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Multi-view images Unified modeling and rendering for photo-realistic single / interacting hands under novel views / poses

Figure 1. Given a set of multi-view images capturing a pose sequence of a single hand or two interacting hands (left), HandNeRF models
the scene in a unified manner with neural radiance fields, enabling rendering of novel hand poses from arbitrary viewing directions (right).

Abstract

We propose a novel framework to reconstruct accu-
rate appearance and geometry with neural radiance fields
(NeRF) for interacting hands, enabling the rendering of
photo-realistic images and videos for gesture animation
from arbitrary views. Given multi-view images of a single
hand or interacting hands, an off-the-shelf skeleton estima-
tor is first employed to parameterize the hand poses. Then
we design a pose-driven deformation field to establish cor-
respondence from those different poses to a shared canon-
ical space, where a pose-disentangled NeRF for one hand
is optimized. Such unified modeling efficiently complements
the geometry and texture cues in rarely-observed areas for
both hands. Meanwhile, we further leverage the pose priors
to generate pseudo depth maps as guidance for occlusion-
aware density learning. Moreover, a neural feature distilla-
tion method is proposed to achieve cross-domain alignment
for color optimization. We conduct extensive experiments
to verify the merits of our proposed HandNeRF and report
a series of state-of-the-art results both qualitatively and
quantitatively on the large-scale InterHand2.6M dataset.

*Corresponding Authors.

1. Introduction
As a dexterous tool to interact with the physical world

and convey rich semantic information, the modeling and re-
construction of human hands have attracted substantial at-
tention from the research community. Typically, the synthe-
sis of realistic hand images or videos with different postures
in motion has a wide range of applications, e.g., human-
computer interaction, sign language production, virtual and
augmented reality technologies such as telepresence, etc.

Classic hand-modeling works are mainly built upon pa-
rameterized mesh models such as MANO [31]. They fit the
geometry of hands to polygon meshes manipulated by shape
and pose parameters, and then complete coloring via texture
mapping. Despite being widely adopted, those models have
the following limitations. On the one hand, high-frequency
details are hard to present on low-resolution meshes, hinder-
ing the production of photo-realistic images. On the other
hand, no special design is developed for interacting hands,
which is a non-trivial scenario involving complex postures
with self-occlusion.

To address the above issues and push the boundary of re-
alistic human hand modeling, motivated by the recent suc-
cess of NeRF [17] in modeling human body [11, 25, 26],
we propose HandNeRF, a novel framework that unifiedly
models the geometry and texture of animatable interacting
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hands with neural radiance fields (NeRF). Specifically, a
pose-conditioned deformation field is introduced to warp
the sampled observing ray into a canonical space, guided by
the prior-based blend skinning transformation and a learn-
able error-correction network dealing with non-rigid defor-
mations. The different input postures are thereby mapped
to a common mean pose, where a canonical NeRF is com-
petent at modeling. Thanks to the continuous implicit rep-
resentation of NeRF and the multi-view-consistent volume
rendering, we are able to produce high-fidelity images of
posed hands from arbitrary viewing directions. This can not
only be applied in the synthesis of free-viewpoint videos,
but also help to perform data augmentation for multi-view
detection and recognition tasks in computer vision, e.g.,
sign language recognition.

Meanwhile, modeling one single hand is nowhere near
enough from an application perspective. The semantics ex-
pressed by single-hand movements is quite limited. Many
practical scenarios such as sign language conversations re-
quire complex interacting postures of both hands. However,
handling interaction scenarios is far from trivial and still
lacks exploration. Interacting hands exhibit fine-grained
texture in small areas, while incompleteness of visible tex-
ture permeates the image samples due to self-occlusion and
limited viewpoints. To this end, we extend the aforemen-
tioned model into a unified framework for both hands. By
introducing the hand mapping and ray composition strategy
into the pose-deformable NeRF, we make it possible to nat-
urally handle interaction contacts and complement the ge-
ometry and texture in rarely-observed areas for both hands.
Note that with such a design, HandNeRF is compatible with
both single hand and two interacting hands.

