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Figure 1. We learn to camouflage 3D objects within scenes. Given an object’s shape, position, and a distribution of possible viewpoints it
will be seen from, we estimate a texture field that will conceal it. We show example outputs from our model, with two viewpoints for each
camouflaged object. Please see the videos on our webpage (https://rrrrrguo.github.io/ganmouflage) for more examples.

Abstract

We propose a method that learns to camouflage 3D ob-
jects within scenes. Given an object’s shape and a distribu-
tion of viewpoints from which it will be seen, we estimate a
texture that will make it difficult to detect. Successfully solv-
ing this task requires a model that can accurately reproduce
textures from the scene, while simultaneously dealing with
the highly conflicting constraints imposed by each view-
point. We address these challenges with a model based on
texture fields and adversarial learning. Our model learns to
camouflage a variety of object shapes from randomly sam-
pled locations and viewpoints within the input scene, and
is the first to address the problem of hiding complex object
shapes. Using a human visual search study, we find that our
estimated textures conceal objects significantly better than
previous methods.

*Work done while at University of Michigan

1. Introduction
Using fur, feathers, spots, and stripes, camouflaged ani-

mals show a remarkable ability to stay hidden within their
environment. These capabilities developed as part of an
evolutionary arms race, with advances in camouflage lead-
ing to advances in visual perception, and vice versa.

Inspired by these challenges, previous work [33] pro-
posed the object nondetection problem: to create an appear-
ance for an object that makes it undetectable. Given an ob-
ject’s shape and a sample of photos from a scene, the goal is
to produce a texture that hides the object from every view-
point that it is likely to be observed from. This problem
has applications in hiding unsightly objects, such as util-
ity boxes [7], solar panels [29, 49], and radio towers, and in
concealing objects from humans or animals, such as surveil-
lance cameras and hunting platforms. Moreover, since cam-
ouflage models must ultimately thwart highly effective vi-
sual systems, they may provide a better scientific under-
standing of the cues that these systems use. Animal cam-
ouflage, for instance, has developed strategies for avoiding
perceptual grouping and boundary detection cues [30, 52].
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A successful learning-based camouflage system, likewise,
must gain an understanding of these cues in order to thwart
them.

Previous object nondetection methods are based on non-
parametric texture synthesis. Although these methods have
shown success in hiding cube-shaped objects, they can only
directly “copy-and-paste” pixels that are directly occluded
by the object, making it challenging to deal with complex
backgrounds and non-planar geometry. While learning-
based methods have the potential to address these shortcom-
ings, they face a number of challenges. Since even tiny im-
perfections in synthesized textures can expose a hidden ob-
ject, the method must also be capable of reproducing real-
world textures with high fidelity. There is also no single
texture that can perfectly conceal an object from all view-
points at once. Choosing an effective camouflage requires
3D reasoning, and making trade-offs between different so-
lutions. This is in contrast to the related problem of image
inpainting, which can be posed straightforwardly as esti-
mating masked image regions in large, unlabeled photo col-
lections [34], and which lack the ability to deal with multi-
view constraints.

We propose a model based on neural texture fields [23,
32,35,42] and adversarial training that addresses these chal-
lenges (Figure 2). The proposed architecture and learning
procedure allow the model to exploit multi-view geometry,
reproduce a scene’s textures with high fidelity, and satisfy
the highly conflicting constraints provided by the input im-
ages. During training, our model learns to conceal a variety
of object shapes from randomly chosen 3D positions within
a scene. It uses a conditional generative adversarial net-
work (GAN) to learn to produce textures that are difficult to
detect using pixel-aligned representations [55] with hyper-
columns [20] to provide information from each view.

Through automated evaluation metrics and human per-
ceptual studies, we find that our method significantly out-
performs the previous state-of-the-art in hiding cuboid ob-
jects. We also demonstrate our method’s flexibility by us-
ing it to camouflage a diverse set of complex shapes. These
shapes introduce unique challenges, as each viewpoint ob-
serves a different set of points on the object surface. Finally,
we show through ablations that the design of our texture
model leads to significantly better results.

