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Figure 1. Up-converting SDR content for HDR-WCG TV display. To ensure better viewing experience [1], we use (1) 3D Yxy chro-
maticity diagram (vertical axis Y for HDR/lumiannce, xy plane for WCG/color) to see how HDRTV’s advance on HDR&WCG volume is
recovered, and (2) detailed visuals (yellow and blue boxes) to assess method’s recover ability. Note that HDR is dimer here in print version
since its large luminance&color container is interpreted by small SDR capacity, and will appear normal if correctly visualized (top Fig.7).
Still, from (3) ‘Brightness Index’ & ’Saturation Level’ we know that result from current methods is more dim and desaturated than GT.

Abstract

In media industry, the demand of SDR-to-HDRTV up-
conversion arises when users possess HDR-WCG (high dy-
namic range-wide color gamut) TVs while most off-the-shelf
footage is still in SDR (standard dynamic range). The re-
search community has started tackling this low-level vision
task by learning-based approaches. When applied to real
SDR, yet, current methods tend to produce dim and desat-
urated result, making nearly no improvement on viewing
experience. Different from other network-oriented meth-
ods, we attribute such deficiency to training set (HDR-
SDR pair). Consequently, we propose new HDRTV dataset
(dubbed HDRTV4K) and new HDR-to-SDR degradation
models. Then, it’s used to train a luminance-segmented
network (LSN) consisting of a global mapping trunk, and
two Transformer branches on bright and dark luminance
range. We also update assessment criteria by tailored met-
rics and subjective experiment. Finally, ablation studies are
conducted to prove the effectiveness. Our work is available

at: https://github.com/AndreGuo/HDRTVDM.

1. Introduction

The dynamic range of image is defined as the maxi-
mum recorded luminance to the minimum. Larger lumi-
nance container endows high dynamic range (HDR) a bet-
ter expressiveness of scene. In media and film industry, the
superiority of HDR is further boosted by advanced electro-
optical transfer function (EOTF) e.g. PQ/HLG [2], and wide
color-gamut (WCG) RGB primaries e.g. BT.2020 [3].

While WCG-HDR displays are becoming more readily
available in consumer market, most commercial footage is
still in standard dynamic range (SDR) since WCG-HDR
version is yet scarce due to exorbitant production workflow.
Hence, there raise the demand of converting vast existing
SDR content for HDRTV service. Such SDR may carry ir-
reproducible scenes, but more likely, imperfections brought
by old imaging system and transmission. This indicates that
SDR-to-HDRTYV up-conversion is an ill-posed low-level vi-
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sion task, and research community has therefore begun in-
volving learning-based methods ( [4-9] efc.).

Yet, versatile networks they use (§2.1), we find current
methods’ result dim and desaturated when feeding real SDR
images (Fig.1), conflicting with the perceptual motive of
SDR-to-HDRTYV up-conversion. As reported by CVPR22-
Ist Workshop on Vision Dataset Understanding [10], most
methods are network-oriented and understate the impact of
training set. For restoration-like low-level vision, there are
2 ingredients of a training set: the quality of label GT itself,
and the GT-to-LQ degradation model (DM) i.e. what the
network learns to restore. Such neglect is getting remedied
in other low-level vision tasks [ | |-16], but still pervasive in
learning-based SDR-to-HDRTYV up-conversion.

Not serendipitously, we find dataset the reason why cur-
rent methods underperform. We exploit several HDRTV-
tailored metrics (Tab.4) to assess current training set:(1) by
measuring label HDR’s extent of HDR/WCG etc. (Tab.5),
we notice that its quality and diversity are inadequate to in-
centive the network to produce appealing result, (2) via the
statistics of degraded SDR, we find current HDR-to-SDR
DMs’ tendency to exaggeratedly alter the saturation and
brightness (see Tab.6) thus network will learn a SDR-to-
HDR deterioration. Hence, we propose HDRTV4K dataset
(§3.2) consisting of high-quality and diversified (Fig.4)
HDRTV frames as label. Then exploit 3 new HDRTV-to-
SDR DMs (§3.3) avoiding above insufficiency, meanwhile
possessing appropriate degradation capability (Tab.6) so the
network can learn reasonable restoration ability.

Afterwards, we formulate the task as the combination of
global mapping on the full luminance range and recovery
of low/high luminance range. Correspondingly, we propose
Luminance Segmented Network (LSN, §3.1) where a global
trunk and two Transformer-style UNet [ | 7] branches are as-
signed to respectively execute divergent operations required
in different segmented luminance ranges (areas).

Lastly, as found by [18, 19], conventional distance-based
metrics well-performed in solely-reconstruction task (e.g.
denoising) fail for perceptual-motivated HDR reconstruc-
tion, we therefore update the assessment criteria with fine-
grained metrics (§4.2) and subjective experiment (§4.3) etc.

Our contributions are three-fold: (1) Emphasizing & ver-
ifying the impact of dataset on SDR-to-HDRTYV task, which
has long been understated. (2) Exploiting novel HDRTV
dataset and HDR-to-SDR degradation models for network
to learn. (3) Introducing new problem formulation, and ac-
cordingly proposing novel luminance segmented network.