Moreover, to ensure a correct depth relationship when
rendering the hand interactions, we re-exploit the hu-
man priors and propose a low-cost depth supervision for
occlusion-robust density optimization. Such strong con-
straint guides the model to extract accurate geometry from
sparse-view training samples. Additionally, a neural feature
distillation branch is designed to achieve feature alignment
between a pre-trained 2D teacher and the 3D color field. By
implicitly leveraging spatial contextual cues for color learn-
ing, this cross-domain distillation effectively alleviates the
artifacts on the target shape and further improves the quality
of the learned texture.

Our main contributions are summarized as follows:
• To the best of our knowledge, we are the first to de-

velop a unified framework to model photo-realistic in-
teracting hands with deformable neural radiance fields.

• We propose several elaborate strategies, including the
depth-guided density optimization and the neural fea-
ture distillation, in order to effectively address practi-
cal challenges in interacting hands training and ensure
high-fidelity results for novel view/pose synthesis.

• Extensive experiments on the large-scale dataset Inter-
Hand2.6M [18] show that our HandNeRF outperforms
the baselines both qualitatively and quantitatively.

2. Related Work
2.1. Neural Radiance Fields (NeRF)

Recent years have witnessed the rapid development of
neural implicit representations [16, 17, 22] in 3D modeling
and image synthesis. Compared with classic discrete coun-
terparts such as meshes, point clouds, and voxels, neural im-
plicit representations model the scene with neural networks,
which are spatially continuous and indicate a higher fidelity
and flexibility. As the most popular implicit representation
in neural rendering, Neural Radiance Fields (NeRF) [17]
has exhibited stunning results in various tasks since its first
introduction. The original NeRF overfits on one static scene
by design, therefore it cannot model time-varying contents.

Many efforts have been made to adapt NeRF to dynamic
scenes. Some works condition the NeRF with local [36,39]
or global scene representations [7, 8, 13] to implicitly pro-
vide generalizability for it. As the pioneers, D-NeRF [27]
and Nerfies [23] use an explicit deformation field to bend
straight rays passing through varying targets into a com-
mon canonical scene, where a conventional NeRF is op-
timized. Such a pipeline is adopted by many follow-up
works [24, 33]. These methods provide hard constraints by
sharing geometry and appearance information across time,
while presenting a relatively harder optimization problem.

2.2. Neural Rendering of Articulated Objects

The image rendering of animatable articulated objects,
i.e., human bodies, hands, etc., can be regarded as a special
case of modeling dynamic scenes. Most early works [15,
31] complete reconstruction using skeleton-based meshes,
which generally rely on expensive calibration and massive
samples to produce high-quality results.

Neural Body [26] signifies a breakthrough in low-cost
human rendering by combining NeRF with the mesh-based
SMPL model [15]. Neural Actor [14] optimizes the human
model in a canonical space along with a volume deforma-
tion based on the linear blending skinning (LBS) algorithm
of SMPL mesh. Similar LBS-based pipelines are adopted
by a lot of works [11,12,25,32,37,40]. Since the LBS defor-
mation cannot handle non-rigid transformation, other strate-
gies have to be introduced for better rendering quality. Most
methods [11,37] regress an extra point-wise offset for sam-
ples, while some works like Animatable-NeRF [25] try to
jointly optimize NeRF with the LBS weights for deforma-
tion. To this end, a forward and a backward skinning field
are introduced to save LBS weights for the bidirectional
mapping between the posed and canonical shapes. The
main limitation here is the poor generalizability of inverse
LBS since the weights vary when the pose changes [28].
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Figure 2. Overview of HandNeRF. A straight observing ray is warped to a canonical space by the deformation field, depending on
the different poses of two hands. Colors and densities of the two sets of samples are then produced by the shared NeRF. We establish
supervision for the integrated colors, color features and depth values, to help reconstruct fine-grained details of both texture and geometry.

Another series of methods [5,20] model the human body
with separate parts. They decompose an articulated object
into several rigid bones, and then perform per-bone predic-
tion with separated NeRFs. Although being good at main-
taining partial rigidity, those methods struggle to merge dif-
ferent parts. They inevitably produce overlap or breakage
between bones, and are consequently inferior to the overall
modeling approaches in terms of pose generalizability. As a
result, LBS-based methods are still the mainstream practice
for human modeling. Aside from NeRF, some works [28]
adopt neural implicit surfaces such as the signed distance
field (SDF) [21, 35, 38] to better model the geometry of hu-
man body. Those methods can produce relatively smoother
surface predictions, but are not good at rendering appear-
ance with high-frequency details, unlike NeRF.

