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Abstract

Previous knowledge distillation methods have shown
their impressive performance on model compression tasks,
however, it is hard to explain how the knowledge they trans-
ferred helps to improve the performance of the student net-
work. In this work, we focus on proposing a knowledge
distillation method that has both high interpretability and
competitive performance. We first revisit the structure of
mainstream CNN models and reveal that possessing the
capacity of identifying class discriminative regions of in-
put is critical for CNN to perform classification. Further-
more, we demonstrate that this capacity can be obtained
and enhanced by transferring class activation maps. Based
on our findings, we propose class attention transfer based
knowledge distillation (CAT-KD). Different from previous
KD methods, we explore and present several properties of
the knowledge transferred by our method, which not only
improve the interpretability of CAT-KD but also contribute
to a better understanding of CNN. While having high inter-
pretability, CAT-KD achieves state-of-the-art performance
on multiple benchmarks. Code is available at: https:
//github.com/GzyAftermath/CAT-KD.

1. Introduction

Knowledge distillation (KD) transfers knowledge dis-
tilled from the bigger teacher network to the smaller student
network, aiming to improve the performance of the student
network. Depending on the type of the transferred knowl-
edge, previous KD methods can be divided into three cat-
egories: based on transferring logits [3, 6, 11, 16, 33], fea-
tures [2, 10, 17–19, 23, 24, 28], and attention [29]. Although
KD methods that are based on transferring logits and fea-
tures have shown their promising performance [2, 33], it is
hard to explain how the knowledge they transferred helps
to improve the performance of the student network, due to
the uninterpretability of logits and features. Relatively, the
principle of attention-based KD methods is more intuitive:
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Figure 1. Illustration of the converted structure. After converting
the FC layer into a convolutional layer with 1×1 kernel and mov-
ing the position of the global average pooling layer, CAMs can be
obtained during the forward propagation.

it aims at telling the student network which part of the input
should it focus on during the classification, which is real-
ized by forcing the student network to mimic the transferred
attention maps during training. However, though previous
work AT [29] has validated the effectiveness of transferring
attention, it does not present what role attention plays dur-
ing the classification. This makes it hard to explain why
telling the trained model where should it focus could im-
prove its performance on the classification mission. Be-
sides, the performance of the previous attention-based KD
method [29] is less competitive compared with the methods
that are based on transferring logits and features [2, 33]. In
this work, we focus on proposing an attention-based KD
method that has higher interpretability and better perfor-
mance.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Visualization of CAMs corresponding to categories with Top 4 prediction scores for the given image. The predicted categories
and their scores are reported in the picture.

We start our work by exploring what role attention plays
during classification. After revisiting the structure of the
mainstream models, we find that with a little conversion (il-
lustrated in Figure 1), class activation map (CAM) [34], a
kind of class attention map which indicates the discrimina-
tive regions of input for a specific category, can be obtained
during the classification. Without changing the parame-
ters and outputs, the classification process of the converted
model can be viewed in two steps: (1) the model exploits its
capacity to identify class discriminative regions of input and
generate CAM for each category contained in the classifica-
tion mission, (2) the model outputs the prediction score of
each category by computing the average activation of the
corresponding CAM. Considering that the converted model
makes predictions by simply comparing the average activa-
tion of CAMs, possessing the capacity to identify class dis-
criminative regions of input is critical for CNN to perform
classification. The question is: can we enhance this capac-
ity by offering hints about class discriminative regions of
input during training? To answer this question, we propose
class attention transfer (CAT).

During CAT, the trained model is not required to predict
the category of input, it is only forced to mimic the trans-
ferred CAMs, which are normalized to ensure they only
contain hints about class discriminative regions of input.
Through experiments with CAT, we reveal that transferring
only CAMs can train a model with high accuracy on the
classification task, reflecting the trained model obtains the
capacity to identify class discriminative regions of input.
Besides, the performance of the trained model is influenced
by the accuracy of the model offering the transferred CAMs.
This further demonstrates that the capacity of identifying
class discriminative regions can be enhanced by transfer-
ring more precise CAMs.

