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Figure 1. Modern camera pose estimation relies on feature matching between overlapping frames - in this work, we present ObjectMatch to
find correspondences between frames with little or no overlap by predicting semantic mappings through canonical object correspondences.
The images above share no direct overlap, yet our method establishes indirect correspondences, thus enabling a successful registration.

Abstract

We present ObjectMatch1, a semantic and object-centric
camera pose estimator for RGB-D SLAM pipelines. Mod-
ern camera pose estimators rely on direct correspondences
of overlapping regions between frames; however, they can-
not align camera frames with little or no overlap. In this
work, we propose to leverage indirect correspondences ob-
tained via semantic object identification. For instance,
when an object is seen from the front in one frame and from
the back in another frame, we can provide additional pose
constraints through canonical object correspondences. We
first propose a neural network to predict such correspon-
dences on a per-pixel level, which we then combine in our
energy formulation with state-of-the-art keypoint matching
solved with a joint Gauss-Newton optimization. In a pair-
wise setting, our method improves registration recall of
state-of-the-art feature matching, including from 24% to
45% in pairs with 10% or less inter-frame overlap. In regis-
tering RGB-D sequences, our method outperforms cutting-
edge SLAM baselines in challenging, low-frame-rate sce-
narios, achieving more than 35% reduction in trajectory er-
ror in multiple scenes.

1https://cangumeli.github.io/ObjectMatch/

1. Introduction

RGB-D registration and 3D SLAM has been a funda-
mental task in computer vision, with significant study and
enabling many applications in mixed reality, robotics, and
content creation. Central to both state-of-the-art traditional
and learning-based camera pose estimation is establishing
correspondences between points in input frames. However,
correspondence estimation remains quite challenging when
there is little or no overlap between frames.

In contrast, humans can easily localize across these chal-
lenging scenarios by leveraging additional semantic knowl-
edge – in particular, by further localizing at the level of ob-
jects and identifying matching objects between views. For
instance, when observing a chair from the back and the side
(e.g., in Figure 1), view overlap is minimal (or even no
view overlap), resulting in failed registration from keypoint
matching. However, the semantic knowledge of the chair
and its object pose nonetheless enables humans to estimate
the poses from which the front and side views were taken.
Thus, we propose to take a new perspective on camera pose
estimation and imbue camera registration with awareness of
such semantic correspondences between objects for robust
performance in these challenging scenarios.

To this end, we propose ObjectMatch, a new paradigm
for camera pose estimation leveraging canonical object cor-
respondences in tandem with local keypoint correspon-
dences between views. This enables significantly more
robust registration under a variety of challenging scenar-
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ios, including low view overlap. For a sequence of in-
put frames, ObjectMatch learns to semantically identify ob-
jects across frames, enabling a compact, global parame-
terization of 9-DoF object poses. Object correspondences
are established through predicting normalized object coor-
dinates [43], dense correspondences from object pixels to a
canonically oriented space for each object. We then for-
mulate a joint camera and object pose optimization that
constrains object correspondences indirectly, operating ir-
respective of the shared visibility of image regions. Our
approach is complementary to state-of-the-art SLAM meth-
ods, and we leverage our energy formulation to comple-
ment state-of-the-art keypoint matching [10, 11, 36] in a
joint Gauss-Newton optimization.

Our method outperforms strong baselines in both pair-
wise registration and registration of RGB-D frame se-
quences. In pairwise registration of challenging Scan-
Net [9] image pairs, we improve pose recall from 24% to
45% when the overlap is below 10%. On sequence registra-
tion of room-scale RGB-D scenes, our method outperforms
various strong baselines in difficult, low-frame-rate settings
in several TUM-RGBD [39] and ScanNet [9] scenes, re-
ducing the trajectory error by more than 35% in multiple
challenging scenes.

To sum up, our main contributions include:
• An object-centric camera pose estimator that can han-

dle low-overlap frame sets via indirect, canonical ob-
ject correspondences established with predicted dense,
per-pixel normalized object coordinates.

• A joint energy formulation that leverages semantic ob-
ject identification and dense, normalized object coor-
dinates corresponding to canonical object geometries.