Compared with human body, the neural rendering of hu-
man hands still lacks exploration. Recently, LISA [4] is pro-
posed as the first neural implicit model of textured hands.
It is focused on the reconstruction of hand geometry us-
ing separately-optimized SDF, while the color results are
barely satisfactory. Meanwhile, it suffers from similar limi-
tations as faced by the aforementioned SDF-based and per-
bone optimizing methods. Moreover, it only supports one
single hand and cannot be applied in the interacting-hand
scenarios that are common in practice.

3. Method

Given a set of multi-view RGB videos capturing a short
pose sequence of a single hand or two interacting hands,
we propose a novel framework named HandNeRF, which is

intended to model the dynamic scene, enabling image ren-
dering of novel hand poses from arbitrary viewing direc-
tions. The overview of HandNeRF is shown in Fig. 2. We
disentangle the pose of both hands using a deformation field
and optimize a shared canonical hand with NeRF (Sec. 3.2).
To ensure the correct depth relationship when compositing
two hands, we further establish depth supervision for den-
sity optimization (Sec. 3.3). Moreover, to mine useful cues
from RGB images for better texture learning, we propose a
feature distillation framework compatible with our efficient
sampling strategy (Sec. 3.4). We will elaborate our method
in the following subsections.

3.1. Preliminary: Neural Radiance Fields

We first quickly review the standard NeRF model [17]
for a self-contained interpretation. Given a 3D coordi-
nate x and a viewing direction d, NeRF queries the view-
dependent emitted color c and density σ of that 3D location
using a multi-layer perceptron (MLP). A pixel color Ĉ(r)
can then be obtained by integrating the colors of N samples
along a ray r in the viewing direction d using the differen-
tiable discrete volume rendering function [17]:

Ĉ(r) =

N∑
i=1

Ti (1− exp (−σiδi)) ci, (1)

where δi is the distance between adjacent samples, and
Ti = exp(−

∑i−1
j=1 σjδj). To further obtain the multi-scale

representation of a scene, Mip-NeRF [1] extends NeRF to
represent the samples along each ray as conical frustums,
which can be modeled by multivariate Gaussians (x,Σ),
with x as the mean and Σ ∈ R3×3 as the covariance. Thus,
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the density and emitted color for a sample can be given by
the NeRF MLP: (x,Σ,d) → (c, σ).

3.2. Modeling Pose-Driven Interacting Hands

The conventional NeRF is optimized on a static scene
and lacks the ability to model hands with different poses.
Therefore, for pose-driven hands modeling, we introduce
a pose-conditioned deformation field that warps the ob-
serving rays passing through both hands to a shared space,
where a static NeRF is established for one canonical hand.
Canonical hand representation. We model the geometry
and texture of hands with a neural radiance field in a pose-
independent canonical space. Considering the multi-scale
distribution of observers in practice, a cone-tracing archi-
tecture similar to Mip-NeRF [1] is adopted. To be specific,
two MLPs denoted by FΘσ

and FΘc
output the density σ

and emitted color c of the queried 3D sample, respectively:

σ = FΘσ
(IPE (xcan,Σ)) = FΘσ

(fσ) , (2)
c = FΘc

(PE (d) , fσ, ℓc) , (3)

where xcan is the sample coordinate in the canonical space,
PE(·) is the sinusoidal positional encoding in [17], IPE(·)
is the anti-aliased integrated positional encoding proposed
by [1], and ℓc is a per-frame latent code to model subtle tex-
ture differences between frames. Definitions of other nota-
tions are consistent with those in Sec. 3.1.
Deformation field. Given an arbitrary hand pose, the
deformation field is intended to learn a mapping from
that observation space to a canonical space shared by all
posed hands. Without any motion priors, it is an ex-
tremely under-constrained problem to model the deforma-
tion field as a trainable pose-conditioned coordinate trans-
formation jointly-optimized with NeRF [13,27]. Therefore,
we follow previous works on NeRF for dynamic human
body [11, 25, 37, 40] to leverage the parameterized human
priors. Specifically, to establish a pose-driven deformation
field, HandNeRF follows the settings of MANO [31] with
the 16 hand joints, the pose parameters p ∈ R16×3 (axis
angles at each joint), the canonical (mean/rest) pose p, and
the blend skinning weight wb ∈ R16. Similar to many clas-
sic mesh-based methods, MANO uses linear blend skinning
(LBS) to accomplish skeleton-driven deformation for mesh
vertices. It models the coordinate transformation between
poses as the accumulation of joints’ rigid transformations
weighted by the blend weight wb.