Based on our findings, we propose class attention trans-
fer based knowledge distillation (CAT-KD), aiming to en-
able the student network to achieve better performance by
improving its capacity of identifying class discriminative
regions. Different from previous KD methods transferring
dark knowledge, we present why transferring CAMs to the
trained model can improve its performance on the classifi-
cation task. Moreover, through experiments with CAT, we
reveal several interesting properties of transferring CAMs,

which not only help to improve the performance and in-
terpretability of CAT-KD but also contribute to a better
understanding of CNN. While having high interpretability,
CAT-KD achieves state-of-the-art performance on multiple
benchmarks. Overall, the main contributions of our work
are shown below:

• We propose class attention transfer and use it to
demonstrate that the capacity of identifying class dis-
criminative regions of input, which is critical for CNN
to perform classification, can be obtained and en-
hanced by transferring CAMs.

• We present several interesting properties of transfer-
ring CAMs, which contribute to a better understanding
of CNN.

• We apply CAT to knowledge distillation and name
it CAT-KD. While having high Interpretability, CAT-
KD achieves state-of-the-art performance on multiple
benchmarks.

2. Background

The concept of knowledge distillation was proposed in
[11]. As a transfer learning method, KD aims to improve
the performance of the smaller student network by transfer-
ring the dark knowledge distilled from the bigger teacher
network. Previous KD methods can be divided into three
types: distillation from logits [3, 6, 11, 16, 33], features
[2, 10, 17–19, 23, 24, 28] and attention [29].

To our knowledge, AT [29] is the only KD method based
on transferring attention, which defines attention map as the
spatial map indicating the area of input that the model focus
on most. In practice, they obtain attention maps by calcu-
lating the sum of feature maps while their values are abso-
lutized. However, AT did not present what role attention
plays during the classification and why transferring atten-
tion maps defined in this way can improve the performance
of the student network.

Previous works related to class attention originate from
[34], where the authors propose to utilize high-level feature
maps and the parameters of the fully connected layer to gen-
erate attention map for a specific category, which is named
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class activation map (CAM). According to [34], class dis-
criminative regions of input are highlighted in the corre-
sponding CAM. To facilitate understanding, we visualize
several CAMs in Figure 2. The following works have suc-
cessfully applied CAM in various weakly supervised visual
tasks [14, 27, 31]. Besides, there are also many works focus
on generalizing CAM [1, 21, 26] and improving the perfor-
mance of models by exploiting the information contained in
CAM during training [7, 25].

Previous works have not presented what role attention
plays during classification and why transferring attention
maps can improve the trained model’s performance on the
classification mission. In this paper, we focus on figuring
out this question and try to propose an attention-based KD
method that has both high interpretability and competitive
performance.

3. Our Method

In this section, we first analyze the structure of the main-
stream CNN models and reveal that possessing the capac-
ity of identifying class discriminative regions is critical for
CNN to perform classification. Then we further propose
class attention transfer to prove that this capacity can be
obtained and enhanced by transferring CAMs. Finally, we
apply CAT to knowledge distillation.

3.1. Revisit the structure of CNN

In image classification tasks, mainstream models usu-
ally use CNN to extract features, the resulting high-level
feature maps are then globally pooled and fed to a simple
fully connected layer to perform classification [8,9,12]. Let
F = [F1, F2, ..., FC ] ∈ RC×W×H represents the feature
maps generated by the last convolutional layer, where C,
W , and H indicate channel dimension, width, and height
respectively. And fj(x, y) denotes the activation of F in j
channel at spatial location (x, y), while GAP is the global
average pooling layer. Then the process of calculating logits
for normal CNN models can be written as:

Li =
∑

1≤j≤C

ωi
j ×GAP(Fj)

=
1

W ×H

∑
x,y

∑
1≤j≤C

ωi
j × fj(x, y),

(1)

where Li denotes the logit of i-th class, ωi
j is the weight of

the fully connected layer (FC layer) corresponding to class
i for GAP(Fj). According to [34], we can obtain the CAM
corresponding to category i by:

CAM i(x, y) =
∑

1≤j≤C

ωi
j × fj(x, y). (2)

pooling normalization

Tweaked student

…
generate

CAMs W×H×K

pooling normalization

Tweaked teacher

…
generate

Transferred CAMs W×H×K

MSE loss

Figure 3. Illustration of CAT. During CAT, the structure of teacher
and student are converted to our style (Figure 1).