• Our semantic grounding of object correspondences
enables significantly more robust registration in low-
overlap and low-frame-rate cases. ObjectMatch im-
proves over state of the art from 24% to 45% registra-
tion recall of ≤ 10% overlap frame pairs and achieves
over 35% trajectory error reduction in several chal-
lenging sequences.

2. Related Work
RGB-D Registration and SLAM. In recent years, there
have been many advances in indoor RGB-D reconstruction.
Earlier RGB-D fusion approaches focus on frame-to-model
camera tracking [20, 29]. To handle the loop closures bet-
ter, more recent SLAM systems introduce explicit strategies
or global optimization methods for handling loop closures
through global optimization [5,10,28,37,44] to fix tracking
errors. More recently, deep learning techniques have been
applied to registration and SLAM scenarios, with methods
ranging from geometric point cloud registration [6, 19, 31]
as well as neural field based SLAM techniques [18, 40, 48].

Despite all the successes in RGB-D SLAM and registra-
tion, the task is still challenging since incomplete loop clo-
sures observed via low-overlap frames cannot be handled,
and most SLAM methods require a very high overlap be-
tween consecutive frames to track cameras accurately.

Feature Matching. Modern RGB(-D) camera pose es-
timators rely on a feature-matching backbone. Classical
global registration techniques [5,46] use FPFH features [34]
over point cloud fragments. On the other hand, many
global RGB-D SLAM techniques rely on sparse color fea-
tures [10, 28]. While being successful in many scenarios,
conventional feature matching often fails when the inter-
frame overlap is low. Therefore, deep learning techniques
have been utilized for predicting overlapping regions based
on geometry or color. On the geometric side, Deep Global
Registration [6] predicts overlapping point features using
nearest neighbor search over learned geometric features [7].
Methods such as PREDATOR [19] and Geometric Trans-
former [31] use attention mechanisms to target overlapping
regions for registration. In the domain of color features, Su-
perPoint and SuperGlue [11,36] build a formative approach
in GNN-based keypoint feature matching. Methods such as
LoFTR [42] introduce more dense and accurate sub-pixel
level matching. Despite being very successful in handling
wide-baseline scenarios, learned feature matching still re-
quires a significant amount of shared visibility and geomet-
ric overlap.

Camera Pose Estimation with Semantic Cues. Several
methods have been developed to incorporate semantic pri-
ors to improve low-overlap registration. PlaneMatch [38]
proposed coplanarity priors for handling loop closures and
low-overlap cases. Our method instead leverages object-
centric constraints, exploiting the power of semantic object
recognition. Another related direction is feature hallucina-
tion by leveraging image and object semantics. NeurHal
[13] focuses on correspondence hallucination using image
inpainting and outpainting, formulating a PnP optimiza-
tion over hallucinated matches. Virtual Correspondence
(VC) [24] introduces a human-centric approach that lever-
ages hallucinated object volumes to form virtual epipolar
constraints between frames. In contrast, we use indirect
instead of direct correspondences that do not require hal-
lucinated object volumes or image regions. Furthermore,
our method works on a diverse set of furniture categories
while VC focuses on humans. Pioneered by SLAM++ [35],
there is also a rich literature of object-centric SLAM solu-
tions, e.g., [26, 41]. Such SLAM methods leverage local,
per-frame poses of objects to establish constraints; instead,
we develop a global object pose optimization that is more
robust against occluded viewpoints.

Object Pose Estimation using Normalized Object Coor-
dinates. 3D object pose estimation has been widely stud-
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Figure 2. Overview of our approach to incorporate object correspondence grounding in global pose estimation. From a set of input RGB-
D frames, ObjectMatch predicts object instances for each frame with dense normalized object correspondences. The predicted object
instances are used to identify objects across frames, forming indirect object correspondences. We combine object correspondences with
SuperGlue [11, 36] keypoint matches in a joint energy optimization that yields both camera and object poses in a global registration.