HandNeRF employs such skeleton-driven transforma-
tion as a strong prior for the deformation field. Given a
pose p and a 3D sample xob from the observation space,
we obtain the posed MANO mesh and query the near-
est mesh facet for xob. The queried blend weight wb =
[wb,1, . . . , wb,16] is then calculated by barycentric interpo-
lating those of corresponding facet vertices. Thus, a coarse
deformation can be expressed by

x̂can = T (xob,p) = (

16∑
j=1

wb,jTj)xob, (4)

where Tj ∈ SE(3) is the observation-to-canonical rigid
transformation matrix of each joint.

Due to the inevitable errors caused by the interpolation
and the parameterized model itself, we introduce an ad-
ditional pose-conditioned error-correction network denoted
by FΘe to model the non-linear deformation as a residual
term for x̂can. In this way, the deformation field can cap-
ture pose-specific details beyond the mesh estimation while
preserving the generalizability of the canonical hand.

To enable the complementation of geometry and texture
for left and right hands in textureless or rarely-observed
areas during training, we propose a unified modeling of
canonical space for both hands. Since the pose parameters
and canonical pose of two hands are defined differently in
MANO, we introduce a hand mapping module denoted by
ψ(·) in practice to align the left hand with the right one.
Formally, the deformation field (illustrated in Fig. 2, right)
can be expressed by

xcan = ψ (x̂can + FΘe
(ψ (x̂can) , ψ (p))) . (5)

Note that different from previous works [25, 32] relying on
per-pose latent code to guide the deformation, we use pose
representation instead, ensuring robustness to unseen poses.
Sampling and composition strategy. Based on the esti-
mated parameterized hand mesh, it is convenient to obtain
the coarse scene bounds of both 3D space and 2D image.
The 2D image bounds serve as a pseudo label of the fore-
ground mask, which guides the pixel (ray) sampling. For a
high-resolution training image, we perform ray-tracing on
only 1% of the pixels, mainly focusing on the foreground.
Since the target hand covers only a small area of a typical
image, such an unbalanced pixel sampling strategy ensures
that more importance is attached to the texture of the target
hands, and also significantly speeds up the training.

Meanwhile, the 3D scene bounds help to determine the
near and far bounds for a camera ray, along which N 3D
samples are evenly selected. In order to render two interact-
ing hands while the canonical NeRF only models a single
hand, we have to perform object composition before vol-
ume rendering. Instead of introducing an extra composition
operator (e.g., density-weighted mean of colors [19]), we
argue that for each pixel, sampling twice within both hands’
own bounds is more reasonable for non-transparent targets
without clipping. Specifically, a straight observing ray is
warped with two different solutions produced by the defor-
mation field, depending on the corresponding poses of two
hands. The colors and densities of the two sets of deformed
samples are produced by the shared canonical NeRF, and
then re-sorted based on their depth values. Finally, we inte-
grate over all the samples belonging to the same ray using
Eq. (1) and obtain the final pixel color.
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3.3. Depth-Guided Density Optimization

The conventional NeRF is susceptible to visual overfit-
ting when given insufficient training views [6]. That is,
even if the scene geometry (density) fails to be correctly ex-
tracted, the rendered images from specific camera views can
still be fine. However, these seemingly fine color results oc-
cur only on training views and will collapse for novel view
synthesis. This will become a catastrophe in our task with
sparse training views. Worse still, our composition strategy
for interacting hands will exhibit poor performance with-
out a relatively accurate geometry prediction. Obviously,
the rendering quality of complex poses such as interlocking
hands relies highly on a correct depth relationship.