According to Equation (1) and Equation (2), the calculation
of Li can be written in another form:

Li =
1

W ×H

∑
x,y

CAM i(x, y)

= GAP(CAM i).

(3)

As reflected in Equation (3), logits can be obtained by
computing the average activation of CAMs. Inspired by it,
as illustrated in Figure 1, we convert the FC layer into a 1×1
convolutional layer and move the position of the GAP layer.
Then L̄i, the logit of i-th class generated by the converted
model, can be obtained by:

L̄i = GAP(Conv i(F))

=
1

W ×H

∑
x,y

(
∑

1≤j≤C

ωi
j × fj(x, y))

= GAP(CAM i),

(4)

where Conv i denotes the converted 1 × 1 convolution ker-
nel that used to separate features corresponding to i-th class
from F, and ωi

j is its weight of j channel. As reflected
in Eqn(3) and Eqn(4), the conversion does not change the
value of its prediction score (i.e., logits). And class activa-
tion maps can be obtained during the classification of the
converted model.

As reflected in Eqn(4), the classification process of the
converted model can be viewed in two steps: (1) the model
exploits its capacity to identify class discriminative regions
of input and generate CAMs, (2) the model outputs predic-
tion score of each category by computing the average ac-
tivation of the corresponding CAM. Considering that the
model makes predictions by simply comparing the aver-
age activation of CAMs, possessing the capacity to iden-
tify class discriminative regions of input is critical for CNN
to perform classification. To examine if this capacity can
be obtained and enhanced by offering hints indicating class
discriminative regions of input to the trained model, we pro-
pose class attention transfer.
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3.2. Class Attention Transfer

The purpose of CAT is to examine if a model can ob-
tain the capacity to identify class discriminative regions of
input by transferring only CAMs. Thus, during CAT, the
trained model is not required to perform classification, and
any information related to the category of the training set
data (e.g., ground-truth labels and logits) is not released
to the trained model. In practice, we utilize a pre-trained
model with the converted structure to generate the trans-
ferred CAMs. The illustration of the process of CAT is
shown in Figure 3, while the formal description is shown
below.

For a given input, let A ∈ RK×W×H denotes the CAMs
generated by the converted structure, where K is the num-
ber of categories contained in the classification task, W and
H denote the width and height of the generated CAM re-
spectively. Ai ∈ RW×H represents the i channel of A,
which is the CAM corresponding to category i. And S, T
denote student and teacher correspondingly. Besides, we
use the average pooling function ϕ to reduce the resolution
of the transferred CAMs, to improve the performance of
CAT (Section 4.2). Then CAT’s loss function can be de-
fined as:

LCAT =
∑

1≤i≤K

1

K
∥ ϕ(AT

i )

∥ϕ(AT
i )∥2

− ϕ(AS
i )

∥ϕ(AS
i )∥2

∥22. (5)

As can be seen, we perform l2 normalization on ϕ(AT
i )

and ϕ(AS
i ) (l1 normalization can be used as well), to ensure

that information related to the category of input is not re-
leased to the trained model during CAT, considering that the
average activation of CAM indicates the prediction score
(Equation (3)). Besides, note that here we transfer CAMs of
all categories, which is based on our finding that CAMs of
all categories both contain beneficial information for CAT
(Section 4.2).

Our core findings through the experiments with CAT are
presented as follows, while the corresponding experimen-
tal verification and their detailed analysis can be found in
Section 4.2.

• The capacity to identify class discriminative regions
of input can be obtained and enhanced by transferring
CAMs.

• CAMs of all categories both contain beneficial infor-
mation for CAT.

• Transferring smaller CAMs performs better.

• For CAT, the critical information contained in the
transferred CAMs is the spatial location of the regions
with high activation in them rather than their specific
value.

3.3. CAT-KD

After validating the effectiveness of CAT, we apply CAT
to knowledge distillation and name it CAT-KD. The loss
function of CAT-KD is:

LKD = LCE + βLCAT , (6)

where LCE denotes the standard cross-entropy loss, and β
is the factor used to balance the CE loss and CAT loss.

