bined to obtain the final enhanced image. Unlike our pro-
posed PCT functions, the learned filters are not applied to
each individual pixel.

3. PCT-Net

3.1. Problem Definition

Let us denote a composite RGB image as Ĩ ∈ RH×W×3

of width W and height H , and its corresponding binary in-
put mask as M ∈ {0, 1}H×W which indicates the fore-
ground region. Given Ĩ and M as input, the goal of im-
age harmonization is to change the color of the foreground
region to match the background image. If a ground truth
image I ∈ RH×W×3 is available, harmonization can be
defined as minimization of the error between the predicted
image Î ∈ RH×W×3 and its ground truth.

3.2. Overview

An overview of the proposed model, PCT-Net, is shown
in Fig. 2. PCT-Net consists of two different branches, i.e.,
a full resolution branch (FR) and a low resolution branch
(LR). For the LR branch, we downscale the FR composite
and the mask image to a lower resolution (Wd, Hd), obtain-
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ing Ĩd and Md. The low-resolution path is used for training
a parameter network (see Subsection 3.3), which maps the
LR input to a parameter map Θd ∈ RWd×Hd×C , where C
is the number of parameters per pixel. The FR parameter
map Θ ∈ RW×H×C is obtained by upsampling Θd.

To modify the input image, we use a pixel-wise color
transformation (PCT) function h (·) in the FR branch. For
each pixel in the foreground region with coordinates (i, j),
the PCT function is applied using the pixel values of
the composite image and the parameter map, i.e. Îi,j =

h
(
Ĩi,j ;θi,j

)
. Different functions can be selected for the

PCT, some of which are detailed in Subsection 3.4. Dur-
ing training of the parameter network in the LR branch, the
loss is calculated in the FR branch based on the difference
between the predicted image Î and the ground truth I (see
Subsection 3.5). Unlike other approaches, PCT-Net enables
full-resolution pixel-to-pixel image harmonization while re-
taining a light-weight architecture.

3.3. Parameter Network

The parameter network processes the LR images to out-
put the parameter map Θd that controls the pixel-wise color
transformation in the FR branch. We evaluate two types
of architectures for the parameter network, namely a CNN-
based encoder-decoder network and a network based on a
Visual Transformer (ViT) [9] (see Fig. 3).

As CNN-based network, we adopt iSSAM [30], which
has been used as a backbone in recent work for image har-
monization [15,34]. We replace the output layer with a 1×1
convolution layer to ensure the output provides C parame-
ters. For our Transformer-based network, we modify the
Visual Transformer architecture [9] to act as an encoder
and follow the model described in [12]. First, the input
image is divided into patches which are subsequently pro-
jected to an embedding space. Then, positional encodings
are added to the embedded patches and processed by the
Transformer encoder consisting of multiple attention lay-
ers. In order to obtain the final feature map with the correct
dimensions, the output of the patches from the Transformer
encoder are reassembled and processed by a single decon-
volution layer [37] and a tanh non-linearity. Analogous to
the CNN-based network, a 1 × 1 convolution is applied as
the final step to output the correct amount of parameters per
pixel.

3.4. Pixel-wise Color Transformation

Here, we introduce different PCT functions, which are
evaluated in Section 4. A straightforward function directly
predicts new pixel values while disregarding the input pixel
and interpreting the parameter output as the harmonized
pixel as

h(p;θ) = (θ1, θ2, θ3)
T , (1)

where p = (p1, p2, p3) ∈ R3 represents a three-
dimensional pixel value in the foreground region of the in-
put image. This function essentially describes how previous
methods directly predict harmonized pixel values.

Since color transformations can be expressed as an ap-
proximation using a linear transformation, we consider an
affine transformation as a PCT function:

h(p;θ) = Wθ · p+ bθ,

Wθ =

θ1 θ2 θ3
θ4 θ5 θ6
θ7 θ8 θ9

 , bθ =

θ10
θ11
θ12

 . (2)

When the parameter map is upsampled from the LR to the
FR branch to match the original image resolution, the pa-
rameters are interpolated instead of the pixels. Furthermore,
we can apply an additional constraint to control the proper-
ties of our transformation, for example, by making the ma-
trix Wθ symmetric.

