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Abstract

With the rapid development of virtual reality, 360◦ im-
ages have gained increasing popularity. Their wide field
of view necessitates high resolution to ensure image qual-
ity. This, however, makes it harder to acquire, store and
even process such 360◦ images. To alleviate this issue, we
propose the first attempt at 360◦ image rescaling, which
refers to downscaling a 360◦ image to a visually valid low-
resolution (LR) counterpart and then upscaling to a high-
resolution (HR) 360◦ image given the LR variant. Specifi-
cally, we first analyze two 360◦ image datasets and observe
several findings that characterize how 360◦ images typi-
cally change along their latitudes. Inspired by these find-
ings, we propose a novel deformable invertible neural net-
work (INN), named DINN360, for latitude-aware 360◦ im-
age rescaling. In DINN360, a deformable INN is designed
to downscale the LR image, and project the high-frequency
(HF) component to the latent space by adaptively handling
various deformations occurring at different latitude regions.
Given the downscaled LR image, the high-quality HR image
is then reconstructed in a conditional latitude-aware man-
ner by recovering the structure-related HF component from
the latent space. Extensive experiments over four public
datasets show that our DINN360 method performs consid-
erably better than other state-of-the-art methods for 2×, 4×
and 8× 360◦ image rescaling.

1. Introduction
With the rapid development of virtual reality, 360◦ im-

ages have gained increasing popularity. Different from 2D
images, 360◦ images cover a scene with a wide range of
360◦ × 180◦ views, requiring high resolution for ensuring
the image quality. However, this also makes it considerably
more costly to acquire, store and even process such high-
resolution (HR) 360◦ images. To address these issues, it is
necessary to conduct 360◦ image rescaling, which consists
of image downscaling for generating low-resolution (LR)
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Figure 1. Motivation and pipeline of our DINN360 method. The
non-uniform sampling density causes various deformations at dif-
ferent latitude regions, and this guides the design of our DINN360
model. Finally, the HR 360◦ image can be rescaled from the cor-
responding LR image and latent space.

images with visually valid information and image upscaling
for reconstructing HR 360◦ images. Different from image
super-resolution (SR) that only upscales from LR images,
image rescaling can directly utilize the texture information
from the input HR 360◦ images, and therefore achieves bet-
ter reconstruction results.

Recently, 2-dimensional (2D) image rescaling has re-
ceived increasing research interests [17, 21, 23, 36, 43, 44],
due to its promising application potential. Specifically, Kim
et al. [17] proposed a task-aware auto-encoder-based frame-
work including a task-aware downscaling (TAD) model and
a task-aware upscaling (TAU) model. In this work, the pro-
cedures of downscaling and upscaling are implemented by
two individual deep neural networks (DNNs), and then they
are jointly optimized. Xiao et al. [44] proposed an im-
age rescaling framework based on invertible neural network
(INN), in which downscaling and upscaling are regarded as
invertible procedures. Different from 2D images, as shown
in Fig. 1, 360◦ images contain various types of deformation
at different latitude regions, due to the non-uniform sam-
pling density of the sphere-to-plain projection. Therefore,
it is inappropriate to directly apply the existing 2D rescal-
ing methods on 360◦ images (see analysis in Section 3).
Hence, it is necessary to develop a specialized framework
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for rescaling of the 360◦ image, by fully considering its
spherical characteristics.

This paper is the first attempt at 360◦ image rescaling.
First, we conduct data analysis to find how the spherical
characteristics of 360◦ images, such as texture complexity
and high-frequency (HF) components, change along with
the latitude. Inspired by our findings, we propose a de-
formable invertible neural network (DINN360) for latitude-
aware 360◦ image rescaling. Specifically, as shown in
Fig. 1, deformable downscaling with a set of invertible
deformable blocks is developed in DINN360 to learn the
adaptive receptive fields. As such, the 360◦ image can
be downscaled in a deformation-adaptive manner. Subse-
quently, the bijective projection is conducted with the devel-
oped INN structure for the HF component extracted from
the downscaling procedure, such that the texture details
can be better recovered for the following upscaling. More
importantly, a novel latitude-aware conditional mechanism
is developed for the projection, in order to preserve the
HF component of 360◦ images in a latitude-aware manner.
Given the invertible structures of downscaling and HF pro-
jection, the 360◦ image can be reversely upscaled. More-
over, a new backflow training protocol is developed to re-
duce the information gap between the forward and reverse
flows of the INN structure. The extensive experimental re-
sults show that our DINN360 outperforms state-of-the-art
image rescaling and 360◦ SR methods for 2×, 4× and 8×
rescaling over 4 public datasets. The codes are available
at https://github.com/gyc9709/DINN360. The
main contributions of this paper are three-fold.

• We find how the low-level characteristics of 360◦ im-
ages change along with its latitude, benefiting the de-
signs of our DINN360 method.

• We propose a novel INN framework for 360◦ image
rescaling, with the developed invertible deformable
blocks to handle various 360◦ deformations.

• We develop a latitude-aware conditional mechanism in
our framework, to better preserve the HF component of
360◦ images in a latitude-aware manner.