Different from previous KD methods, we present how
the knowledge transferred by CAT-KD helps to improve the
performance of the student network: by improving its ca-
pacity of identifying class discriminative regions. Besides,
through experiments with CAT, we analyze and reveal sev-
eral properties of the knowledge transferred by our method.
This further enhances the interpretability of CAT-KD.

4. Experiments

4.1. Datasets and Implementation Details

Datasets. In the following section we explore CAT and
CAT-KD mainly on two image classification datasets:

(1) CIFAR-100 [13] comprise 32×32 pixel images of
100 categories, the training and validate sets contain 50K
and 10K images.

(2) ImageNet [5] is a large-scale dataset for the classifi-
cation of 1K categories, containing 1.2 million training and
50K validation images.

Implementation details. Our implementation for CIFAR-
100 and ImageNet strictly follows [2, 33]. Specifically, for
CIFAR-100, we train all models for 240 epochs with batch
size 64 using SGD. The initial learning rate is 0.05 (0.01
for ShuffleNet [15, 32] and MobileNet [20]), divided by
10 at 150, 180, and 210 epochs. For ImageNet, we train
models for 100 epochs with batch size 512. The initial
learning rate is 0.2 and divided by 10 for every 30 epochs.
We experiment with various representative CNN network:
VGG [22], ResNet [9], WideResNet [30], MobileNet [20],
and ShuffleNet [15, 32].

For fairness, all the results of previous methods are either
reported in previous papers [2,33] (we keep our training set-
ting the same as theirs) or obtained using codes released by
the author with our training setting. All results on CIFAR-
100 are the average over 5 trials, while that on ImageNet is
the average over 3 trials.

For all experiments reported in Section 4.2 and Sec-
tion 4.3, without special specification, we pool the trans-
ferred CAMs into 2×2 during CAT and CAT-KD. More im-
plementation details such as the settings of β are attached
in the appendix due to the page limits.

11871



45

55

65

75

85

10 25 50 75 99

Acc (%)

Number of categories of training set data

Acc on T

Acc on S
40

50

60

70

10 25 50 75 100

Acc (%)

Number of categories of the transferred 

CAMs

Top n scoring classes

Lowest n scoring classes

Figure 4. Accuracy of models trained with CAT on CIFAR-100.
Left: Only CAMs of certain categories are transferred, which are
selected by two strategies: (1) select categories with top n pre-
diction scores, (2) select categories with the lowest n prediction
scores. Right: The training set is reduced to contain data of par-
tial categories only. T: test set of CIFAR-100. S: a subset of T
which only contains data of classes that are not contained in the
training set.

4.2. Exploration of CAT

In this section, we explore several properties of class
attention transfer, which not only help to improve the
performance and interpretability of CAT-KD but also
contributes to a better understanding of CNN. Note that
any information related to the category of the training set
(e.g., ground-truth labels and logits) is not utilized in the
experiments reported in this section.

The capacity of identifying class discriminative re-
gions can be obtained and enhanced by transferring
CAMs. As revealed in Section 3.1, being able to identify
class discriminative regions of input is critical for CNN to
perform classification. Thus, the intensity of this capacity
can be evaluated by the model’s performance on the
classification mission. We perform CAT on ShuffleNetV1,
where the transferred CAMs are produced by different
models with various accuracy. As the results reported in
Table 1, transferring only CAMs can train a model with
high accuracy on the classification mission, proving the
capacity of identifying class discriminative regions can be
obtained by transferring CAMs. Besides, the performance
of the trained model is influenced by the accuracy of the
model producing the transferred CAMs, indicating that
this capacity can be enhanced by transferring more precise
CAMs.

CAMs of all categories both contain beneficial in-
formation for CAT. For a given input, we can use the
method of CAM [34] to generate class activation maps
for any categories contained in the classification mission.
However, though a few non-target categories may share
certain similarities (e.g., shape and patterns) with the target

Top1 prairie fowl Top1 otter Top1 basset

Figure 5. We set a pre-trained ResNet50 as CAMs producer to
train another ResNet50 from scratch with CAT, CAMs are pooled
into 2×2 during the transfer. The first row shows the visualization
of the CAMs generated by the producer, while the CAMs visual-
ized in the second row come from the trained model.

category, most of them are completely irrelevant to the
input from a human understanding. However, our experi-
ments show that class activation maps of all categories both
contain beneficial information for CAT.