ied from RGB and RGB-D inputs. Normalized Object Co-
ordinate Space (NOCS) [43] was proposed to form dense
correspondences from input RGB-D frames to canonical
object geometries, enabling better generalization than di-
rect regression of object poses. End2End SOCs [2] formu-
lated a NOC-based approach for CAD retrieval and align-
ment to 3D scans, using a differentiable Procrustes algo-
rithm. To enable CAD alignment to single RGB images,
ROCA [14] leveraged NOC space in combination with pre-
dicted depths, formulating a robust differentiable Procrustes
optimization [14]. Seeing Behind Objects [27] further
leveraged NOC correspondences both to obtain local object
poses and object completion for re-identification for RGB-
D multi-object tracking. Wide Disparity Re-localization
[26] uses the NOC predictions from [43] to construct an
object-level map for re-localization in SLAM. In contrast to
these approaches that focus on individual object poses, we
use NOC correspondences directly in a multi-frame, global
camera, and object pose optimization.

3. Method
3.1. Problem Setup

Given K RGB-D frames {(Ic1 , Id1 ), ..., (IcK , IdK)}, we
aim to optimize their 6-DoF camera poses Tc =
{T2, ..., TK}, assuming the first frame is the reference, i.e.,
T1 = I. A 6-DoF camera pose Ti is represented by Euler
angles γ and translations t, Ti = (γx, γy, γz, tx, ty, tz).

We also parameterize global, 9-DoF object poses, T̄o =
(γx, γy, γz, tx, ty, tz, sx, sy, sz), comprising 6-DoF angles
and translations, and 3-DoF anisotropic scales s.

We formulate a joint energy optimization of the form:

T ∗, T̄ ∗ = argminT,T̄ (Ec(T,M) + Eo(T, T̄ ,N)) (1)

where M are inter-frame feature matches and N are intra-
frame canonical object correspondences established with
normalized object coordinates (NOCs) that densely map

Figure 3. Multi-modal object recognition and NOC prediction.
Our ResNet-FPN [16, 21] backbone takes color, reversed jet col-
ored depth [12], and 2x downsampled colored 3D depth normals,
and produces multi-scale features by averaging different input en-
codings. From the obtained features, our method recognizes ob-
jects and predicts NOCs for each object, based on a Mask-RCNN
[15]-style prediction.

to the canonical space of an object in [−0.5, 0.5]3. Ec is
the feature-matching energy function, and Eo is our object-
centric energy function. Since robust feature matching and
optimization are readily available off the shelf [10, 11, 31,
36], our method focuses on building the object-centric en-
ergy Eo. To this end, we need two function approximators,
realized via deep neural networks: (1) a learned model for
object recognition and NOC prediction, and (2) a learned
model for object identification. The realization of these net-
works is described in Sections 3.2 and 3.3, respectively, and
energy function Eq. 1 in Section 3.4. An overview of our
approach is visualized in Figure 2.

3.2. Predicting Object Correspondences

To obtain object constraints in our final optimization,
we recognize objects via object detection and instance seg-
mentation, and predict object correspondences as dense
NOCs [43] for each object, as shown in Figure 3. We build
on a Mask-RCNN [15] with ResNet50-FPN [16, 21] back-
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bone, pre-trained on ImageNet [33] and COCO [22].
To input the depth of the RGB-D frames, we propose

a modified, multi-modal ResNet50-FPN [12, 16, 21] back-
bone. Our backbone takes 480x640 color, 480x640 reverse
jet-colored depth, and 240x320 colored depth normals as
input. We average the resulting FPN features to a single
feature pyramid:

G =
FPNc(Ic) + FPNd(Id) + U(FPNn(In))

3
, (2)

where Ic, Id, In are color, depth, and normal images,
FPNc,FPNd,FPNn are the corresponding ResNet50-FPN
backbones, and U is an upsampling operator to match the
normal features’ spatial size with others. This enables fine-
tuning the pre-trained bounding box, class, and instance
segmentation heads of Mask-RCNN [15], while also ex-
ploiting depth information. We use symmetrically struc-
tured FPNs, all pre-trained on ImageNet and COCO as ini-
tialization, but without any parameter sharing.