2. Related Work
Computational camouflage We take inspiration from
early work by Reynolds [38] that formulated camouflage
as part of an artificial life simulation, following Sims [45]
and Dawkins [13]. In that work, a human “predator” in-
teractively detects visual “prey” patterns that are generated
using a genetic algorithm. While our model is also trained
adversarially, we do so using a GAN, rather than with a
human-in-the-loop. Later, Owens et al. [33] proposed the

problem of hiding a cuboid object at a specific location from
multiple 3D viewpoints, and solved it using nonparametric
texture synthesis. In contrast, our model learns through ad-
versarial training to hide both cuboid and more complex ob-
jects. Bi et al. [5] proposed a patch-based synthesis method
that they applied to the multi-view camouflage problem, and
extended the method to spheres. However, this work was
very preliminary: they only provide a qualitative result on a
single scene (with no quantitative evaluation). Other work
inserts difficult-to-see patterns into other images [10, 58].
Animal camouflage. Perhaps the most well-known cam-
ouflage strategy is background matching, whereby animals
take on textures that blend into the background. However,
animals also use a number of other strategies to conceal
themselves, such as by masquerading as other objects [48],
and using disruptive coloration to elude segmentation cues
and to hide conspicuous body parts, such as eyes [12]. The
object nondetection problem is motivated by animals that
can dynamically change their appearance to match their sur-
roundings, such as the octopus1 [19]. Researchers have also
begun using computational models to study animal camou-
flage. Troscianko et al. [53] used a genetic algorithm to
camouflage synthetic bird eggs, and asked human subjects
to detect them. Talas et al. [52] used a GAN to camouflage
simple triangle-shaped representations of moths that were
placed at random locations on synthetic tree bark. In both
cases, the animal models are simplified and 2D, whereas
our approach can handle complex 3D shapes.
Camouflaged object detection. Recent work has sought
to detect camouflaged objects using object detectors [15,
28, 54] and motion cues [8, 27]. The focus of our work is
generating camouflaged objects, rather than detecting them.
Adversarial examples. The object nondetection problem
is related to adversarial examples [6, 18, 51], in that both
problems involve deceiving a visual system (e.g., by con-
cealing an object or making it appear to be from a different
class). Other work has generalized these examples to multi-
ple viewpoints [2]. In contrast, the goal of the nondetection
problem is to make objects that are concealed from a human
visual system, rather than fool a classifier.
Texture fields. We take inspiration from recent work that
uses implicit representations of functions to model the sur-
face texture of objects [23, 32, 35, 42]. Oechsle et al. [32]
learned to texture a given object using an implicit function,
with image and shape encoders, and Saito et al. [42] learned
a pixel-aligned implicit function for clothed humans. There
are three key differences between our work and these meth-
ods. First, these methods aim to reconstruct textures from
given images while our model predicts a texture that can
conceal an object. Second, our model is conditioned on a
3D input scene with projective structure, rather than a set

1For a striking demonstration, see this video from Roger Hanlon:
https://www.youtube.com/watch?v=JSq8nghQZqA
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Figure 2. Camouflage model. (a) Our model creates a texture for a 3D object that conceals it from multiple viewpoints. (b) We generate a
texture field that maps 3D points to colors. The network is conditioned on pixel-aligned features from training images. We train the model
to create a texture that is (c) photoconsistent with the input views, as measured using a perceptual loss, and (d) difficult for a discriminator
to distinguish from random background patches. For clarity, we show the camouflaged object’s boundaries.

of images. Finally, the constraints provided by our images
are mutually incompatible: there is no single way to texture
a 3D object that satisfies all of the images. Other work has
used implicit functions to represent 3D scenes for view syn-
thesis [9, 31, 46, 55]. Sitzmann et al. [46] proposed an im-
plicit 3D scene representation. Mildenhall et al. [31] pro-
posed view-dependent neural radiance fields (NeRF). Re-
cent work created image-conditional NeRFs [9, 55]. Like
our method, they use networks with skip connections that
exploit the projective geometry of the scene. However, their
learned radiance field does not ensure multi-view consis-
tency in color, since colors are conditioned on viewing di-
rections of novel views.