We first perform CAT on CIFAR-100 where only CAMs
of certain categories are transferred. We designed two
strategies to select the categories of the transferred CAMs:
(1) select categories with the lowest n prediction scores. (2)
select categories with top n prediction scores (the empirical
assumption here we make is that the categories with higher
prediction scores have more similarities with the target
category). As the results reported in Figure 4 (left), while
CAMs of classes with higher prediction scores bring more
improvement, others are also beneficial for CAT. Besides,
we further perform CAT on the reduced CIFAR-100, where
CAMs of all classes are transferred but the training set is
reduced to contain data of only partial categories. Then the
trained model is evaluated on the complete test set and a
subset of it which only contains data of classes that are not
contained in the training set. As the results reported in Fig-
ure 4 (right), interestingly, the trained model achieves high
accuracy on the subset, indicating that transferring CAMs
enables the trained model to classify the categories that
are not contained in the training set. This further proves
that non-target CAMs contain beneficial information for
CAT even if their categories seem to be irrelevant to the
input from a human perspective.

Transferring smaller CAMs performs better. Intu-
itively, larger CAM contains more detailed hints about the
spatial location of the class discriminative regions, then
transferring larger CAMs should perform better. However,
insufficient accuracy of the model will result in deviations
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Figure 6. The first row shows the visualization of the CAMs corresponding to the top 3 predicted categories, while the following row shows
the visualization of them after binarization.

CAM Producer ResNet56 ResNet110 ResNet50
Acc 72.34 74.31 79.34
CAT 72.47 74.42 76.17

Table 1. Accuracy (%) of ShuffleNetV1 trained with CAT on
CIFAR-100. The transferred CAMs are produced by different
models with various accuracy.

Baseline Model ResNet32×4 ResNet8×4 ResNet20
Acc 79.42 72.5 69.06

CAT
8×8 79.65 67.92 66.21
4×4 79.84 71.61 66.43
2×2 79.71 72.45 66.84

Table 2. Accuracy (%) of various models trained with CAT on the
CIFAR-100 test set. During CAT, CAMs are pooled into various
sizes. The transferred CAMs are produced by ResNet32×4.

between the highlighted areas in its generated CAM and the
actual class discriminative regions of the image (which can
be observed in Figure 2). Besides, different models differ
in their capacity to identify class discriminative regions,
which will lead to subtle differences in the generated
CAMs. Therefore transferring CAMs with a larger size
does not necessarily improve the performance of CAT.
Through experiments, we found that performing average
pooling on the transferred CAMs, which will expand the
highlighted areas of CAMs and reduce the bias between
CAMs generated by different models, could alleviate the
above issues. As the results reported in Table 2, though
pooling blurs the details, transferring smaller CAMs al-
ways performs better. Besides, since the pooling operation
expands the highlighted areas of CAM, which will make it
encompass larger class discriminative regions, transferring
pooled CAMs will force the trained model to pay attention
to more discriminative regions, which can be observed in
Figure 5. In practice, we pool the transferred CAMs into
a smaller size to improve the performance of CAT and
CAT-KD (normally 2×2).

Baseline Model ResNet32×4 ResNet50
Acc 79.42 79.34

CAT CAMs 79.71 80.45
Binarized CAMs 79.35 79.65

Table 3. Results of transferring binarized CAMs. The transferred
CAMs are produced by ResNet32×4.

Teacher ResNet32×4
Acc 77.51 79.42 81.36

ReviewKD [2] 76.42 77.45 77.91
DKD [33] 76.58 76.45 77.29
CAT-KD 76.36 78.26 78.84

∆ -0.22 +0.81 +0.93

Table 4. Comparison with two SOTA methods. The student net-
work is ShuffleNetV1. ∆ represents the gap between CAT-KD and
the best-performing method among ReviewKD and DKD (marked
with underline).