To obtain object correspondences, we establish map-
pings from detected objects to their canonical spaces, in the
form of dense NOCs. That is, for each pixel in the object’s
instance mask, we predict 3D points P noc

o using a fully con-
volutional network:

P noc
o = FCN(Go), p ∈ [−0.5, 0.5]3 ∀ p ∈ P noc

o . (3)

We optimize an ℓ1 loss Lnoc using ground-truth NOCs
P noc-gt,

Lnoc =
∑
o

∑
i

||P noc
o,i − P noc-gt

o ||1. (4)

Since symmetric objects [1, 43] induce ambiguities in
NOCs (e.g., a round table), we classify symmetry type of
objects (round, square, rectangle, non-symmetric), csym =
MLPsym(Go), optimized using a cross-entropy loss Lsym.
We also make Lnoc symmetry aware, taking the minimum
ℓ1 difference over the set of correct NOCs [43]. We use
non-symmetric objects during inference to avoid inconsis-
tent NOCs across views.

In addition to NOCs, we also regress anisotropic 3D
object scales so using a fully connected network, so =
MLPscale(Go), and optimize so with an ℓ1 loss Lscale.
The object scale enables holistic object pose understand-
ing within each frame and helps to filter potential object
matches across views using scale consistency.

Finally, to make our NOC-depth correspondences least-
squares friendly for our desired optimization, we also intro-
duce a per-frame differentiable Procrustes objective Lproc,
using a differentiable Kabsch solver [32] to obtain local ob-
ject rotations and translations:

R∗
o, t

∗
o = argminRo,to

(
∑
i

||Ro(P
noc
o,i ⊙ so)+ to−P depth

o,i ||22)

(5)

Figure 4. Our foreground/background metric-learning encoder
for object matching, inspired by re-OBJ [3]. Using the detected
and segmented objects from the model in Section 3.2, we encode
foreground and background regions of objects, using light-weight,
multi-modal ResNet18 encoders on the RGB-D features.

for each object o, where P depth
o are back-projected input

RGB-D depths corresponding to the object’s predicted in-
stance mask in its region of interest, and ⊙ denotes element-
wise multiplication. We train the local object poses with

Lproc = wr

∑
o

||R∗
o −Rgt

o ||1 + wt

∑
o

||t∗o − tgt
o ||22. (6)

Our full loss used for training is then

L = Lm +wnLnoc +wsLscale +wsymLsym +wpLproc, (7)

where Lm is the sum of Mask-RCNN losses [15] and w are
scalar weights balancing additional losses.
Implementation. We use the augmented 400k ScanNet
train image split for training [9, 14], with Scan2CAD la-
bels of the most common 9 furniture categories following
[1, 14, 25]. We train a standard Detectron2 Mask-RCNN
pipeline [15, 45] with 1k warm-up iterations, 0.003 base
learning rate, and learning rate decays at 60k and 100k iter-
ations with a total of 120k training iterations.

3.3. Matching Object Instances

In our global pose optimization formulation, the relation
between frames is formed via a global identification of ob-
jects across frames. To enable such identification without
any heuristic spatial assumptions, we train a simple metric
learner that ranks object semantic similarities across frames.
Our object matching is shown in Figure 4.

We characterize objects for matching by their respective
RGB-D features in the object instance mask, in addition to
the global context in the 5-times upscaled object bound-
ing box. All inputs are resized to 224x224 and input to
a lightweight ResNet18 [16] backbone pre-trained on Ima-
geNet [33].

Similar to object detection, we employ two backbones
for color and colored depth inputs. We omit normal input
in object matching, as it empirically did not provide any
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benefit. For each input modality, we train two ResNet18
backbones for masked and inverse-masked crops, namely
foreground (object) and background (context) encodings,

e = MLP([RNc(Fc),RNc(Bc)] + [RNd(Fd),RNd(Bd)])
(8)

where RN are ResNet18s, MLP is a fully connected net-
work, F,B are foreground and background crops for color
(c) and depth (d), and e is the object embedding vector.