To address this issue, we establish 2D depth supervision
on the optimization of 3D density. Recent works [6, 30]
introduce depth constraints to NeRF by running structure-
from-motion (SFM) preprocessing to produce sparse 3D
point clouds that function as depth labels. Unlike those
works, we leverage the parameterized hand model estimated
in Sec. 3.2 at a lower cost. Once the posed hand mesh is ob-
tained, the depth of each pixel from a specific view is freely
available as a byproduct. We then use it to build a pseudo
depth map as the ground truth for the training view. Mean-
while, the pixel-wise depth estimated by NeRF can be de-
rived with volume rendering. For N samples along a ray r,
we denote their depth values as {t1, t2, . . . , tN}. Then we
integrate these values with the same weights as Eq. (1):

Ẑ(r) =

N∑
i=1

Ti (1− exp (−σiδi)) ti, (6)

where Ẑ(r) is the estimated depth value of a specified ray.
Our objective is to minimize the difference between

Ẑ(r) and the target depth map Z(r). While SFM-based
depth-supervised methods aim at minimizing the KL diver-
gence [6] or a Gaussian negative log likelihood term [30]
on the depth, we deem it more reasonable to regularize the
pixel-wise smooth L1 distance in HandNeRF. That is be-
cause unlike sparse point clouds with noise, our mesh-based
pseudo depth naturally maintains the surface consistency.

3.4. Neural Feature Distillation

In a conventional NeRF pipeline, the multi-view train-
ing images are only used for independent pixel-wise super-
vision. However, with such a vanilla training framework,
artifacts and blurs can often be observed in our task for un-
seen views or poses with sparse training views. Besides,
the model is prone to local optimum on some training se-
quences due to the miniature visible hand in specific views.
All these phenomena call for the re-usage of training im-
ages to give attention to the spatial context of individual
pixel and impose more constraints on color learning.

Unlike image-based extensions [36, 39] for NeRF that
directly feed pixel features learned with a jointly-optimized

feature extractor into the color fields, we adopt a more effi-
cient and general method — neural feature distillation. Our
objective is to align the 2D image features, produced by
a pre-trained extractor, with the corresponding sample fea-
tures defined in 3D space. Therefore, contextual cues can
be implicitly introduced to the optimization of color field,
owing to the receptive field of the feature extractor.

Specifically, we adopt a cross-domain student-teacher
paradigm, where features of a 2D teacher network are dis-
tilled into a 3D student network. Instead of learning an ex-
tra neural feature field as in N3F [34], we make the NeRF
output a color feature fc ∈ RD, where D is the number of
feature channels. fc is derived from the viewing direction
d and the density feature fσ , as an intermediate product of
the color field in Eq. (3). Then fc of all samples along the
sampled ray is integrated using volume rendering (Eq. (1))
to produce a pixel-wise feature F̂(r). As for the 2D teacher
network, we choose the self-supervised extractor DINO [2]
built based on vision transformer. Note that other popu-
lar image feature extractors [3, 9] can also be applied in
our framework. The target image feature is extracted from
the second layer of the pre-trained DINO using the publicly
available weights, which is meant to focus on texture details
rather than high-level semantics. It is then L2-normalized
and reduced to D dimensions with PCA before distillation,
yielding the target pixel feature F(r).

3.5. Training

Loss function. Following [17], the main loss for optimiz-
ing the NeRF network parameters Θσ and Θc is applied di-
rectly between the rendered pixel color Ĉ(r) and the ground
truth C(r):

Lrgb =
∑
r

∥C(r)− Ĉ(r)∥22. (7)

As mentioned in Sec. 3.3, we propose an extra constraint
on Θσ , regularizing the pixel-wise distance between the
rendered depth Ẑ(r) and the target pseudo depth Z(r):

Ldepth =
∑
r

SLL(Z(r)− Ẑ(r)), (8)

where SLL(·) is the smooth L1 loss.
As interpreted in Sec. 3.4, the neural distillation is per-

formed on the color feature F̂(r) to achieve cross-domain
alignment:

Ldst =
∑
r

∥F(r)− F̂(r)∥22. (9)

Note that Lcolor, Ldepth and Ldst are also back propagated
to update parameters of the deformation field, Θe.