2. Related Work
Rescaling of 2D images. Image rescaling refers to down-
scaling an HR image into a visually valid LR image and
then reconstructing the HR image plausibly from this LR
image. As a recently emerged topic, there exists only a few
works for rescaling of 2D images [17,21,23,31,36,43,44].
Specifically, most of the existing works [17,21,36] develop
and jointly train two individual DNN structures for down-
scaling and upscaling, respectively. For instance, Kim et
al. [17] designed a task-aware downscaling model to gen-
erate SR-friendly LR images, using the auto-encoder archi-
tecture. Similarly, Li et al. [21] proposed downscaling the

HR image by a simple yet efficient DNN, and then upscal-
ing the LR image by a modified EDSR structure [24]. Sun
et al. [36] proposed predicting the downsampling kernel in-
stead of directly generating the LR image, via a Resampler-
Net for predicting both the weights and offsets of the sam-
pling kernel. In addition to the individual downscaling and
upscaling structures, Xiao et al. [43, 44] proposed an INN-
based method to regard the downscaling and upscaling as
invertible procedures. Based on [44], Liang et al. [23] pro-
posed adding a conditional flow in INN to guarantee the de-
pendency of high- and low-frequency (LF) components in
the rescaled image. Unfortunately, there exists no rescaling
work for 360◦ images; especially lacking works that con-
sider spherical characteristics for 360◦ image rescaling.
SR of 360◦ images. Similar to image rescaling, SR recon-
structs the HR image directly from the LR image. Benefit-
ing from the great success of deep learning, Dong et al. [9]
proposed a pioneering DNN structure called SRCNN for
SR on 2D images with a great improvement over traditional
methods. After that, a set of DNN-based methods have
been developed for SR on 360◦ images [4, 10, 18, 25, 30].
Specifically, most of these works [5,25,29,30] improve the
SR performance by considering the latitude-based priors of
360◦ images. For instance, the latitude-aware weighted loss
is adopted in [25, 30] to encourage the network to place
more importance on the low-latitude regions. Similarly,
Nishiyama et al. [29] proposed concatenating the latitude-
aware weight with the input LR image, as the additional
information for SR. Different from [29], Deng et al. [5] pro-
posed adopting distinct upscaling factors for different lati-
tude regions. There also exists many works for 360◦ scenes
which address the latitude-aware distortion by tangent patch
partition [20,34] and contourlet transform [2,35], etc. How-
ever, the existing SR methods cannot be used directly for
image rescaling, since they are only able to upscale, but un-
able to downscale the image. More importantly, SR meth-
ods neglect the HF components from the input HR images,
leading to the inferior reconstruction.

3. Analysis
In this section, we conduct analysis over the F-360iSOD

[46] and SUN360 [42] datasets. Then, we obtain the fol-
lowing findings about the low-level characteristics of 360◦

images, to benefit the design of our DINN360 method.
Finding 1: In 360◦ images, low-latitude regions tend to

contain more textures, leading to larger HF components.
Analysis: We investigate the spherical characteristics

from the aspects of space and frequency domains. Specif-
ically, each 360◦ image is first horizontally divided into
8 strips with uniform latitude range of 22.5◦. Then, we
apply the gray-level co-occurrence matrix (GLCM) [6] to
measure the entropy of each strip as its texture complexity.
The entropy of each latitude strip is shown by the color bar
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Figure 2. Magnitude of HF components and GLCM entropy at
different latitude regions of 360◦ images.

of Fig. 2. As can be seen, the GLCM entropy distributes
the highest at low-latitude regions (near 0◦), and decreases
along with the increased latitude. Similarly, the HF compo-
nent of each strip is obtained via Haar transformation [1],
and is shown in Fig. 2. As can be seen, the HF components
distribute similarly to the GLCM entropy. This indicates
that the HF component is highly related to the texture com-
plexity. Moreover, some examples of the low- and high-
latitude regions are illustrated in the supplementary, which
shows the same results of Fig. 2. The above results com-
plete the analysis of Finding 1.

Finding 2: In 360◦ images, the larger HF components at
low-latitude regions result in worse rescaling performance
for the existing 2D rescaling methods.

Analysis: Here, we investigate how the HF components
of 360◦ images influence the performance of rescaling at
different latitude regions. To this end, we first follow the
way of Finding 1 to calculate the average HF component
at each latitude strip. Then, we implement 3 state-of-the-
art 2D image rescaling methods (HCFlow [23], CAR [36]
and TAD [17]) and the traditional Bicubic interpolation
method [28] on 4× image rescaling. Subsequently, we mea-
sure both the peak-signal-noise-ratios (PSNRs) and error
maps between the ground-truth (GT) and rescaled HR im-
ages at different latitude regions. As illustrated in Fig. 3,
the PSNRs of all 2D rescaling methods exhibit the same
trend that dramatically decreases from high-latitude to low-
latitude regions, corresponding to the increased magnitude
of the HF component. Moreover, as shown in Fig. 4, there
are larger errors for low-latitude regions, which have com-
plex texture regions (i.e., the higher magnitudes of the HF
components). These results imply that the higher magni-
tudes of HF components at low-latitude regions cause worse
rescaling performance for 2D rescaling methods. The above
analysis complete the analysis of Finding 2.