We further investigate a polynomial PCT function in-
spired by the color correction method proposed in [10].
First the three-dimensional pixel p is transformed into a
higher-dimensional representation ppol ∈ R9 as follows:

ppol = (p1, p2, p3, p1p2, p1p3, p2p3, p
2
1, p

2
2, p

2
3)

T . (3)

Then we apply a linear transformation using a matrix Xθ ∈
R3×9 that projects the higher-dimensional representation
back to the pixel space as h (p;θ) = Xθppol. While this
allows for more flexibility and control for the parameter
network, the large number of parameters per pixel leads to
higher computational complexity.

3.5. Loss Function

To evaluate the difference between composite image Î
and the ground truth I within the foreground mask M ,
we adopt the foreground-normalized MSE loss [30] which
considers the size of the foreground area as it discourages
focusing disproportionately on images with a larger fore-
ground:

LfMSE =

∑
i,j(Îi,j − Ii,j)

2

max
(
Amin,

∑
i,j Mi,j

) , (4)

where Amin is a constant value, which we set as 1000 for
our experiments to stabilize training. In addition, we lever-
age two regularization losses to support the learning pro-
cess. The first loss is a self-style contrastive regulariza-
tion LCR, which is proposed in [15] for Image Harmoniza-
tion, to allow the network to learn not only from positive
pairs between an composite image and the ground truth,
but also from negative ones between various composite im-
ages. To that end, we create additional composite images as
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described in [15] by applying color transformations to the
foreground region of the ground truth:

LCR =
D (f ,f+)

D (f ,f+) +
∑K

k=1 D (f ,f−)

+
D (c, c+)

D (c, c+) +
∑K

k=1 D (c, c−)
. (5)

In Eq. (5), f , f+ and f− are the feature vectors of
the foreground region of the predicted image, the ground
truth and the composite images, respectively. The fea-
ture vector extractor is a pre-trained VGG16 network in
the same manner as [15]. The parameter c represents
the foreground-background style consistency calculated by
c = Gram (f , b+), where b+ is the feature vector of the
background region of the ground truth. Gram (·) denotes
the Gram matrix. The values of c+ and c− are calculated
in the same way as c. The number K is the total number of
composite images. Function D (·) is the L1 distance func-
tion. The details of this self-style contrastive loss are found
in [15].

Additionally, we investigate a smoothing regularization,
which aims to further constrain the solution space during
training and encourages neighboring parameters to be closer
to each other. The regularization function is as follows:

Lsmooth =
1

C

∑
k

||∇Θk||2, (6)

where ||∇Θk||2 denotes the magnitude of the spatial gra-
dient for the k-th parameter. In this case, the regulariza-
tion function imposes restrictions directly on the parameter
space instead of the images and penalizes large variations
between neighboring parameter values.

4. Experiments
4.1. Dataset

Following prior work on image harmonization, we use
the iHarmony4 [7] dataset for experiments, which con-
sists of four different subsets, namely HAdobe5k, HCOCO,
HDay2night and HFlickr. The resolution of these subsets
ranges from 312 × 230 to 6048 × 4032 pixels. Only the
HAdobe5k subset is composed of images with width or
height larger than 1024 pixels. Additionally, the number
of images in the subsets varies greatly. Overall, the sub-
sets HAdobe5k, HCOCO, HDay2night and HFlickr contain
2160, 4283, 133 and 828 test images, respectively. The
composite images in iHarmony4 were created synthetically
by choosing a foreground region and modifying the color of
that region.

4.2. Implementation Details

We conduct extensive experiments of our proposed
model using two different backbone modules, that is, a

CNN-based backbone proposed in [30] as iSSAM, and a Vi-
sion Transformer (ViT)-based backbone introduced in [12].
To train our CNN-based model, we follow the procedures
in [34]. The model is trained for 180 epochs with a learning
rate of 10−3. At the 160th epoch and the 175th epoch the
rate is decreased by a factor of 10 respectively. In the case
of our ViT-based model, we slightly change the number of
epochs compared to [12] to 100, instead of 60 epochs. The
model is accordingly trained with a learning rate of 10−4,
while only switching from a constant learning rate to a lin-
ear learning rate after 50 epochs.

Our loss function consists of the fMSE loss as described
in Subsection 3.5. For regularization, we use a smoothing
term for our CNN-based approach and a contrastive term for
our ViT-based model. The different choices for the regular-
ization terms are motivated by our ablation study in Sub-
section 4.4. We re-implement contrastive regularization by
following the original paper [15]. Compared to the fMSE
loss, we weight our contrastive loss by 0.01 in accordance
with [15]. For the smoothness regularization, we empiri-
cally set the weighting coefficient to 0.1.