Inpainting and texture synthesis. The camouflage
problem is related to image inpainting [3, 4, 14, 21, 34, 57],
in that both tasks involve creating a texture that matches
a surrounding region. However, in contrast to the inpaint-
ing problem, there is no single solution that can completely
satisfy the constraints provided by all of the images, and
thus the task cannot be straightforwardly posed as a self-
supervised data recovery problem [34]. Our work is also
related to image-based texture synthesis [3, 14, 17] and 3D
texture synthesis [23, 32, 35]. Since these techniques fill
a hole in a single image, and cannot obtain geometrically-
consistent constraints from multiple images, they cannot be
applied to our method without major modifications. Nev-
ertheless, we include an inpainting-based baseline in our
evaluation by combining these methods with previous cam-
ouflage approaches.

3. Learning Multi-View Camouflage

Our goal is to create a texture for an object that cam-
ouflages it from all of the viewpoints that it is likely to
be observed from. Following the formulation of Owens et

al. [33], our input is a 3D object mesh S at a fixed location
in a scene, a sample of photos I1, I2, ..., IN from distribu-
tion V , and their camera parameters Kj ,Rj , tj . We desire
a solution that camouflages the object from V , using this
sample. We are also provided with a ground plane g, which
the object has been placed on.

Also following [33], we consider the camouflage prob-
lem separately from the display problem of creating a real-
world object. We assume that the object can be assigned ar-
bitrary textures, and that there is only a single illumination
condition. We note that shadows are independent of the ob-
ject texture, and hence could be incorporated into this prob-
lem framework by inserting shadows into images (Sec. 4.5).
Moreover, changes in the amount of lighting are likely to
affect the object and background in a consistent way, pro-
ducing a similar camouflage.

3.1. Texture Representation

We create a surface texture for the object that, on av-
erage, is difficult to detect when observed from viewpoints
randomly sampled from V . As in prior work [33], we render
the object and synthetically insert it into the scene.

Similar to recent work on object texture synthesis [23,
32, 35], we represent our texture as continuous function in
3D space, using a texture field:

tθ : R3 → R3. (1)

This function maps a 3D point to an RGB color, and is
parameterized using a multi-layer perceptron (MLP) with
weights θ.

We condition our neural texture representation on input
images, their projection matrices Pj = Kj [Rj |tj ], and a
3D object shape S. Our goal is to learn a texturing function
that produces a texture field from an input scene:

Gθ(x; {Ij}, {Pj},S) (2)
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where x is a 3D query point on the object surface.

3.2. Camouflage Texture Model

To learn a camouflaged texture field (Eq. 2), we require a
representation for the multi-view scene content, geometry,
and texture field. We now describe these components in
more detail. Our full model is shown in Figure 2.

Pixel-aligned image representation. In order to success-
fully hide an object, we need to reproduce the input image
textures with high fidelity. For a given 3D point xi on the
object surface and an image Ij , we compute an image fea-
ture z

(j)
i as follows.

We first compute convolutional features for Ij using a
U-net [40] with a ResNet-18 [22] backbone at multiple res-
olutions. We extract image features F(j) = E(Ij) at full,
1
4 , and 1

16 scales. At each pixel, we concatenate features
for each scale together, producing a multiscale hypercol-
umn representation [20].

Instead of using a single feature vector to represent an
entire input image, as is often done in neural texture mod-
els that create a texture from images [23, 32], we exploit
the geometric structure of the multi-view camouflage prob-
lem. We extract pixel-aligned features z

(j)
i from each fea-

ture map F(j), following work in neural radiance fields [55].
We compute the projection of a 3D point xi in viewpoint Ij :

u
(j)
i = π(j)(xi), (3)

where π is the projection function from object space to
screen space of image Ij . We then use bilinear interpola-
tion to extract the feature vector z(j)i = F(j)(u

(j)
i ) for each

point i in each input image Ij .