The exact value of the transferred CAMs is not impor-
tant. To demonstrate that the role CAMs play in CAT is
offering hints about the spatial location of the class dis-
criminative regions of input, we binarize the values of the
transferred CAMs to 0 and 1, using their average values as
the thresholds. The regions of CAM with values above the
threshold are considered as being highlighted, indicating
the class discriminative regions of input. Thus, we set the
values of these regions to 1 to keep them activated after the
binarization. Other regions with values below the threshold
are considered unhighlighted, and their values are set to 0.
As shown in Figure 6, though the specific values of CAMs
are lost during the binarization process, the binarized
CAMs still contain hints about the spatial location of the
class discriminative regions. Note that the threshold can
also be specified in other ways (e.g., median).

As the results reported in Table 3, although the class dis-
criminative regions obtained by our rudimentary binariza-
tion method are not precise, the accuracy of the resulting
model dropped by less than one percent, proving that the
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Distillation
Mechanism

Teacher ResNet32×4 WRN40-2 ResNet32×4 ResNet50 VGG13
Acc 79.42 75.61 79.42 79.34 74.64

Student ShuffleNetV1 ShuffleNetV1 ShuffleNetV2 MobileNetV2 MobileNetV2
Acc 70.5 70.5 71.82 64.6 64.6

Logits KD [11] 74.07 74.83 74.45 67.35 67.37
DKD [33] 76.45 76.7 77.07 70.35 69.71

Features

CRD [23] 75.11 76.05 75.65 69.11 69.73
OFD [10] 75.98 75.85 76.82 69.04 69.48

FitNet [19] 73.59 73.73 73.54 63.16 64.14
RKD [17] 72.28 72.21 73.21 64.43 64.52

ReviewKD [2] 77.45 77.14 77.78 69.89 70.37

Attention
AT [29] 71.73 73.32 72.73 58.58 59.4

CAT-KD 78.26 77.35 78.41 71.36 69.13
↑ +6.53 +4.03 +5.68 +12.78 +9.73

Table 5. Results on CIFAR-100. Teachers and students have different architectures. ↑ represents the performance improvement of CAT-KD
compared with AT.

Teacher ResNet56 ResNet110 ResNet32×4 WRN-40-2 WRN-40-2 VGG13
Acc 72.34 74.31 79.42 75.61 75.61 74.64

Student ResNet20 ResNet32 ResNet8×4 WRN-16-2 WRN-40-1 VGG8
Distillation
Mechanism

Acc 69.06 71.14 72.5 73.26 71.98 70.36
KD [11] 70.66 73.08 73.33 74.92 73.54 72.98Logits DKD [33] 71.97 74.11 76.32 76.24 74.81 74.68

CRD [23] 71.16 73.48 75.51 75.48 74.14 73.94
OFD [10] 70.98 73.23 74.95 75.24 74.33 73.95

FitNet [19] 69.21 71.06 73.5 73.58 72.24 71.02
RKD [17] 69.61 71.82 71.9 73.35 72.22 71.48

Features

ReviewKD [2] 71.89 73.89 75.63 76.12 75.09 74.84
AT [29] 70.55 72.31 73.44 74.08 72.77 71.43

CAT-KD 71.62 73.62 76.91 75.6 74.82 74.65Attention
↑ +1.07 +1.31 +3.47 +1.52 +2.05 +3.22

Table 6. Results on CIFAR-100. Teachers and students have the same architecture. ↑ represents the performance improvement of CAT-KD
compared with AT.

critical information CAMs contained for CAT is the spatial
location of class discriminative regions rather than its exact
value. This strongly demonstrates that our method is based
on transferring attention.

4.3. Evaluation of CAT-KD

Consistent with previous works [2, 23, 33], we compare
the performance of CAT-KD with several representative
KD methods. Moreover, we further evaluate our method
from two aspects: transferability and efficiency.

Results on CIFAR-100. Table 5 reports the results
on CIFAR-100 with the teachers and students having
different architectures. Table 6 shows the results where
teachers and students have architectures of the same style.
Notably, our method outperforms the other attention-
based method AT [29] with a large margin (1.07% ∼
12.78%). Moreover, CAT-KD achieves comparable or

even better performance compared with feature-based
distillation method [2] which requires additional networks
and multiple-layer information. Besides, consistent with
CAT, the performance of CAT-KD is affected by the
accuracy of the teacher: CAMs produced by teachers
with lower accuracy contain more incorrect hints about
the class discriminative regions of input. To verify this,
we further evaluate the impact of the accuracy of the
teacher on our method. As the results reported in Table 4,
CAT-KD is relatively less effective when the teacher is
weak. Thus, as can be observed in Table 6, the perfor-
mance of CAT-KD is not the best when the teacher is weak.