4. Method
4.1. Framework Overview
Pipeline of DINN360. Given an input 360◦ HR image x̂,
DINN360 is proposed on the top of the INN structure for
generating both downscaled LR image y and rescaled HR
image x. However, according to the Nyquist-Shannon sam-
pling theorem [33], the HF component of x̂ is lost during
the downscaling procedure. To overcome this issue, similar

F-360iSOD SUN360

Figure 3. Results of PSNRs and HF components of 4× rescaled
HR images by 2D methods at different latitude regions.
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Figure 4. Error maps of the GT and rescaled HR images from the
existing methods, over F-360iSOD and SUN360 datasets.

to flow-based models [7,11,15,19], our DINN360 learns to
project the HF component h into a latent variable z follow-
ing a prior distribution, and then recover h during upscal-
ing. This way, the rescaling procedure can be formulated
as a bijective transformation: x̂ ↔ [y; z]. The pipeline of
DINN360 is illustrated in Fig. 5 and introduced below.
(1) Deformable downscaling x̂→ [y;h]. In this stage, the
input HR image x̂ is decomposed into the downscaled LR
image y and HF component h. Specifically, as shown in
Fig. 5, the Haar wavelet transformation is first conducted
over x̂ to obtain the HF and LF information. Then, the in-
vertible deformable (ID) blocks are developed in DINN360
to fuse both HF and LF components in an invertible manner,
and generate the refined HF and LF components, denoted
as h and y. The refined LF component is also output as the
downscaled LR image.
(2) Latitude-aware HF projection [y;h]→ z ∼N (0, 1).
Subsequently, the HF component h is learned to project to
the latent variable z, considering the spherical characteris-
tics of the downscaled image y. To be specific, as shown
in Fig. 5, the content and latitude conditions are extracted
from y, and then concatenated with h, as the input to a set
of developed invertible projection (IP) blocks. Finally, the
projected latent variable z is supervised to fit a normalized
Gaussian distribution N (0, 1).
(3) Reverse upscaling [y; z̃∼N (0, 1)] → x. For the re-
verse upscaling procedure, the downscaled image y is com-
bined with a randomly sampled latent variable z̃ ∼ N (0, 1),
and then input into the reverse IP blocks, to recover the HF
component h̃. Finally, after the reverse ID blocks and Haar
transformation, the HF component and downscaled image
are inversely transformed to reconstruct the HR image x.
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Figure 5. Pipeline of DINN360 in the setting of 2× rescaling. Here, ∼ID block and ∼IP block indicate the corresponding reverse structures.

To sum up, the pipeline of DINN360 can be written as,

x̂ → [y;h] → [y; z] → [y; h̃] → x. (1)

Invertible designs. The invertibility of our DINN360
method is achieved in terms of invertible structures and la-
tent space projection [7]. First, the structure of invertible
blocks (ID and IP blocks) endow DINN360 the ability for
reverse procedure through the same model and parameters.
Let al1 and al2 denote the input of the l-th invertible block,
the corresponding output

[
al+1
1 ,al+1

2

]
can be obtained by

al+1
1 = al1 ⊙ exp(ρ(al2)) + ρ′(al2),

al+1
2 = al2 ⊙ exp(ρ(al+1

1 )) + ρ′(al+1
1 ),

(2)

where ρ(·) and ρ′(·) denote the learnable scale and transla-
tion functions, and ⊙ is the Hadamard product. The details
of the reverse procedure are stated in the supplementary.

Second, the lost HF component h of downscaling is re-
fined and projected into a prior distribution, through the de-
veloped ID and IP blocks in DINN360, respectively. Then,
benefiting from the reverse structure, the lost HF compo-
nent is obtained given a randomly sampled latent variable z̃
from the prior distribution, and then used for reversely re-
constructing the HR image x. In other word, our DINN360
method learns to encode and preserve the HF component
in the prior latent space, which makes the downscaling and
upscaling procedures invertible.

4.2. Deformable Downscaling
Due to the non-uniform projection of 360◦ images, there

exist various deformations at different latitude regions. To
address this issue, a set of ID blocks is designed in the
downscaling procedure, in order to learn the adaptive re-
ceptive fields for different types of deformation. Note that
the 2N× rescaling is achieved in our DINN360 method by
conducting N of 2× rescaling. Taking the n-th downscal-
ing as an example, the downscaled image yn−1 from the
last procedure is further downscaled to yn, as follows,

hn,yn = ID(Haar(yn−1)). (3)

Here, hn is the HF component; Haar(·) and ID(·) denote
the Haar transformation and ID blocks, respectively. After
N times of Eq. (3), the final downscaled LR image yN is
yielded. For the reverse procedure, as shown in Fig. 5, the

recovered HF component h̃n and the LR image ỹn are input
to the reverse ID blocks I−1

D (·) and reverse Haar transfor-
mation Harr−1(·). Mathematically, the reverse procedure
of deformable downscaling can be formulated as,

ỹn−1 = Haar−1(I−1
D (h̃n, ỹn)). (4)