Besides, we add a regularizer for the error-correction
term of each sample x in the deformation field (Eq. (5)),
so that the non-linear deformation is minor and does not
degrade the generalizability for unseen poses:

Ldfm =
∑
x

∥FΘe (ψ (x̂can) , ψ (p)) ∥2. (10)

21082



Additionally, to mitigate the semi-transparent geometry
and the misty halo around the target hand, we apply the hard
surface loss similar to [29], encouraging the weight of each
sample in volume rendering to be either 1 or 0:

Lhs =
∑
x

− log(e−|wv| + e−|1−wv|), (11)

where wv = Ti (1− exp (−σiδi)) is the weight in Eq. (1).
Moreover, we observe that on some sequences, our

model is prone to a local optimum where all pixels on the
target hands are converged to the same mean color. We have
to impose stronger regularization for samples that are closer
to the mean. To this end, a color variance loss is proposed:

Lcvar = SLL(Var({C})−Var({Ĉ})), (12)

where Var(·) calculates the biased sample variance.
Overall, the final loss is given by

L =Lrgb + λdepthLdepth + λdstLdst+

λdfmLdfm + λhsLhs + λcvarLcvar.
(13)

Pose generalization and adaptation. Once trained, our
model is able to produce full-resolution images for novel
poses as well as novel views. Due to our design of fully
manipulable pose input, rendering animatable interacting
hands is as simple as feeding the desired pose parameters
into HandNeRF. The mesh priors and our canonical hand
model ensure the generalizability for out-of-distribution
poses. Nevertheless, if the training pose sequences are
too homogeneous, HandNeRF may still fail to disentan-
gle pose-specific shapes (e.g., the tense muscles) from the
canonical geometry, resulting in conspicuous artifacts for
novel poses. Fortunately, our framework can be conve-
niently modified into a fine-tuning pipeline for pose adapta-
tion. Specifically, we disable the feature distillation branch,
freeze the parameters of NeRF, and fine-tune the deforma-
tion field. Only the depth and the deformation loss are used
in this stage. No ground-truth RGB image is needed, as
the depth map can be derived directly from pose parame-
ters. After pose adaptation on a few samples, the rendered
images will have much fewer artifacts and geometric errors.

4. Experiments
4.1. Experimental Settings

Dataset and preprocessing. HandNeRF is trained on the
30FPS version of Interhand2.6M [18] that contains large-
scale multi-view sequences of various hand poses. Each se-
quence contains images (512 × 334 px) of a single hand or
interacting hands from dozens of views. 18 common views
are selected as the test views. Intra-sequence test is to eval-
uate the novel view synthesis quality, while cross-sequence
test is to evaluate the novel pose rendering quality.

Baselines. HandNeRF is the first NeRF model designed
for photo-realistic novel view/pose image synthesis of in-
teracting hands, thus no method is available for direct com-
parison. Therefore, we develop three baselines inspired by
works that explore NeRF for human body. 1) Pose-NeRF:
we modify Mip-NeRF [1] to learn a NeRF conditioned on
pose; 2) Ani-NeRF: we adapt [25] to the setup of human
hands; 3) NeuMan: we re-implement the “Human NeRF”
module of [11] on the settings of hands while preserving its
various training losses. We do not include LISA [4] because
its source code and customized datasets are unavailable for
a fair comparison. Since all the above baselines are for one
single articulated object only, we extend them with the pro-
posed composition strategy in HandNeRF to integrate two
independent canonical models for both hands.
Metrics. Following previous works, we evaluate the syn-
thesized results with peak signal-to-noise ratio (PSNR),
structural similarity index (SSIM), and learned perceptual
image patch similarity (LPIPS). To show the effect of our
proposed depth supervision, we additionally provide the av-
erage L1 error for the rendered depth map (DE), represent-
ing the quality of geometric reconstruction to some extent.

4.2. Comparison Results

Tab. 1 and 2 summarize the performance of HandNeRF
and the baselines. Qualitative results are exhibited in Fig. 3.
Novel view synthesis. We train the model on a single se-
quence with 4, 7, or 10 views to show the effect of view
quantity. As presented in Tab. 1, our method outperforms all
the baselines across all metrics. Notably, training a model
only with interacting hands samples is a non-trivial task,
since it involves self-occlusion, incompleteness of visible
texture, and subtle contacts during interaction. Therefore,
the superiority of our proposed unified modeling can be ev-
idently observed from the results. Even trained with ex-
tremely sparse views, HandNeRF can still achieve 29dB for
interacting hands in terms of PSNR. For comparison, Neu-
Man [11] fails to converge properly on interacting hands,
rendering mask-like textureless images. Similar issue also
arises during the training of HandNeRF, but we manage to
resolve it with the proposed color variance loss. Besides,
we can observe some semi-transparent mist floating around
the rendered hand in some methods’ results (Fig. 3), which
proves the effectiveness of the proposed depth-guided den-
sity optimization in HandNeRF.
Novel pose synthesis. We first directly test the learned
model on an unseen sequence. Then we apply pose adap-
tation for those novel poses and re-test the performance.
Three different tasks are included, where the learned model
of single hand or interacting hands is generalized or adapted
to both hand types. Obviously, it is most challenging to
render novel poses for interacting hands when the learned
model is also trained on interacting hands. As shown in
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Figure 3. Qualitative performance comparison. We present the results of both novel view rendering (first two rows) and novel pose
adaptation (last two rows). All models are trained with 10 different camera views. Pose adaptation results for interacting hands (last row)
are produced with models pre-trained on one single hand.