While training our models, we further augment the full-
resolution composite images by cropping them according
to a random bounding box, the size of which lies between
0.7 and 1 of the original height and width. Moreover, we
randomly flip the input images horizontally. Due to mem-
ory limitations, we resize all images so that the largest side
does not exceed 2048 pixels. Apart from that, we do not re-
size the full-resolution images before using them in the FR
branch. Unlike Xue et al., we therefore train our images in
the original size with different aspect ratios. Both models
are trained using an Adam [19] optimizer and a batch size
of 4. Our models are based on the PyTorch framework and
trained on NVIDIA® A100 GPUs.

4.3. Evaluation

We evaluate the performance of our approach on the test
dataset of iHarmony4 and compare the results of other state-
of-the-art methods. To show the effectiveness of our method
on both, a CNN architecture and a Transformer-based archi-
tecture, we consider two different backbones.

As quantitative performance metrics for image harmo-
nization, we calculate the mean squared error (MSE),
peak signal-to-noise ratio (PSNR) and the foreground mean
squared error (fMSE) for each image following other im-
age harmonization papers and take the average across each
subset. While the MSE has been used as an important
evaluation metric, we argue that due to varying foreground
sizes within the dataset, the MSE is skewed towards images
with large foreground regions. Therefore, the fMSE offers
a more balanced understanding of overall quality. Further
considerations in terms of evaluation metrics are detailed in
the supplementary material.
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Unlike most existing image harmonization methods, we
are mainly interested in the performance of image harmo-
nization on high resolution images, which can only be found
in the HAdobe5k subset. While most of the prior work only
evaluates their method on the standard low resolution of
256× 256 pixels, we provide results on the original full im-
age resolution. For comparison, we adopt Ke et al. [18] and
Xue et al. [34], which, to the best of our knowledge, are the
only methods that also evaluate on full-resolution images.
While the method presented by Liang et al. [22] is able to
handle full-resolution images, results for full-resolution im-
ages were not provided.

Xue et al. [34] did not report fMSE scores. Using the
code provided by the authors, we thus calculated the fMSE
scores for comparability, which is represented with an as-
terisk in Table 1. The comparison results with other prior
work on the 256 × 256 pixels low-resolution images are
summarized in the supplementary material.

Table 1 shows the results of our proposed networks and
the two existing methods on each subset as well the entire
iHarmony4 test set. Both of our proposed methods clearly
outperform other approaches across the entire dataset. Out
of both our backbones, the ViT-based one demonstrates bet-
ter results than the CNN-based model. Compared to Xue
et al., which achieved the best results out of both previous
methods, our ViT-based model improves fMSE and MSE
by more than 20% on the entire test set, while increasing the
PSNR by more than 1.4dB. Nonetheless, our models show
worse scores on the HDay2night subset compared to Ke et
al., which can be attributed to the fact that the amount of
available data is low and the images mainly show webcam
footage of landscapes, which is very different from the rest
of the dataset.

In Figure 4, we illustrate the improved performance of
our approach on one example image. Compared to the two
other methods, both our networks are able to align the color
of the napkin fairly close to the ground truth image. In our
example image, there are two reference objects that could
be used to infer a suitable color. While the results for Ke
et al. and Xue et al. do not indicate that the network used
the other napkins as a reference, our results suggest that our
method might posses such capabilities.

Figure 5 shows another example, where our networks
fail to improve the composite image. We can see that the
image itself presents a quite challenging setting. In order
to correctly harmonize the window, a deeper understanding
regarding the behavior of light and how it interacts with dif-
ferent materials such as glass is necessary. This particular
example seems to expose a lack of such an understanding
across all the approaches.

In addition to considering the average error, we also in-
vestigate how many images experience a decline in terms of
fMSE, MSE and PSNR after applying an image harmoniza-

tion model. The results are shown in Table 2. While Xue et
al. only demonstrate slightly lower success rates compared
to our approach improving composite images, the model
proposed by Ke et al. and our CNN-based model are not
able to decrease the MSE or PSNR in more than one fourth
of all cases. This indicates that both models are capable of
improving some composite images quite well, yet lack the
capability to apply these improvements to certain images in
the test set.

4.4. Ablation Studies

In order to verify the effectiveness of our design choices,
we conduct several ablation studies in this subsection. The
base model is trained using only the LfMSE loss with an
affine transformation for the PCT function.