To be more specific, ID(·) consists of 4 cascaded invert-
ible blocks as introduced in Eq. (2). For each invertible
block, the detailed structures of functions ρ(·) and ρ′(·) are
shown in Fig. 6-(a). The functions are built in a deformable
manner, upon the residual structure with deformable con-
volution (DConv) layers [3] and the developed deformable
swin transformer (DST) modules.
Deformable swin transformer (DST) module. The DST
module is built on the top of the advanced structure of
swin transformer [27], which is widely used in vision tasks
[16, 22, 26, 45]. Different from the traditional swin trans-
former [27, 38], a deformable transformation is learned in
the DST module, for projecting the query q, key k and
value v. As a result, the various geometry deformations
occurring at different latitude regions in the 360◦ image can
be aware when calculating the self-attention of each image
patch. Specifically, for each input feature f ∈ RHf×Wf×Cf ,
the referenced sampling points s = {(µi, νi)}Ii=1 are gen-
erated from the uniform grids according to [41], where I
denotes the number of sampling points. Then, as shown
in Fig. 6, the transformation factors θscale ∈ R2×2 and
θoffset ∈ R2×1 are learned from the input feature f , via the
developed scale and offset heads. Both heads are consisted
of two learnable fully-connected layers and two hyperbolic
activation layers. Given the transformation factors θscale
and θoffset, the deformed sampling points s̃ = {(µ̃i, ν̃i)}Ii=1

can be calculated as,[
µ̃i, ν̃i

]T
=

[
θscale, θoffset

] [
µi, νi, 1

]T
. (5)

Subsequently, given the referenced and the learned de-
formed sampling points s and s̃, the referenced feature f̂ and
deformed feature f̃ can be obtained by the Bilinear sampling
function η(·; ·) in [14], as follows,

f̂i =

Hf ,Wf∑
h=1,w=1

fh,wη(µi;h)η(νi;w),

f̃i =

Hf ,Wf∑
h=1,w=1

fh,wη(µ̃i;h)η(ν̃i;w),

(6)
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Figure 6. Architectures of (a) functions ρ(·) and ρ′(·) in ID blocks; (b) DST module.

where η(a; b) = max(0, 1−|a− b|). In the above equation,
fh,w denotes the pixel value at coordinate (h,w). Besides,
f̂i and f̃i denote the sampled pixel according to the i-th sam-
pling point of s and s̃, respectively. Compared with f̂ , the
deformed feature f̃ is adaptive to the geometry deformation
of 360◦ image by learning with deformable sampling. Then,
the tokens of query q, key k and value v are calculated by

q = f̃Wq,k = f̂Wk,v = f̂Wv, (7)

where Wq, Wk and Wv denote the learnable parameter
matrices. This way, the query token can be embedded with
the deformation information from f̃ . As shown in Fig. 6-
(b), given the tokens of q, k and v, the self-attention can
be calculated through the multi-head attention layer. Then,
the attended feature fa is further processed after two Layer-
Norm layers and a multilayer perceptron layer, as the input
to the subsequent structures in ρ(·) or ρ′(·) (see Fig. 6-(a)).

4.3. Latitude-aware HF Projection

After the deformable downscaling, a spherical condi-
tion (SC) block and a set of IP blocks are developed for
latitude-aware HF projection, i.e., bijectively projecting the
HF component to the latent space in a latitude-aware man-
ner. As shown in Fig. 5, for the n-th rescaling, the SC block
GSC(·) is designed to extract the spherical features cn from
the downscaled images {yi}Ni=n, as the conditions of IP
blocks. Then, the n-th HF component hn is conditioned
on cn, and input to IP blocks IP(·) as formulated in Eq. (2).
Note that ρ(·) and ρ′(·) of Eq. (2) in this section are imple-
mented by dense blocks [13], instead of the architectures in
ID blocks (see Section 4.2). This way, the 360◦ character-
istics are able to perform as the external constraint, which
conditionally guide the projection between the HF compo-
nent and latent space. Consequently, the HF component hn

can be projected to the corresponding latent variable zn as,

zn=IP(hn, cn), where cn=GSC(yn, · · · ,yN ). (8)

For the reverse procedure, the previous upscaled images
{ỹi}Ni=n (yN = ỹN ) are first input to the SC block GSC(·)
to yield the conditions. Then, as shown in Fig. 5, the ran-
domly sampled latent variable z̃n is input to the reverse IP
blocks I−1

P (·), for generating the recovered HF component

h̃n. That is, the reverse procedure of latitude-aware HF pro-
jection can be formulated as,

h̃n = I−1
P (z̃n, GSC(ỹn, · · · ,yN )) . (9)

Spherical condition (SC) block. As shown in Fig. 5, the
SC block contains two heads for extracting content condi-
tion cconn and latitude condition clatn . Then, clatn and cconn are
concatenated as the overall condition cn =

[
cconn , clatn

]
for

the HF projection in Eq. (8). The details about the condition
heads are discussed as follows.

• Content head. A content head is developed to extract
the content-related condition cconn for HF projection.
Specifically, three learnable residual-in-residual dense
blocks [39] in γcon

n (·) is adopted to learn the content
information from the downscaled images {yi}Ni=n

1 as,

cconn = γcon
n ([yn,yn+1, · · · ,yN ]) . (10)

• Latitude head. According to Finding 1, the distribu-
tion of HF components is highly related to the latitudes
for 360◦ images. Thus, we follow [29, 37] to generate
the latitude-aware distortion map blat

n as follows,

blat
n (u, :) = cos

(
(u− H

2n+1
+

1

2
)
2nπ

H

)
. (11)

In the above equation, u denotes the vertical ordinate
value for each pixel in blat

n , while H is the height of the
original HR image. Then, a latitude head with dense
block γlat

n (·) is built to generate the latitude condition
clatn from the combination of blat

n and content condi-
tion cconn , i.e., clatn = γlat

n (
[
blat
n , cconn

]
).