Results on ImageNet. Table 7 and Table 8 report the
top-1 and top-5 accuracy of image classification on Ima-
geNet. Though the performance of CAT-KD is restricted
by the weakness of the teacher network in this setting, our
method still outperforms most KD methods.
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Features Logits Attention
Teacher Student OFD [10] CRD [23] ReviewKD [2] KD [11] DKD [33] AT [29] CAT-KD

Top-1 73.31 69.75 70.81 71.17 71.61 70.66 71.7 70.69 71.26
Top-5 91.41 89.07 89.98 90.13 90.51 89.88 90.41 90.01 90.45

Table 7. Results on ImageNet. In this group, we set ResNet34 as the teacher and ResNet18 as the student. The method with the second-best
performance is marked with an underline.

Features Logits Attention
Teacher Student OFD [10] CRD [23] ReviewKD [2] KD [11] DKD [33] AT [29] CAT-KD

Top-1 76.16 68.87 71.25 71.37 72.56 68.58 72.05 69.56 72.24
Top-5 92.86 88.76 90.34 90.41 91.00 88.98 91.05 89.33 91.13

Table 8. Results on ImageNet. In this group, we set ResNet50 as the teacher and MobileNet as the student. The method with the second-
best performance is marked with an underline.

Teacher ResNet32×4 ResNet50
Student ShuffleNetV1 MobileNetV2
Dataset STL TI STL TI
Baseline 69.05 36.54 64.39 30.85
KD [11] 66.61 32.56 67.81 32.37

DKD [33] 70.73 36.77 71.05 36.48
CRD [23] 70.68 37.85 71.46 38.75

ReviewKD [2] 71.46 38.46 66.16 32.65
AT [29] 71.36 37.36 65.1 29.13

CAT-KD 74.43 40.73 73.2 39.87

Table 9. Comparison on transferring representations learned from
CIFAR-100 to STL-10 (STL) and Tiny-ImageNet (TI).

Transferability. We perform experiments to compare the
transferability of representations to evaluate the generaliz-
ability of the knowledge transferred by various methods.
We use ShuffleNetV1 and MobileNetV2 as the frozen
representations extractors, which are either trained from
scratch on CIFAR-100 [13] or distilled from ResNet32×4
and ResNet50 with various KD methods. Then linear
probing tasks are performed on STL-10 [4] and Tiny-
ImageNet [5] to quantify their transferability. As the results
reported in Table 9, CAT-KD outperforms other methods by
a large margin, indicating the outstanding generalizability
of the knowledge transferred by our method.

Efficiency. We first compare the performance of mul-
tiple KD methods on CIFAR-100, where the training set
is reduced at various ratios, to evaluate their dependence
on the amount of training data. As the results reported
in Figure 7 (left), CAT-KD is minimally affected by
the decrease in the amount of training data, proving the
outstanding distillation efficiency of our method. Besides,
we further compare the training cost and performance of
various KD methods. As reflected in the results reported
in Figure 7 (right), CAT-KD has the highest training effi-
ciency. Since CAT-KD does not require extra parameters,
its computational cost is almost the same as logits-based
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Figure 7. We set ResNet32×4 as the teacher and ShuffleNetV1 as
the student. Left: accuracy of students trained with various meth-
ods on CIFAR-100, where the training set is reduced at various ra-
tios. Right: comparison of accuracy and training time (per epoch)
on CIFAR-100.

methods. Relatively, feature-based methods require much
more computational resources because most of them need
additional auxiliary networks to distill features.

5. Conclusion
In this paper, we propose CAT-KD which has both

high interpretability and competitive performance. More
importantly, we demonstrate that the capacity of identifying
class discriminative regions of input can be obtained and
enhanced by transferring CAMs. Furthermore, we present
several interesting properties of transferring CAMs, which
contribute to a better understanding of CNN. We hope our
findings will help future research on the interpretability of
CNN and knowledge distillation.
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