First, we verify the effectiveness of our approach based
on parameter map interpolation over upsampling from a
predicted low-resolution image. For the straightforward up-
sampling, we first predict a low-resolution image using the
LR branch, and use bilinear interpolation to obtain the full-
resolution image. To measure the performance difference of
these two approaches with regards to image resolution, we
use not only the original full resolution iHarmony4 dataset,
but also the one downsampled into 256 × 256 pixels, as
has been the standard in prior harmonization work [18, 34].
The results are summarized in Table 3. The simple upsam-
pling approach is comparable with ours on low resolution
images, however, it performs worse on full resolution im-
ages. In conclusion, we confirm that performance degrada-
tion on full resolution images is significantly reduced when
using parameter map interpolation.

We investigate two different regularization techniques
introduced in Subsection 3.5. Table 4 shows the results
of experiments conducted with different loss functions. For
the CNN-based PCT-Net, smoothing the parameter map im-
proves performance, while it does not improve the perfor-
mance for the ViT-based approach. This behavior might
be caused by decoder layers in the Transformer model,
which we investigate in the supplementary material. In-
stead, the Transformer-based model benefits from adding
a contrastive regularization.

Lastly, we also investigate the influence of our PCT func-
tion on the overall performance. We consider three differ-
ent PCT functions listed in Table 5, where affine symmetric
describes an affine transformation with a symmetric matrix.
Whereas the polynomial PCT function does not provide bet-
ter results compared to the simpler affine PCT function, we
can see slight improvements if the affine transformation ma-
trix is restricted to be symmetric. We provide further anal-
ysis of different PCT functions in the supplementary mate-
rial.
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Table 1. Quantitative performance on the full-resolution iHarmony4 dataset. Ke et al.’s and Xue et al.’s results are taken from the
original papers [18,34]. Since [34] does not provide fMSE values, we evaluate DCCF by running the provided code on the images, denoted
as Xue et al. [34]*. Our models achieve lower errors on all datasets, except for the HDay2night dataset. The best results are marked in
bold, the second best are underlined.

Method
HAdobe5k subset HCOCO subset HDay2night subset HFlickr subset All

fMSE↓ MSE↓ PSNR↑ fMSE↓ MSE↓ PSNR↑ fMSE↓ MSE↓ PSNR↑ fMSE↓ MSE↓ PSNR↑ fMSE↓ MSE↓ PSNR↑

Composite images 2148.42 54.46 28.16 1079.71 73.03 33.54 1502.99 113.07 33.96 1646.29 270.99 28.23 1462.45 177.99 31.24
Ke et al. [18] 196.12 24.37 37.80 374.96 20.93 37.69 640.74 37.28 37.15 479.26 69.19 33.37 339.23 27.62 37.23
Xue et al. [34] N/A 23.34 37.75 N/A 17.07 38.66 N/A 55.76 37.40 N/A 64.77 33.60 N/A 24.65 37.87
Xue et al. [34]* 196.19 23.98 37.67 317.80 17.37 38.37 716.47 55.09 37.35 437.82 65.16 33.46 302.89 25.34 37.60
Ours (CNN) 168.56 21.14 39.10 297.34 16.93 38.81 740.42 50.53 36.84 431.82 64.19 33.76 282.77 24.05 38.29
Ours (ViT) 149.39 19.35 39.97 245.67 12.45 39.85 700.65 46.47 37.25 357.53 45.79 34.87 238.27 18.80 39.28

(a) Input image (b) Mask image (c) Ke et al. [18] (d) Xue et al. [34] (e) Ours (CNN) (f) Ours (ViT) (g) Ground truth

Figure 4. Examples of successful harmonization. The top and bottom images are original and zoomed-in images on the mask region,
respectively. Given the input composite image shown in (a) and the foreground mask image shown in (b), Ke et al.’s, Xue et al.’s and our
methods generate the harmonized images shown in (d)–(f). Our results, especially Ours (ViT), are closer to the ground truth image shown
in (g). Original images are taken from [7].

(a) Input image (b) Mask image (c) Ke et al. [18] (d) Xue et al. [34] (e) Ours (CNN) (f) Ours (ViT) (g) Ground truth

Figure 5. Examples of failed harmonization. The image layout follows that of Fig. 4. It can be seen that all methods fail to harmonize
the composite image well. Original images are taken from [7].
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Table 2. Percentage of images that did not improve upon ap-
plying image harmonization. A lower percentage is better. The
best results are marked in bold, the second best are underlined.
Like Table 1, Xue et al.’s results are calculated by running the
code provided by the authors.