Perspective encoding. In addition to the image represen-
tation, we also condition our texture field on a perspective
encoding that conveys the local geometry of the object sur-
face and the multi-view setting. For each point xi and im-
age Ij , we provide the network with the viewing direction
v
(j)
i and surface normal n(j)

i . These can be computed as:

v
(j)
i =

K−1
j u

(j)
i

∥K−1
j u

(j)
i ∥2

and n
(j)
i = Rjni, where u

(j)
i is the

point’s projection (Eq. 3) in homogeneous coordinates, and
ni is the surface normal in object space. To obtain ni, we
extract the normal of the face closet to xi.

We note that these perspective features come from the
images that are used as input images to the texture field,
rather than the camera viewing the texture, i.e. in contrast
to neural scene representations [9, 31, 55], our textures are
not viewpoint-dependent.

Texture field architecture. We use these features to de-
fine a texture field, an MLP that maps a 3D coordinate xi

to a color ci (Eq. 1). It is conditioned on the set of image
features for the N input images {z(j)i }, as well as the sets

of perspective features {v(j)
i } and {n(j)

i }:

ci = T (γ(xi); {z(j)i }, {v(j)
i }, {n(j)

i }) (4)

where γ(·) is a positional encoding [31]. For this MLP, we
use a similar architecture as Yu et al. [55]. The network is
composed of several fully connected residual blocks and has
two stages. In the first stage, which consists of 3 blocks, the
vector from each input view is processed separately with
shared weights. Mean pooling is then applied to create a
unified representations from the views. In the second stage,
another 3 residual blocks are used to predict the color for the
input query point. Please see the supplementary material for
more details.
Rendering. To render the object from a given viewpoint,
following the strategy of Oechsle et al. [32], we determine
which surface points are visible using the object’s depth
map, which we compute using PyTorch3D [37]. Given a
pixel ui, we estimate a 3D surface point xi in object space
through inverse projection: xi = diR

TK−1ui − RT t,
where di is the depth of pixel i, K,R, t are the view’s
camera parameters, and ui is in homogeneous coordinates.
We estimate the color for all visible points, and render the
object by inserting the estimated pixel colors into a back-
ground image, I. This results in a new image that contains
the camouflaged object, Î.

3.3. Learning to Camouflage

We require our camouflage model to generate textures
that are photoconsistent with the input images, and that are
not easily detectable by a learned discriminator. These two
criteria lead us to define a loss function consisting of a pho-
toconsistency term and adversarial loss term, which we op-
timize through a learning regime that learns to camouflage
randomly augmented objects from random positions.
Photoconsistency. The photoconsistency loss measures
how well the textured object, when projected into the input
views, matches the background. We use a perceptual loss,
Lphoto [17, 25] that is computed as the normalized distance
between activations for layers of a VGG-16 network [44]
trained on ImageNet [41]:

Lphoto =
∑
j∈J

LP (Îj , Ij) =
∑

j∈J,k∈L

1

Nk
∥ϕk(Îj)− ϕk(Ij)∥1

(5)

where J is the set of view indices, L is the set of layers
used in the loss, and ϕk are the activations of layer k, which
has total dimension Nk. In practice, due to the large image
size relative to the object, we use a crop centered around the
object, rather than Ij itself (see Figure 2(c)).
Adversarial loss. To further improve the quality of gen-
erated textures, we also use an adversarial loss. Our model
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Figure 3. Multi-view results. Multiple object views for selected scenes, camouflaged using our proposed model with four input views.
The views shown here were held out and not provided to the network as input during training.

tries to hide the object, while a discriminator attempts to de-
tect it from the scene. We randomly select real image crops
y from each background image Ij and select fake crops ŷ

containing the camouflaged object from Îj . We use the stan-
dard GAN loss as our objective. To train the discriminator,
D, we minimize:

LD = −Ey[logD(y)]− Eŷ[log(1−D(ŷ))] (6)

where the expectation is taken over patches randomly sam-
pled from a training batch. We implement our discriminator
using the fully convolutional architecture of Isola et al. [24].
Our texturing function, meanwhile, minimizes:

Ladv = −Eŷ[logD(ŷ)] (7)

Self-supervised multi-view camouflage. We train our
texturing function G (Eq. 2), which is fully defined by the
image encoder E and the MLP T , by minimizing the com-
bined losses:

LG = Lphoto + λadvLadv (8)

where λadv controls the importance of the two losses.
If we were to train the model with only the input object,

the discriminator would easily overfit, and our model would
fail to obtain a learning signal. Moreover, the resulting tex-
turing model would only be specialized to a single input
shape, and may not generalize to others. To address both of
these issues, we provide additional supervision to the model
by training it to camouflage randomly augmented shapes at
random positions, and from random subsets of views.

We sample object positions on the ground plane g,
within a small radius proportional to the size of input object
S. We uniformly sample a position within the disk to de-
termine the position for the object. In addition to randomly
sampled locations, we also randomly scale the object within
a range to add more diversity to training data. During train-
ing, we randomly select Ni input views and Nr rendering
views without replacement from a pool of training images
sampled from V . We calculate Lphoto on both Ni input
views and Nr views while Ladv is calculated on Nr views.

4. Results

We compare our model to previous multi-view camou-
flage methods using cube shapes, as well as on complex
animal and furniture shapes.

4.1. Dataset

We base our evaluation on the scene dataset of [33],
placing objects at their predefined locations. Each scene
contains 10-25 photos from different locations. During
capturing, only background images are captured, with no
actual object is placed in the scene. Camera parameters
are estimated using structure from motion [47]. To sup-
port learning-based methods that take 4 input views, while
still having a diverse evaluation set, we use 36 of the 37
scenes (removing one very small 6-view scene). In [33],
their methods are only evaluated on cuboid shape, while
our method can be adapted to arbitrary shape without any
change to the model. To evaluate our method on complex
shapes, we generate camouflage textures for a dataset of 49
animal meshes from [60]. We also provide a qualitative fur-
niture shape from [11] (Fig. 1).

4.2. Implementation Details

For each scene, we reserve 1-3 images for testing (based
on the total number of views in the scene). Following
other work in neural textures [23], we train one network per
scene. We train our models using the Adam optimizer [26]
with a learning rate of 2 × 10−4 for the texturing function
G and 10−4 for the discriminator D. We use λadv = 0.5 in
Eq. 8. We resize all images to be 384× 576 and use square
crops of 128× 128 to calculate losses.

To ensure that our randomly chosen object locations are
likely to be clearly visible from the cameras, we randomly
sample object positions on the ground plane (the base of the
cube in [33]). We allow these objects to be shifted at most
3× the cube’s length. During training, for each sample, we
randomly select Ni = 4 views as input views and render the
object on another Nr = 2 novel views. The model is trained
with batch size of 8 for approximately 12k iterations. For
evaluation, we place the object at the predefined position
from [33] and render it in the reserved test views.
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Ours (4 views) Ours (2 views) Boundary MRF Interior MRF Greedy Random

Ours (4 views) Greedy Random Pixel-wise Greedy MeanOurs (2 views)
(a) Qualitative results on cubes

Ours (4 views) Greedy Random Pixel-wise Greedy MeanOurs (2 views)

(b) Qualitative results on animal shapes
Figure 4. Comparison between methods for cuboids and complex shapes. We compare our method with previous approaches for the
task of concealing (a) cuboids and (b) animal shapes. Our method produces objects with more coherent texture, with the 4-view model
filling in textures that tend to be occluded.