Given an anchor object embedding ea, a correctly match-
ing object embedding ep, and a negative example en, we
train our metric learning using a triplet margin loss [17]:

Ltri = max(d(ea, ep)− d(ea, en) + 1.0, 0), (9)

where d is the ℓ2 distance.
We only consider triplets from the same category, as the

object recognition pipeline provides classification. At infer-
ence time, we match the best instances using the Hungar-
ian algorithm and apply a threshold d(ei, ej) < α for the
matching object pairs from the same class. This semantic
matching can be scaled to multiple frames via, e.g., object
tracking with re-identification, or in our case, a simple pose
graph optimization over frame pairs.
Implementation. We implement the identification network
using PyTorch [30] and train it on ScanNet data [9]. We
train the network for 100k iterations with a batch size of 8
using a momentum optimizer with a learning rate 1e-4 and
momentum 0.9.

3.4. Energy Optimization

We realize the joint energy minimization in Eq. 1 using
keypoint and NOC constraints.

Using the predicted NOC constraints with back-
projected depths, we can re-write the Eo in Eq. 1 as:

Eo(T, T̄ , P
depth, P noc) =

∑
o

∑
c

∑
k

||TcP
depth
o,c,k−T̄oP

noc
o,c,k||22

(10)
where T̄ , T represent 9-DoF and 6-DoF camera and ob-
ject transformations, respectively, and subscripts o, c, k cor-
respond to objects, cameras (frames), and points (pixels)
within the frames, respectively. Here, object indices are
determined by the object identification, and global object
poses T̄ indirectly constrain frames to each other without
any explicit inter-frame feature matching.

In many cases, object constraints alone may not be suf-
ficient to optimize the camera pose (e.g., frames may not
share matching objects together). However, our object-
based optimization is fully complementary to classical fea-
ture matching, and we thus formulate our objective in com-
bination with feature-matching constraints Ec:

Ec(T, P
depth) =

∑
i

∑
j

∑
m,n

||TiP
depth
i,m − TjP

depth
j,n ||22 (11)

Our method is agnostic to the feature matcher, whether
classical or learning-based. In this work, we experiment
with two different keypoint matching systems to realize
Ec, namely SuperGlue [11, 36] and Geometric Transformer
[31], both offering state-of-the-art indoor feature matching.

With both object and feature-matching constraints, we
realize the desired joint energy formulation as

T ∗, T̄ ∗ = argminT,T̄ (wcEc + woEo). (12)

where wc, wo weight feature-matching, and object energies.
Since non-linear least squares problems can be sensitive

to outliers, we additionally employ outlier removal. Simi-
lar to BundleFusion [10], we apply Kabsch filtering to both
intra-frame and keypoint constraints, using the matching
depth-NOC and depth-depth correspondences, respectively.
That is, we iteratively solve an orthogonal Procrustes prob-
lem and only keep the correspondences that have lower op-
timization errors. We use a liberal 20cm threshold to handle
wide-baseline frames. Objects and inter-frame matches are
rejected if the number of NOCs is < 15 and the number of
keypoints is < 5, respectively.

To solve this least-squares problem, we use a Gauss-
Newton optimizer. To handle outliers during this global
optimization, we remove > 15cm error residuals during
optimization. As global optimization can produce coarse
results, we further apply an ICP refinement.

To handle SLAM-style sequence registration, we use a
state-of-the-art global pose graph optimization [5, 47] over
pairwise frame registration, using a single hierarchy level
for simplicity. However, our method could be scaled to
multi-frame optimization via object tracking and subdi-
vided into multiple hierarchy levels to handle very large-
scale scenes.

4. Experiments
4.1. Pairwise Registration

Evaluation Dataset. We evaluate pairwise camera pose
estimation results on 1569 challenging and diverse frame
pairs from the validation set of ScanNet [9]. Unlike pre-
vious works [19, 36], our evaluation includes a significant
number of low-overlap pairs, with over 15% of pairs having
≤ 10% overlap.