4 views 7 views 10 views
PSNR ↑ SSIM ↑ LPIPS ↓ DE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ DE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ DE ↓

Single hand
Pose-NeRF 27.0855 0.9355 0.0921 0.1517 29.2643 0.9301 0.0704 0.1855 29.2126 0.9397 0.0739 0.1910
Ani-NeRF 30.2606 0.9589 0.0704 0.1700 31.6422 0.9632 0.0581 0.1623 31.7784 0.9684 0.0621 0.1582
NeuMan 30.3428 0.9596 0.0691 0.1685 31.2364 0.9623 0.0573 0.1617 31.8419 0.9702 0.0552 0.1507

Ours 31.0493 0.9655 0.0588 0.1278 31.8556 0.9691 0.0459 0.1238 32.7036 0.9742 0.0375 0.1210
Interacting hands

Pose-NeRF 25.0193 0.8745 0.1873 0.2604 27.2416 0.9014 0.1381 0.2464 27.6461 0.9162 0.1071 0.2312
Ani-NeRF 28.0323 0.9414 0.0865 0.2260 28.8543 0.9440 0.0841 0.2187 29.3577 0.9491 0.0798 0.2118
NeuMan × × × × × × × × × × × ×

Ours 29.0351 0.9555 0.0841 0.1861 30.0691 0.9624 0.0818 0.1863 30.7571 0.9568 0.0724 0.1864

Table 1. Performance comparison on novel view synthesis. “×” means the model does not converge properly on one or more training
sequences. Our method achieves the best rendering quality across all scenes, even only trained with extremely sparse views.

Tab. 2, HandNeRF gives the best performance in both pose
generalization and further adaptation for all tasks. Note
that the training texture details (usually different from test
hands) are preserved in novel pose synthesis, and we do not
further optimize color in pose adaptation. Therefore, it is
not surprising that pixel-wise metrics like PSNR drop sig-
nificantly for novel poses. As a perceptual metric, LPIPS is
considered to be more meaningful here.

4.3. Ablation Study

We conduct ablative experiments to validate the effec-
tiveness of two essential components in our HandNeRF:
the depth-guided density optimization and the neural fea-
ture distillation. The results are listed in Tab. 3. We also
provide more details of the synthesized images in Fig. 4.
Depth supervision. We ablate our depth supervision

and compare it with GNLL (Gaussian negative log likeli-
hood) [30]. We observe dramatic performance degradation
and blurred interfacial areas without depth guidance. Al-
though overfitting to training views, the model fails to infer
correct depth when rendering from novel views, let alone
compositing both hands for unseen poses. This can be fur-
ther proved by its noisy depth map. Besides, as mentioned
in Sec. 3.3, GNLL is more suitable for depth values pro-
duced by noisy point clouds. When applied to our mesh-
based depth map, it leads to artifacts near hand geometry.

Neural distillation. We replace the image features pro-
duced by our pre-trained teacher with the same-shaped ran-
dom vectors. The results in Tab. 3 show that HandNeRF
actually exploits the texture information from the low-level
features. The performance improvement does not come
from the effect of regularization.
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PSNR ↑ SSIM ↑ LPIPS ↓ DE ↓
Single hand → Single hand

Pose-NeRF 23.0118 / — 0.8959 / — 0.1454 / — 0.1985 / —
Ani-NeRF — / 25.0533 — / 0.9317 — / 0.0742 — / 0.1596
NeuMan 25.0254 / 25.8456 0.9258 / 0.9324 0.0955 / 0.0608 0.1605 / 0.1321
Ours 26.5088 / 27.9717 0.9345 / 0.9532 0.0911 / 0.0576 0.1435 / 0.1279