4.3. Experimental Settings

4.3.1 Cuboid shapes

We first evaluate our method using only cuboid shapes
to compare with the state-of-the-art methods proposed in
Owens et al. [33]. We compare our proposed 2-view and
4-view models with the following approaches:

Mean. The color for each 3D point is obtained by project-
ing it into all the views that observe it and taking the mean
color at each pixel.

Iterative projection. These methods exploit the fact that
an object can (trivially) be completely hidden from a sin-
gle given viewpoint by back-projecting the image onto the
object. When this is done, the object is also generally diffi-
cult to see from nearby viewpoints as well. In the Random
method, the input images are selected in a random order,
and each one is projected onto the object, coloring any sur-
face point that has not yet been filled. In Greedy, the model
samples the photos according to a heuristic that prioritizes
viewpoints that observe the object head-on (instead of ran-
dom sampling). Specifically, the photos are sorted based on
the number of object faces that are observed from a direct
angle (> 70◦ with the viewing angle).

Example-based texture synthesis. These methods use
Markov Random Fields (MRFs) [1, 16, 36] to perform

example-based texture synthesis. These methods simulta-
neously minimize photoconsistency, as well as smoothness
cost that penalizes unusual textures. The Boundary MRF
model requires nodes within a face to have same labels,
while Interior MRF does not.

4.3.2 Complex shapes

We also evaluated our model on a dataset containing 49
animal meshes [60]. Camouflaging these shapes presents
unique challenges. In cuboids, the set of object points that
each camera observes is often precisely the same, since each
viewpoint sees at most 3 adjacent cube faces (out of 6 total).
Therefore, it often suffices for a model to camouflage the
most commonly-viewed object points with a single, coher-
ent texture taken from one of the images, putting any con-
spicuous seams elsewhere on the object. In contrast, when
the meshes have more complex geometry, each viewpoint
sees a very different set of object points.

Since our model operates on arbitrary shapes, using these
shapes requires no changes to the model. We trained our
method with the animal shapes and placed the animal object
at the same position as in the cube experiments. We adapt
the simpler baseline methods of [33] to these shapes, how-
ever we note that the MRF-based synthesis methods assume
a grid graph structure on each cube face, and hence cannot
be adapted to complex shapes without significant changes.
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Method Confusion rate Avg. time (s) Med. time (s) n

Mean 16.09% ± 2.29 4.82 ± 0.37 2.95 ± 0.14 988
Random 39.66% ± 3.02 7.63 ± 0.50 4.68 ± 0.35 1011
Greedy 40.32% ± 2.96 7.94 ± 0.52 4.72 ± 0.36 1054
Boundary MRF [33] 41.29% ± 2.95 8.50 ± 0.51 5.39 ± 0.40 1068
Interior MRF [33] 44.66% ± 3.01 8.19 ± 0.51 5.19 ± 0.42 1048
Ours (2 views) 51.58% ± 2.99 9.19 ± 0.51 6.46 ± 0.42 1074
Ours (4 views) 53.95% ± 3.05 9.29 ± 0.57 6.11 ± 0.50 1025

Table 1. Perceptual study results with cubes. Higher numbers
represent a better performance. We report the 95% confidence
interval of these metrics.

Method Confusion rate Avg. time (s) Med. time (s) n

Mean 36.46% ± 2.17 6.39 ± 0.30 4.04 ± 0.17 1898
Pixel-wise greedy 50.43% ± 2.20 7.25 ± 0.32 4.73 ± 0.20 1987
Random 51.61% ± 2.29 7.81 ± 0.36 5.25 ± 0.36 1831
Greedy 52.50% ± 2.18 7.69 ± 0.34 5.13 ± 0.25 2017
Ours (4 views) 61.93% ± 2.14 8.06 ± 0.33 5.66 ± 0.27 1970

Table 2. Perceptual study results on animal shapes. Higher
numbers represent a better performance. We report the 95% con-
fidence interval of these metrics.