Optimization. To establish object correspondences across
frame pairs in Eq. 10, we use the top-1 matching object with
embedding distance threshold 0.05. In the absence of both
keypoint matches and object matches, we consider object
matches with distance < 0.15. Only objects of the same
class label and predicted maximum scale ratio < 1.5 can
match. We determine the best matching object based on
the number of NOC-depth constraints after the filtering de-
scribed in Section 3.4. We combine it with keypoint con-
straints and refine the results with ICP.
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Classical Baselines. We compare our method against var-
ious hand-crafted feature-matching and registration base-
lines. These baselines include BundleFusion keypoint op-
timization with SIFT descriptors and Kabsch filtering [10,
23], (SIFT + BF), and two geometric global registration
baselines, Fast Global Registration (Fast GR) [46] and
Global Registration (GR) [5], based on approximate and
exact RANSAC over FPFH [34] features, respectively. As
a post-processing step, all methods are refined using ICP.
We use Open3D [47] implementations for global registra-
tion baselines as well as ICP post-processing of all meth-
ods. Our custom implementation of SIFT + BF uses the
SIFT implementation of OpenCV [4].

Learned Baselines. We also compare with pose estima-
tors using learned models for feature or object matching:
Geometric Transformer (GeoTrans) [31], which performs
dense geometric feature matching, and SG + BF which
leverages the powerful learned SuperGlue [36] and Super-
Point [11] feature matching approaches in combination with
BundleFusion [10] Kabsch filtering and 3D Gauss-Newton
optimization. We also use our network predictions to cre-
ate a 3D object tracking baseline, Object Track, mimick-
ing tracking-based object-SLAM systems. Object Track
obtains local object poses and object matches from Sec-
tions 3.2 and 3.3, but instead uses relative local object poses
to get the camera pose instead of a global energy optimiza-
tion. All methods are refined using ICP as a post-processing
step.

Evaluation Metrics. We use the Pose Recall metric for
pose evaluation, following previous RGB-D pairwise regis-
tration works [6, 19]. To comprehensively capture perfor-
mance, we employ several thresholds for absolute transla-
tion (in cm) and rotation (in ◦). Since absolute translation
is more difficult than rotation, its thresholds are twice the
angle thresholds, following [6].

Quantitative Results. In Table 1 and Table 2, we evalu-
ate on ScanNet [9] validation frame pairs, measuring recall
in various thresholds and overlap levels. Combined with
state-of-the-art feature matching in a joint optimization,
our method outperforms both classical and learning-based
methods. Furthermore, the gap increases with lower over-
lap, as shown in Table 2 and Figure 6, since our method can
leverage object-based correspondences to estimate align-
ment in the absence of keypoint matches. We also show
that our global optimization (Ours (w/o keypoints)) sig-
nificantly outperforms naive object-based tracking (Object
Track), demonstrating the efficacy of our global optimiza-
tion formulation. Our approach is designed to complement
keypoint matching, notably improving the state of the art
in combination with state-of-the-art geometric and RGB-D
feature matching.

Analysis of Performance by Overlap. In Table 2 and

Figure 5. Low-overlap registration on ScanNet [9], where tradi-
tional feature matching fails. Predicted NOC correspondences are
visualized, along with object box and camera poses of the left and
right images in green and blue, respectively.

Figure 6, we show 30cm, 15◦ recall performance at dif-
ferent geometric overlap rates, using the radius-based ge-
ometric overlap percentage measurement from [19] with
1cm threshold. While all methods’ performances decrease
with overlap, our method retains significantly more robust-
ness. Classical keypoint matching (SIFT + BF, Fast GR,
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Method Pose Recall by Threshold
5◦, 10cm 10◦, 20cm 15◦, 30cm

SIFT + BF [10, 23] 16.83 18.42 20.40
Fast GR [34, 46] 39.07 42.96 44.68

GR [5] 43.08 47.67 50.03
Object Track 37.41 43.21 45.19

GeoTrans [31] 67.11 74.57 76.93
SG + BF [10, 11, 36] 71.13 80.11 81.71
Ours (w/o keypoints) 56.41 63.67 66.99
Ours (w/ GeoTrans) 68.32 76.80 79.35
Ours (w/ SG + BF) 74.25 84.58 87.06

Table 1. Pose Recall results on ScanNet [9] validation images.
Combined with state-of-the-art feature matching, our method out-
performs various classical and learning-based baselines. Our ap-
proach complements both Geometric Transformer [31] (Ours (w/
GeoTrans)) and SuperGlue [36] (Ours (w/ SG + BF)) feature
matches, notably improving pose recall.