Single hand → Interacting hands
Pose-NeRF 21.1971 / — 0.8344 / — 0.1959 / — 0.2137 / —
Ani-NeRF — / 23.9512 — / 0.9218 — / 0.0934 — / 0.1800
NeuMan 24.0815 / 24.9451 0.9104 / 0.9283 0.1203 / 0.0951 0.1766 / 0.1626
Ours 25.4666 / 26.5207 0.9180 / 0.9348 0.1162 / 0.0897 0.1652 / 0.1601

Interacting hands → Interacting hands
Pose-NeRF 19.8561 / — 0.8468 / — 0.2321 / — 0.1954 / —
Ani-NeRF — / 23.0223 — / 0.8928 — / 0.1465 — / 0.2221
NeuMan × / × × / × × / × × / ×
Ours 23.6411 / 24.8599 0.8945 / 0.9152 0.1315 / 0.0858 0.1835 / 0.1802

Table 2. Performance (generalization / adaptation) comparison
on novel pose synthesis. “—” means the method is inapplicable
for that setup. “×” means the model does not converge properly on
previous training. The hand types on both sides of “→” indicate
the NeRF training samples and novel pose samples. Since Ani-
NeRF [25] cannot directly generalize to unseen poses, we report
its pose adaptation performance after re-training with blend weight
consistency. Due to the local optimum results of NeuMan [11] on
interacting hands, we exclude it in those comparisons.

PSNR ↑ SSIM ↑ LPIPS↓ DE ↓
w/o Ldepth 30.1057 0.9528 0.0755 0.2106
w/ GNLL 30.4304 0.9552 0.0845 0.1852
Ours 30.9256 0.9570 0.0700 0.1840
w/o distillation 32.8421 0.9720 0.0488 0.1361
random distillation 32.7892 0.9712 0.0506 0.1361
w/ CNNRenderer 31.6366 0.9703 0.0493 0.1362
w/ TransRenderer 31.3229 0.9680 0.0479 0.1364
Ours 33.0204 0.9737 0.0475 0.1360

Table 3. Ablation study. Experiments about depth supervision are
performed on interacting hands, while the results of neural distil-
lation and neural renderer are produced on one single hand.

Neural renderer. To get better rendering results, some
works [10,19] propose a neural renderer alongside the con-
ventional volume rendering. Technically, they increase the
number of channels of emitted color to model the more ex-
pressive color features with NeRF, which are integrated us-
ing volume rendering to produce a feature map. Then 2D
neural networks are adopted to render the final RGB im-
age. However, due to our efficient ray sampling strategy
(Sec. 3.2), only a few sampled pixels are available during
training, resulting in an incomplete feature map. Since full-
resolution ray-tracing has an unacceptable overhead, a com-
promised solution is to produce a much smaller feature map
and perform upsampling in the neural renderer, at a cost
of NeRF’s expressive power, especially for high-frequency
details on small targets like hands. To compare with those
neural renderers, we follow [10] to feed a low-resolution
2D feature map into a modified version of its neural render-
ing module composed of CNN and upsampling layers. We
also develop a TransRenderer that uses the transformer for
pixel-wise neighborhood attention. It can be observed in
Fig. 4 that the CNNRenderer produces a visually smoother

Ground TruthOursw/o depth

Ground TruthOursw/ TransRendererw/ CNNRenderer

w/ GNLL

Figure 4. Visualization of ablation study. We exhibit rendering
results and zoomed-in details of ablations for depth supervision
(upper) and neural renderer (lower). Additionally, the rendered
depth maps are shown in the first row.

image but degrades the quantitative results, while the Tran-
sRenderer tends to fuse hand skin with background noise.

5. Conclusion

In this paper, we propose HandNeRF, a novel framework
that reconstructs photo-realistic appearance and geometry
of single or interacting hands with pose-deformable neu-
ral radiance fields. By developing several elaborate strate-
gies including depth-guided density optimization and neu-
ral feature distillation, our method can effectively handle
non-trivial challenges in complex hand interactions (e.g.,
self-occlusion and invisible texture). We thereby enable the
rendering of high-fidelity images and videos for gesture an-
imation from arbitrary views. Comprehensive experiments
on the large-scale InterHand2.6M dataset demonstrate the
superiority of our approach.
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