4.4. Loss and Training Protocol

Loss functions. In general, 360◦ image rescaling aims to
generate a visually valid LR image and then reconstruct the
HR image from the LR image and latent space. Therefore,
the loss functions for training our DINN360 model include
HR, LR, and latent variable losses. (1) HR loss: for the
rescaled HR image x and its corresponding GT x̂ (the in-
put HR image), a weighted ℓ1 loss is applied to measure the
distance between two images as LHR = ℓ1(ω ⊙ x,ω ⊙ x̂).

1Note that the LR images {yi}Ni=n+1 are upscaled to the same size
with yn by interpolation before concatenation.
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Algorithm 1: Training process for 2× rescaling.

Input: HR image x̂, LR image ŷ and distortion map ĉlat.
Output: Trained ID(·) IP(·) and GSC(·).
Variables: Training variables Φ, latent variables z, z̃.
Parameters: λH, λL, λz, α and learning rate lr.

1 Initialize Φ with Gaussian initialization.
2 while Step < max steps do
3 y,h = ID(x̂).
4 c =

[
ccon, clat

]
= GSC(y).

5 if Step < backflow steps then
6 h̃ = I−1

P (z̃, c).

7 h = αh̃+ (1− α)h.
8 end
9 z = ID(h, c).

10 h̃ = I−1
P (z̃, c).

11 x = I−1
D (y, h̃).

12 L = λHℓ1(x, x̂) + λLℓ2(y, ŷ) + λzℓ2(z, z̃).
Φ← Φ− lr · ∇ΦL.

13 end
14 return Φ.

Note that ω denotes the pixel-wise weights for highlight-
ing the importance of the low-latitude regions according to
[29]. (2) LR loss: for the downscaled LR images {yn}Nn=1

from DINN360, we use the Bicubic downscaled images
{ŷn}Nn=1 from HR image x̂ as the ground truth, for cal-
culating the ℓ2 pixel loss LLR =

∑N
n=1 ℓ2(yn, ŷn). Recall

that 2N× rescaling is conducted by N of 2× rescaling, and
yn denotes the downscaled LR image of the n-th downscal-
ing. (3) Latent variable loss: for the generated latent vari-
ables {zn}Nn=1 from our latitude-aware HF projection (see
Eq. (8)), the KL divergence DKL(·) is calculated between
the latent variable and a normalized Gaussian distribution
N (0, 1), i.e., Llatent =

∑N
n=1 DKL (zn||N (0, 1)). Conse-

quently, the overall loss can be formulated as

L = λHLHR + λLLLR + λzLlatent, (12)

where λH, λL, and λz are the hyper-parameters for balanc-
ing each individual loss.
Backflow training protocol. As discussed in Section 4.3,
the forward and reverse procedures can be represented as
z = IP(h) and h̃ = I−1

P (z̃) for simplicity, where h and
h̃ are the input and recovered HF components. Here, z
is the projected latent variable, while z̃ is the sampled la-
tent variable from the latent space for the reverse procedure.
The gap between z and z̃ results in the difference between
h and h̃, further causing the recovery loss between the in-
put HR and final rescaled images (see Eq. (3) and Eq. (4)).
To bridge this gap, we propose a new backflow training
protocol for INN structures in DINN360, inspired by the
proportional-integral-derivative (PID) control [40] in clas-
sic automatic control system. In PID control, a proportional
system error is added to the input, as the negative feedback.
As such, the system error between the input and output can

Latent 
Space

Invertible System

𝐡𝐡 𝐼𝐼P(�) 𝐳𝐳 �𝐳𝐳 𝐼𝐼P−1(�) �𝐡𝐡

+

α

Forward flow
Backflow

Feedback

Figure 7. Framework of our backflow training protocol for the
invertible structure of HF projection.

be reduced. As shown in Fig. 7, the forward and reverse
procedures in our DINN360 can be regarded as an invert-
ible system, the error of which is assumed to be sufficiently
small, i.e., h̃=h. In backflow training protocol, the propor-
tional difference between h̃ and h is fed back to the input:

z=IP

(
h+α(h̃−h)

)
=IP

(
αI−1

P (z̃) +(1−α)h
)
, (13)

where α is the feedback proportion. Algorithm 1 summa-
rizes our backflow training protocol. It is worth noting that
the proposed backflow training protocol is also potential to
be used in other INN works [7, 8, 11, 12, 19, 32].

5. Experiment
5.1. Settings

In this section, we conduct the experiments to validate
the effectiveness of our DINN360 method. Here, we adopt
the training set of ODISR [5] to train DINN360, which in-
cludes 1,000 high-quality 360◦ images at 2K resolution.
Then, the trained model is directly evaluated over the test set
of ODISR with 100 images, and other three 360◦ datasets
for generalization evaluation: SUN360 [42], F-360iSOD
[46] and YouTube360 [29]. For training DINN360, we ap-
ply the stochastic gradient descent algorithm with the Adam
optimizer to update parameters. The hyper-parameters can
be found in the supplementary.