Method Recall by Overlap %
≤ 10 (10, 30) ≥ 30

SIFT + BF [10, 23] 1.30 2.20 33.59
Fast GR [34, 46] 0.00 13.97 69.04

GR [5, 34] 0.65 20.36 74.62
Object Track 8.44 31.54 58.86

GeoTrans [31] 22.08 64.27 93.11
SG + BF [10, 11, 36] 24.03 73.45 95.95
Ours (w/o keypoints) 32.47 53.29 80.31
Ours (w/ GeoTrans) 35.06 65.47 94.42
Ours (w/ SG + BF) 45.45 81.44 97.16

Table 2. Recall at 15◦, 30cm by overlap percentage. Our method
significantly outperforms strong baselines in challenging low-
overlap frame pairs, almost doubling recall for overlap ≤10%.

Figure 6. Change of pose performance by overlap percentage on
ScanNet [9] validation pairs. Our method is significantly more
robust against decreasing overlap compared to various classical
and learned baselines.

SIFT) suffer strongly in low-overlap scenarios, which are
challenging for hand-crafted descriptors. The learned ap-
proaches of GeoTrans and SG+BF maintain some perfor-
mance with decreasing overlap but still suffer strongly. Our

incorporation of object-based reasoning effectively comple-
ments keypoint matching while significantly improving ro-
bustness to low overlap, obtaining a performance improve-
ment from 24.03% to 45.45% for overlap ≤ 10%.

Qualitative Results. Figure 5 shows examples of low-
overlap registration on ScanNet [9] frame pairs. Due to the
minimal overlap, traditional keypoint matching cannot find
sufficient correspondences, while our object grounding en-
ables accurate camera pose estimation through indirect ob-
ject constraints.

4.2. Registration of RGB-D SLAM Sequences

We further demonstrate the effectiveness of our method
in an RGB-D SLAM setting, registering sequences of
frames in room-scale scenes. In particular, we evaluate
challenging, low-frame-rate settings that reflect common
non-expert capture such as fast camera motion.

For optimization, we use a global pose graph optimiza-
tion over pairwise registration similar to the multi-way
global registration of [5, 6, 47], as it offers an off-the-shelf,
simple, and robust solution. We refer to our supplementary
material for further optimization details.

Datasets and Evaluation Metrics. We evaluate our
method on TUM-RGBD [39] and ScanNet [9] scenes. For
ScanNet, we use a set of 12 scenes from the validation and
test sets, having a wide range of sizes, environments, and
camera trajectories. We sample every 30th frame for TUM-
RGBD (1Hz) and every 20th frame in ScanNet (1.5Hz). All
methods use the same hyperparameters for each dataset,
respectively. To evaluate registration quality, we use the
standard root mean squared trajectory error used for TUM-
RGBD evaluation [39].

Baselines. We implement various popular feature de-
scriptors from cutting-edge SLAM systems in global pose
graph optimization setups and thoroughly tune the hyper-
parameters of each method to support low-frame-rate se-
quences. We compare against Redwood [5], a global multi-
way pose graph that uses FPFH [34] features. We also
deploy robust RGB-D SIFT features used in BundleFu-
sion [10, 23] in a global pose graph optimization, creating
the SIFT + BF baseline. Finally, we use the state-of-the-
art SuperGlue matches of SuperPoint features with Bundle-
Fusion’s sparse 3D optimization, SG + BF, as described in
Section 4.1.