Method fMSE MSE PSNR

Ke et al. [18] 14.33% 26.74% 27.70%
Xue et al. [34]* 6.24% 6.14% 6.24%
Ours (CNN) 11.52% 26.18% 26.18%
Ours (ViT) 4.89% 5.73% 5.73%

Table 3. Performance comparison between ours and straight-
forward upsampling from low-resolution prediction. We eval-
uate the performance on the iHarmony4 test set using full resolu-
tion and images downsampled to 256 × 256 pixels. Even on full-
resolution images, our methods are able to achieve performance
comparable to the downsampled case by interpolating the param-
eter map instead of the images.

Method
Downsampled images Full-resolution images

fMSE↓ MSE↓ PSNR↑ fMSE↓ MSE↓ PSNR↑

Upsampling (CNN) 264.69 24.44 38.19 557.50 44.03 35.19
Ours (CNN) 268.22 23.94 38.63 296.84 25.32 38.05

Upsampling (ViT) 219.53 18.21 39.41 505.92 35.64 37.60
Ours (ViT) 228.00 19.34 39.52 250.30 20.03 38.98

Table 4. Effect of loss functions on performance. We evaluate
different loss functions on the iHarmony4 test set. Adding a reg-
ularization function improves performance of both our networks.
However, the CNN-based architecture only benefits from adding a
smoothness regularization, while the Transformer-based approach
performs best with a contrastive regularization.

Backbone Loss fMSE↓ MSE↓ PSNR↑

CNN
LfMSE 296.84 25.32 38.05

LfMSE+Lsmooth 282.77 24.05 38.29
LfMSE+LCR 301.03 26.07 38.00

ViT
LfMSE 250.30 20.03 38.98

LfMSE+Lsmooth 259.97 20.62 38.88
LfMSE+LCR 238.27 18.80 39.28

4.5. User Study

For a qualitative evaluation, we conducted a user study
where twenty people were asked to select the better harmo-
nized image given two different choices. For the evalua-
tion, we prepared 26 high-resolution composite images us-
ing foreground objects from the BIG dataset [3] and the Re-
alHM dataset [17] and adding them to suitable background
images from [1]. Given the composite images, we obtained

Table 5. Effect of PCT function on performance. We investigate
the impact of different PCT functions on performance by evaluat-
ing on the iHarmony4 test set. Affine PCT functions outperform
polynomial PCT functions by a clear margin.

Backbone PCT fMSE↓ MSE↓ PSNR↑

CNN
affine 296.84 25.32 38.05

affine symmetric 290.57 25.03 38.14
polynomial 333.09 29.51 37.44

ViT
affine 250.30 20.03 38.98

affine symmetric 250.79 19.94 39.03
polynomial 267.05 20.95 38.67

Table 6. User study results. The B-T score is calculated ac-
cording to [20]. A higher score indicates higher preference. The
output of our model (ViT) results in higher preference compared to
two recent state-of-the-art methods. The study was conducted with
20 people, each person rated 26 composite images using pairwise
comparisons.

Ke et al. [18] Xue et al. [34] Ours (ViT)
0.98 0.93 1.09

harmonized images with three methods, that is, our best
model with the ViT backbone, Xue et al.’s [34] and Ke et
al.’s [18] method. As in prior work, we adopt the Bradley-
Terry [2] model, where 78 pairwise comparisons among the
three methods are evaluated. Following [20], we average
the B-T score across all images. The results are shown in
Table 6, showing that the quantitative improvement of our
method also translates to improvements in perceptual qual-
ity. The images used in this study are available in the sup-
plementary material.

5. Conclusion
In this paper, we proposed a light-weight and efficient

image harmonization method that leverages the fact that in-
terpolating within a function parameter space, rather than
the image space introduces fewer errors. We investigated
two different backbones: a CNN-based model and a ViT-
based model. For both backbones, we observe significant
improvements using pixel-wise color transformations. In
experiments, we show that the approach is effective for har-
monizing full-resolution images and achieves state-of-the-
art results in terms of fMSE, MSE, and PSNR on the iHar-
mony4 dataset. Furthermore, in a user study involving 20
participants and 26 images with three different harmoniza-
tion methods, we show that our approach also improves the
perceptual quality. Overall, the simplicity of our approach
allows for future investigation of different backbone models
and color transformation functions.
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