Following the settings of [25] and [5], we quantitatively
evaluate the weighted-to-spherically-uniform PSNR (WS-
PSNR) and weighted-to-spherically-uniform structural sim-
ilarity index (WS-SSIM) on the Y channel of YCbCr im-
age color representation. Finally, we compare the perfor-
mance of our DINN360 method on 2×, 4× and 8× rescal-
ing with (1) traditional interpolation methods: Bicubic, Bi-
linear and Lanczos; (2) Bicubic downscaling followed by
360◦ SR methods: 360SR [30], 360SISR [29] and LAU-
Net [5]; (3) 2D rescaling methods: TAD & TAU [17], CAR
& EDSR [24, 36], IRN [43] and HCFlow [23]. Note that
all 360◦ SR and rescaling methods are based on DNNs, and
they are retrained over ODISR dataset with the same set-
tings as our DINN360 method, except for CAR and LAU-
Net, due to the lack of training codes.

5.2. Performance Evaluation

Quantitative results. First, we compare the quantitative
results of the rescaled 360◦ HR images by our and other
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Table 1. Results of WS-PSNR / WS-SSIM (×10−2) on the rescaled HR images of our DINN360 and compared methods over four datasets.
The best results are in bold and the underline scores represent the second-best results.

Scale Method ODISR [5] SUN360 [42] F-360iSOD [46] YouTube360 [29]

2×

Bicubic 29.46 ± 2.54 / 86.23 ± 5.05 30.06 ± 2.46 / 87.92 ± 4.85 30.68 ± 4.53 / 87.43 ± 7.23 34.93 ± 4.92 / 94.82 ± 4.47
Bilinear 28.94 ± 2.45 / 83.15 ± 5.83 29.39 ± 2.40 / 85.09 ± 6.08 29.97 ± 4.23 / 84.61 ± 8.61 33.20 ± 4.21 / 9.255 ± 6.06
Lanczos 28.58 ± 2.54 / 84.04 ± 5.57 29.16 ± 2.47 / 85.72 ± 5.48 29.86 ± 4.56 / 85.44 ± 8.11 34.26 ± 5.13 / 93.95 ± 5.24
Bicubic & 360SR [30] 27.05 ± 2.36 / 80.46 ± 4.32 27.69 ± 2.20 / 81.55 ± 4.87 26.08 ± 4.17 / 78.08 ± 5.39 32.12 ± 3.77 / 89.84 ± 4.85
Bicubic & 360SISR [29] 30.81 ± 2.90 / 87.44 ± 5.17 32.72 ± 2.79 / 90.53 ± 5.10 31.33 ± 4.81 / 89.63 ± 6.28 37.62 ± 5.21 / 96.23 ± 5.08
TAD & TAU [17] 35.84 ± 3.28 / 96.12 ± 8.12 37.70 ± 2.68 / 97.17 ± 1.10 33.94 ± 5.11 / 93.87 ± 4.47 39.50 ± 4.08 / 98.22 ± 1.00
CAR & EDSR [24, 36] 33.00 ± 3.51 / 91.31 ± 4.41 35.68 ± 3.37 / 93.91 ± 4.07 35.38 ± 5.48 / 93.05 ± 5.09 40.49 ± 5.24 / 97.75 ± 2.55
IRN [43] 40.51 ± 3.52 / 98.63 ± 0.71 42.72 ± 2.73 / 99.11 ± 0.32 39.83 ± 5.74 / 97.83 ± 2.05 46.15 ± 4.02 / 99.50 ± 0.32
HCFlow [23] 42.05 ± 3.79 / 99.02 ± 0.57 45.05 ± 3.00 / 99.49 ± 0.24 40.53 ± 5.78 / 97.92 ± 1.99 50.56 ± 3.07 / 99.71 ± 0.10
DINN360 42.64 ± 3.87 / 99.13 ± 0.52 45.72 ± 3.00 / 99.56 ± 0.21 40.77 ± 5.88 / 97.93 ± 2.21 50.75 ± 3.07 / 99.73 ± 0.10