Quantitative Results. In Table 3, we compare our
method to state-of-the-art traditional and learned SLAM ap-
proaches. Across both TUM-RGBD and ScanNet valida-
tion and test scenes [9, 39], our object-grounded approach
enables improved camera pose estimation. In particular, for
the larger-scale ScanNet scenes, ObjectMatch achieves no-
table reductions in trajectory error, of 38%, 49%, 50%, and
44% in scenes 0423, 0430, 0718, and 0773.
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Method TUM Scene @ 1Hz ScanNet Scene @ 1.5Hz
fr1/desk fr1/xyz fr2/xyz fr2/desk fr3/office 0011 0081 0169 0207 0423 0430 0461 0494 0718 0760 0773 0805

SIFT + BF [10, 23] 30.60 3.49 2.73 157.02 38.01 222.49 108.03 126.57 104.64 160.69 248.00 20.90 33.98 81.48 38.03 22.47 86.80
Redwood [5, 34, 47] 3.10 1.97 1.88 140.17 175.64 164.01 50.96 47.24 47.17 88.43 156.76 10.47 9.77 133.53 6.55 43.19 253.39
SG + BF [10, 11, 36] 3.01 1.92 1.81 5.30 5.14 13.88 6.77 8.09 5.62 7.67 35.97 3.31 7.16 13.42 6.37 12.43 12.98
Ours (w/ SG + BF) 3.01 1.92 1.81 5.26 4.92 12.53 5.73 6.85 5.32 4.75 18.23 2.67 6.85 6.70 5.88 7.00 10.86

Table 3. ATE RMSE values (cm) on room-scale TUM-RGBD [39] and ScanNet [9] test scenes. We evaluate at challenging 1 FPS and
1.5 FPS by sampling every 30th and 20th frame from TUM-RGBD and ScanNet, respectively. ObjectMatch outperforms strong baselines
leveraging classical and learning-based SLAM systems.

Figure 7. Qualitative comparison for registration of ScanNet
scenes [9], in comparison with only feature matching SG + BF
[10, 11, 36]. All results are visualized by volumetric fusion of the
respective RGB-D frames with the estimated poses. Our optimized
poses produce more accurate, clean, and consistent reconstruction,
due to incorporating the object-based information in our global
optimization. Example loop closures with matching object corre-
spondences are shown on the right.

Qualitative Results. In Figure 7, we show ScanNet [9]
scene reconstructions using estimated camera poses. RGB-
D frames are fused using a scalable TSDF volumetric fu-
sion [8,47]. Our approach complements state-of-the-art fea-
ture matching [10,11,36], enabling more accurate and con-
sistent reconstructions using our indirect correspondences,
in comparison to feature matching alone. We refer to the
supplemental for additional qualitative sequence registra-
tion results.

Limitations and Future Work. ObjectMatch shows the
capability of incorporating object semantics into global
pose optimization; however, various limitations remain.
In particular, our approach leverages higher-level seman-

tic correspondence given by objects for registration; how-
ever, in scenarios where object matches do not exist in
frame views, we cannot leverage this constraint and in-
stead use only feature matches. Further leveraging back-
ground information regarding shared structures seen from
different views would provide additional semantic corre-
spondence information to further complement registration.
Additionally, while estimating canonical correspondences
with objects can provide significant view information, ob-
ject alignments can be somewhat coarse, while reasoning at
a finer-grained level of object parts would provide more pre-
cise reasoning. Finally, we believe future work can reduce
our method’s system complexity by adopting a joint multi-
frame SLAM optimization with fewer hyperparameters as
well as a unified end-to-end architecture for learning object
correspondences and identification together.

5. Conclusion
We have presented ObjectMatch which introduces a new

paradigm for incorporating object semantics into camera
pose registration. We leverage indirect, canonical object
correspondences established with normalized object coordi-
nates for camera pose optimization aspects in RGB-D reg-
istration and SLAM. To obtain these correspondences, we
propose two multi-modal neural networks for object recog-
nition with normalized object coordinate prediction and ob-
ject identification. ObjectMatch operates in tandem with
state-of-the-art feature matching in a joint Gauss-Newton
optimization, with its object grounding enabling registra-
tion to handle frame pairs with very low to no shared visi-
bility. As a result, ObjectMatch significantly improves the
state-of-the-art feature matching in both pairwise and se-
quence registration of RGB-D frames, particularly in the
challenging low-overlap regime. Overall, we hope our
method opens up new possibilities in the context of lever-
aging semantic information for camera pose estimation.
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