Mean. As with cube experiment, we take the mean color
from multiple input views as the simplest baseline.
Iterative projection. We use the same projection order
selection strategy as in cube experiment. We determine
whether a pixel is visible in the input views by using a ray-
triangle intersection test.
Pixel-wise greedy. Instead of projecting each input in se-
quential order, we choose the color for each pixel by select-
ing color from the input views that has largest view angle.
4.4. Perceptual Study

To evaluate the effectiveness of our method, we conduct
a perceptual study. We generally follow the setup of [33],
however we ask users to directly click on the camouflaged
object [53], without presenting them with a second step to
confirm that the object (or isn’t) present. This simplified the
number of camouflaged objects that subjects see by a factor
of two. We recruited 267 and 375 participants from Ama-
zon Mechanical Turk for the perceptual study on cuboid and
complex shapes, respectively, and ensured no participant at-
tended both of the perceptual studies.

Each participant was shown one random image from the
reserved images of each scene in a random order. The first
5 images that they were shown were part of a training ex-
ercise, and are not included in the final evaluation. We
asked participants to search for the camouflaged object in
the scene, and to click on it as soon as they found it. The
object in the scene was camouflaged by a randomly cho-
sen algorithm, and placed at the predefined position. After
clicking on the image, the object outline was shown to the
participant. We recorded whether the participant correctly
clicked on the camouflaged object, and how long it took
them to click. Each participant had one trial for each image
and a maximum of 60s to find the camouflaged object.
Results on cuboid shapes. The perceptual study results
on cuboid shapes are shown in Table 1. We report the con-

(a) Real cube (b) With shadow (c) No shadow

Figure 5. Effect of shadow on generated textures. We simulate
the effect of shadows of the object in an indoor scene, using the ref-
erence object (a). Our model generates a texture with a shadow (b)
by conditioning on composite images that contain the real shadow
(but no real cube). (c) Result without shadow modeling.

fusion rate, average time, and median time measured over
different methods. We found that our models significantly
outperform the previous approaches on all metrics. To test
for significance, we followed [33] and used a two-sided t-
test for the confusion rate and a two-sided Mann-Whitney
U test (with a 0.05 threshold for significance testing). We
found that our method outperforms all the baseline meth-
ods significantly in the confusion rate metric. Both of our
model variations outperform Interior MRF (p < 2 × 10−3

and p < 3× 10−5). There was no significant difference be-
tween 2 and 4 views (p = 0.28). In terms of time-to-click,
our method also beats the two MRF-based methods. Com-
pared with Boundary MRF, our method requires more time
for participants to click the camouflaged object (p = 0.0024
for 2 views and p = 0.039 for 4 views).
Results on complex shapes. The perceptual study results
on complex shapes are shown in Table 2. We found that
our model obtained significantly better results than pre-
vious work on confusion rate. Our model also obtained
significantly better results on the time-to-find metric. We
found that in terms of confusion rate, our method with 4 in-
put views is significantly better than the baseline methods,
9.42% better than Greedy method and 10.32% better than
Random method. For time-to-click, our method also per-
forms better than baseline methods compared with Greedy
and Random.
4.5. Qualitative Results

We visualize our generated textures in several selected
scenes for both cube shapes and animal shapes in Figure 3.
We compare our method qualitatively with baseline meth-
ods from [33] in Figure 4. We found that our model ob-
tained significantly more coherent textures than other ap-
proaches. The 2-view model has a failure case when none
of the input views cover an occluded face, while the 4-view
model is able to generally avoid this situation. We provide
additional results in the supplement.
Effects of shadows. Placing an object in a real scene
may create shadows. We ask how these shadows effect
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Ours (4 views) No ℒ𝑓𝑓𝑎𝑎𝑎𝑎 No ℒ𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝 on input views pixelNeRF encoder

Figure 6. Ablations. We show how the choice of different com-
ponents changes the quality of the camouflage texture.

our model’s solution (Figure 5), exploiting the fact that
these shadows are independent of the object’s texture and
hence function similarly to other image content. In [33],
photos with (and without) a real cube are taken from the
same pose. We manually composite these paired images
to produce an image without the real cube but with its real
shadow. We then provide these images as conditioning in-
put to our model, such that it incorporates the presence of
the shadow into its camouflage solution. While our solution
incorporates some of the shadowed region, the result is sim-
ilar. Note that other lighting effects can be modeled as well
(e.g., by compensating for known shading on the surface).
4.6. Automated evaluation metrics

To help understand our proposed model, we perform an
automated evaluation and compare with ablations:
• Adversarial loss: To evaluate the importance of Ladv , we

set λadv to 0 in Eq. 8. We evaluate the model performance
with only Lphoto used during training.