4×

Bicubic 25.39 ± 2.28 / 72.27 ± 7.45 25.38 ± 2.33 / 73.75 ± 8.83 26.16 ± 3.91 / 73.75 ± 12.38 28.29 ± 3.80 / 83.73 ± 10.58
Bilinear 26.24 ± 2.27 / 72.96 ± 7.54 26.22 ± 2.29 / 74.72 ± 8.85 26.85 ± 3.78 / 74.30 ± 12.38 28.92 ± 3.53 / 83.94 ± 10.44
Lanczos 24.97 ± 2.28 / 70.69 ± 7.64 24.99 ± 2.33 / 71.95 ± 9.05 25.77 ± 3.94 / 72.10 ± 12.84 27.97 ± 3.85 / 82.65 ± 11.02
Bicubic & 360SR 25.42 ± 2.26 / 71.06 ± 6.89 25.42 ± 2.16 / 72.46 ± 8.64 25.19 ± 3.69 / 70.79 ± 9.83 28.43 ± 3.26 / 83.06 ± 9.36
Bicubic & 360SISR 27.03 ± 2.45 / 76.15 ± 7.97 27.81 ± 2.44 / 80.45 ± 9.39 27.45 ± 4.35 / 78.79 ± 11.66 30.96 ± 3.87 / 89.36 ± 10.75
TAD & TAU 28.98 ± 2.51 / 82.69 ± 5.91 29.70 ± 2.47 / 84.86 ± 6.21 28.71 ± 4.55 / 81.34 ± 10.40 33.24 ± 4.61 / 92.48 ± 6.08
CAR & EDSR 29.61 ± 2.86 / 82.82 ± 6.76 31.32 ± 2.82 / 86.60 ± 7.49 31.33 ± 4.94 / 85.30 ± 9.10 34.85 ± 4.69 / 93.08 ± 6.45
IRN 30.86 ± 3.06 / 87.47 ± 5.56 32.69 ± 2.92 / 90.41 ± 5.41 32.58 ± 5.19 / 88.95 ± 7.29 36.85 ± 4.78 / 95.86 ± 4.07
HCFlow 31.48 ± 3.16 / 89.07 ± 5.02 33.62 ± 3.03 / 92.00 ± 4.78 32.40 ± 5.79 / 88.44 ± 8.85 40.31 ± 4.44 / 97.72 ± 2.13
DINN360 31.92 ± 3.26 / 89.90 ± 4.82 34.19 ± 3.12 / 92.77 ± 4.48 32.93 ± 5.90 / 89.34 ± 8.82 40.55 ± 4.29 / 97.89 ± 1.89

8×

Bicubic 23.25 ± 2.19 / 64.10 ± 8.64 22.92 ± 2.21 / 65.18 ± 10.24 23.45 ± 3.48 / 64.12 ± 15.04 24.98 ± 3.06 / 74.70 ± 12.89
Bilinear 24.16 ± 2.19 / 65.35 ± 8.65 23.81 ± 2.19 / 66.77 ± 10.20 24.25 ± 3.41 / 65.42 ± 14.89 25.78 ± 2.96 / 75.86 ± 12.65
Lanczos 22.95 ± 2.19 / 63.15 ± 8.68 22.65 ± 2.21 / 63.98 ± 10.27 23.19 ± 3.49 / 63.05 ± 15.18 24.77 ± 3.08 / 73.78 ± 13.03
Bicubic & 360SR 23.61 ± 2.06 / 64.15 ± 8.53 23.28 ± 2.17 / 65.11 ± 10.14 23.19 ± 3.17 / 63.30 ± 13.68 25.02 ± 2.85 / 78.19 ± 12.37
Bicubic & 360SISR 24.63 ± 2.26 / 67.75 ± 8.99 24.56 ± 2.27 / 70.80 ± 10.66 24.53 ± 3.62 / 68.64 ± 14.76 26.28 ± 3.01/ 80.02 ± 12.73
Bicubic & LAU-Net [5] 24.37 ± 2.22 / 66.64 ± 8.83 24.21 ± 2.26 / 69.37 ± 10.63 24.18 ± 3.57 / 66.94 ± 14.99 25.81 ± 2.94 / 77.33 ± 12.61
TAD & TAU 26.36 ± 2.30 / 71.36 ± 7.86 26.50 ± 2.33 / 73.43 ± 9.36 25.94 ± 4.10 / 70.35 ± 14.15 28.36 ± 3.46 / 81.61 ± 11.04
CAR & EDSR 25.97 ± 2.38 / 69.40 ± 8.82 26.40 ± 2.42 / 72.77 ± 10.75 26.87 ± 4.12 / 71.19 ± 14.36 27.98 ± 3.44 / 79.83 ± 11.27
IRN 28.06 ± 2.72 / 77.41 ± 8.12 29.48 ± 2.74 / 82.02 ± 9.66 29.55 ± 4.89 / 80.03 ± 11.87 32.16 ± 4.24 / 89.01 ± 9.30
HCFlow 28.25 ± 2.76 / 78.20 ± 8.00 29.77 ± 2.77 / 82.84 ± 9.42 29.83 ± 4.94 / 80.98 ± 11.47 34.19 ± 4.02 / 91.78 ± 7.14
DINN360 28.60 ± 2.86 / 79.17 ± 7.98 30.36 ± 2.87 / 84.02 ± 9.36 30.29 ± 5.13 / 82.07 ± 11.22 34.93 ± 4.17 / 92.58 ± 6.83

Figure 8. Quantitative results of 4× and 8× image rescaling on ODISR dataset.

compared methods. As shown in Tab. 1, DINN360 achieves
the best performance over the ODISR dataset, in terms of
both WS-PSNR and WS-SSIM. Specifically, our DINN360
method increases WS-PSNR by at least 0.59dB, 0.44dB and
0.35dB, respectively, for the 2×, 4× and 8× rescaling tasks.
Similarly, WS-SSIM is increased by at least 0.0011, 0.0083
and 0.0097, respectively, for the 2×, 4× and 8× rescaling
tasks. It is also interesting to see that both our DINN360 and
the 2D rescaling methods perform considerably better than
the 360◦ SR methods. This demonstrates that it is effective
to utilize the texture information of the input HR image in

the task of 360◦ image rescaling. In a word, the results
verify the high quality of the rescaled HR images by our
DINN360 method.
Generalization results. To validate the generalization abil-
ity, we further test our DINN360 and other compared meth-
ods over other three datasets (SUN360, F-360iSOD and
YouTube360) without fine-tuning. Tab. 1 shows that our
DINN360 method still works best over all three datasets in
terms of both WS-PSNR and WS-SSIM. For example, over
the SUN360 dataset, DINN360 improves WS-PSNR by at
least 0.67dB, 0.57dB and 0.59dB on 2×, 4× and 8× rescal-
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Table 2. Results of WS-PSNR and WS-SSIM (×10−2) in ablation
experiments for 4× image rescaling on ODISR dataset.