• Photoconsistency: We evaluate the importance of using
all Ni input views in Eq. 5. The ablated model has Lphoto

only calculated on Nr rendering views during training.
• Architecture: We evaluate the importance of our pixel-

aligned feature representation. In lieu of this network, we
use the feature encoder from pixelNeRF [55].

• Inpainting: Since inpainting methods cannot be directly
applied to our task without substantial modifications,
we combind several inpainting methods with the Greedy
model. We selected several recent inpainting methods
DeepFillv2 [56], LaMa [50], LDM [39] to inpaint the
object shape in each view, then backproject this texture
onto the 3D surface, using the geometry-based ordering
from [33].

Evaluation metrics. To evaluate the ablated models, we
use LPIPS [59] and SIFID metrics [43]. Since the back-
ground portion of the image remains unmodified, we use
crops centered at the rendered camouflaged objects.
Results. Quantitative results are shown in Table 3 and
qualitative results are in Figure 6. We found that our full
4-view model is the overall best-performing method. In par-
ticular, it significantly outperforms the 2-view model, which

Model LPIPS↓ SIFID↓

Boundary MRF [33] 0.1228 0.0867
Interior MRF [33] 0.1185 0.0782
DeepFill v2 [56] + Projection [33] 0.1469 0.1245
LaMa [50] + Projection [33] 0.1263 0.1006
LDM [39] + Projection [33] 0.1305 0.0976
No Ladv 0.1064 0.0720
No Lphoto on input views 0.1131 0.0856
With pixelNeRF encoder [55] 0.1047 0.0712
Ours (2 views) 0.1079 0.0754
Ours (4 views) 0.1034 0.0714

Table 3. Evaluation with automated metrics. We compare our
method to other approaches, and perform ablations.
struggles when the viewpoints do not provide strong cover-
age from all angles (Fig. 6). We also found that the adver-
sarial loss significantly improves performance. As can be
seen in Fig. 6, the model without an adversarial loss fails
to choose a coherent solution and instead appears to aver-
age all of the input views. The model that uses all views to
compute photoconsistency tends to generate more realistic
textures, perhaps due to the larger availability of samples.
Compared with the pixelNeRF encoder, our model gener-
ates textures with higher fidelity, since it receives more de-
tailed feature maps from encoder. We obtain better perfor-
mance on LPIPS but find that this variation of the model
achieves slightly better SIFID. This suggests that the ar-
chitecture of our pixel-aligned features provides a modest
improvement. Finally, we found that we significantly out-
performed the inpainting and MRF-based methods.

5. Discussion
We proposed a method for generating textures to con-

ceal a 3D object within a scene. Our method can handle di-
verse and complex 3D shapes and significantly outperforms
previous work in a perceptual study. We see our work as
a step toward developing learning-based camouflage mod-
els. Additionally, the animal kingdom has a range of power-
ful camouflage strategies, such as disruptive coloration and
mimicry, that cleverly fool the visual system and may re-
quire new learning methods to capture.
Limitations. As in other camouflage work [33], we do not
address the problem of physically creating the camouflaged
object, and therefore do not systematically address practi-
calities like lighting and occlusion.
Ethics. The research presented in this paper has the poten-
tial to contribute to useful applications, particularly to hid-
ing unsightly objects, such as solar panels and utility boxes.
However, it also has the potential to be used for negative ap-
plications, such as hiding nefarious military equipment and
intrusive surveillance cameras.
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