Ablation settings WS-PSNR WS-SSIM

ID block w/o DST module 31.79 ± 3.14 89.68 ± 4.17
w/o deform 31.83 ± 3.63 89.75 ± 4.29

IP block w/o latitude head 31.85 ± 3.21 89.74 ± 4.31
w/o content head 31.76 ± 3.21 89.56 ± 4.08

backflow w/o feedback 31.85 ± 3.32 89.83 ± 4.27
- DINN360 31.92 ± 3.26 89.90 ± 4.82

ing tasks, respectively. Similar results can be found for the
WS-SSIM metric and other datasets. Our DINN360 method
again outperforms all compared methods over these three
datasets, indicating its high generalization ability.
Qualitative results. Furthermore, we visualize the subjec-
tive results of the downscaled LR and upscaled HR 360◦

images by our and other rescaling methods, for the 4× and
8× rescaling tasks. Fig. 8 shows these subjective results for
some randomly selected 360◦ images with the low-latitude
and high-latitude regions in HR images zoomed in. It can
be seen that at different latitude regions, DINN360 is able
to better preserve the image details and recover more re-
alistic textures. Specifically, both the character edges and
object details recovered by DINN360 is significantly better
than other rescaling methods. Besides, the downscaled LR
image is also visually valid. This validates the effectiveness
of our DINN360 method in the qualitative performance for
both downscaled LR and upscaled HR images.

5.3. Ablation Studies
Ablation on the ID block. We evaluate the effectiveness
of ID blocks for deformable downscaling in our DINN360
method through two ablation experiments: (1) w/o DST
module: set the functions ρ(·) and ρ′(·) in ID block as dense
blocks instead of DST modules; (2) w/o deform: set the
DST module as normal swin transformer. As can be seen in
Tab. 2, the two settings degrade WS-PSNR by 0.13dB and
0.09dB, respectively. Similar results can be found in terms
of WS-SSIM. This validates the design of ID blocks is ef-
fective in our DINN360 method. Besides, we compare the
rescaling performance when implementing different num-
bers of ID blocks in DINN360. As shown in Fig. 9, the
results of WS-PSNR and WS-SSIM slightly improve, when
the number of ID blocks is larger than 4. Thus, we set the
number of ID blocks as 4 in our DINN360 method.
Ablation on the IP block. We further evaluate the effec-
tiveness of the IP block for latitude-aware HF projection by
two ablation experiments: (1) w/o latitude head; (2) w/o
content head. As seen in Tab. 2, the WS-PSNR results de-
crease by 0.07dB and 0.16dB, respectively. This indicates
that both latitude and content heads contribute to the final
performance of our DINN360 method, in which the con-
tent head acts as a more important role in condition gener-
ation. Besides, we also study the impact of the number of
IP blocks in DINN360. As shown in Fig. 10, similar to ID
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Figure 9. Ablation results on numbers of ID/IP blocks.
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Figure 10. Ablation results on feedback ratio α in Eq. (13).

blocks, we set the number of IP blocks to 4.
Ablation on the backflow training protocol. We also val-
idate the effectiveness of the feedback mechanism in the
backflow training protocol by directly removing the feed-
back connection as: w/o feedback in Tab. 2. As can be seen,
WS-PSNR degrades by 0.07dB and WS-SSIM decreases
by 0.0007, when removing the backflow feedback mecha-
nism. Such results indicate the positive contribution of the
backflow protocol in our DINN360. Furthermore, we eval-
uate the impact of feedback proportion α of Eq. (13) on the
rescaling performance. As shown in Fig. 10, the backflow
training protocol performs the best at α = 0.3.

6. Conclusion
In this paper, we have proposed a DINN360 method for

360◦ image rescaling. First, we investigated two 360◦ im-
age datasets and obtained the findings about how spherical
characteristics change along with the latitude of 360◦ im-
ages. Motivated by our findings, the structure of DINN360
was developed with three rescaling stages: deformable
downscaling, latitude-aware HF projection and reverse up-
scaling. For deformable downscaling, a deformable INN
was designed to generate both the downscaled LR image
and the HF component in a deformation-adaptive manner.
Then, the latitude-aware HF projection was proposed to
learn the bijective projection between the HF component
and latent space in a latitude-aware manner. For reverse up-
scaling, the HR image can be reconstructed through the re-
versal of the above two stages. Finally, the extensive exper-
imental results validate the effectiveness of our DINN360
method for 2×, 4× and 8× 360◦ image rescaling.
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