2. Related Works

2.1. Nomenclature and our scope

Plenty of HDR-related learning-based methods [20] have
been proposed, yet, they markedly differ in intended appli-

cation. As in Tab.1, ‘linear HDR’ means scene-referred
HDR images dedicating to record the linear radiance for
graphics application e.g. image-based lighting [21,22], and
‘HDRTV’ stands for our display-referred WCG-HDR [2]
format. Clearly, (I) synthesize HDR view on SDR display,
@) emphasize dealing with misalignment between multiple
SDRs and is designed for new imaging pipeline, while 3
and @ are all oriented for existing SDR, but for different ap-
plication. Since many works are proposed before commu-
nity’s clarity on above nomenclature, we classify a method
as SDR-to-HDRTYV up-conversion (@), our task) if its target
HDR is claimed in PQ/HLG EOTF and BT.2020 WCG.

Task name From To single Methods
@ erlfh]z:fc:ziit S;Bgll{e e“?ﬁ’ﬁe‘i e.g. [23-26]
@ E‘S%?ﬁi‘;i‘;f e e
% SllTll\_[Il*)];: single |y e'g'[[,_] J
(ours) up-convertion SDR frame [38-53]

*: SI-HDR: Single-Image HDR reconstruction, iTM: inverse Tone-Mapping.

Table 1. Various learning-based HDR-related tasks. Green/cyan/
magenta terms are respectively from [18]/our/ [7] nomenclature.

In our scope (@), methods designed their networks with
distinct philosophy: Except e.g. semantic-requiring high-
light recovery, main process of our task belongs to global
mapping resembling image retouching/enhancement. Fol-
lowing this, [7] formulates the task as 3 steps and use 1 x 1
convolution for global part, [43] learn the mapping between
small sorted image patches, while [51] conducts explicitly-
defined per-pixel mapping using the learned latent vector.

Feature modulation is also popular to involve global
prior information. Compared with [7], they change: prior’s
type [47,49], modulation tensor’s shape [48—50], modula-
tion mechanism [9] and modulation’s position [50].

To coordinate consecutive video frames, [42] applies 3D-
convolution with extra temporal-D, [8] take 3 frames as in-
put and deploy multi-frame interaction module at UNet bot-
tleneck. Also, for alignment, [44,49] use deformable convo-
lution whose offset map is predicted by different modules.

Due to the resolution discrepancy between SDRTV and
HDRTYV, some methods [4-0, 46, 48, 52] jointly conduct
super-resolution and up-conversion. Also, some methods
are assisted by non-learning pre-processing [53] or bypass
[43,45], while [41] is trained for badly-exposed SDR.

2.2. HDRTYV dataset

Diversified networks they use, there’re currently only 3
open HDRTYV training set (Tab.2). All datasets (including
ours) contain HDRTV frames in (D65 white) BT.2020 [3]
RGB primaries (gamut), PQ [54] EOTF and 1000n:t peak
luminance, and SDR counterpart in BT.709 [55] gamut,
gamma EOTF and 100nit peak luminance.
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Dataset (Usage) #pair Resolution HDR format
KAIST [4] ([5,48,52]) 39840 160 x 160 uint16 MATLAB .mat YUV
Zeng20 [0] 23229 UHD H.265 mainl0 YUV
HDRTVIK [7] ([9,47,50]) 1235 16bit .png RGB
HDRTV4K (ours new) 3878 HD&UHD 16bit lossless .tif RGB

Table 2. Status of different HDRTV dataset: training set part. Our
HDR frames sized both HD (1920x 1080) and UHD (3840x2160)
are manually chosen from >220 different videos clips, and encap-
sulated in lossless (LZW or deflate) TIFF. Others are respectively
extracted from only 7 [4]/18 [7] TV demos and 1 graded movie [6],
their quality and diversity are quantified later in Tab.5 & Fig.4.

2.3. HDRTV-to-SDR degradation model

Most methods follow the common practice to degrade la-
bel HDR(GT) to input SDR(LQ). Degradation model (DM)
matters since it determined what network can learn, and is
relatively paid more attention even in SI-HDR [16, 33, 35].
Yet, few discussion is made in SDR-to-HDRTV (Tab.3):

DM YouTube Reinhard other DMs
Usage [4,5,7-9,40,44,46-50, [6,38,41-43] 2446a [15]
Dataset KAIST & HDRTVIK Zeng20 efc. [51,53,56]

Table 3. Current HDRTV-to-SDR degradation models (DMs).
‘Dataset’ means SDR there is degraded from HDR using that DM.

Youtube stands for the default conversion YouTube
applied to BT.2020/PQ1000 HDR content to produce
its SDR-applicable version, Reinhard/2446a means tone-
mapping HDR to SDR using Reinhard TMO [57]/BT.2446
[58]Method A. [51]/ [53]/ [56] respectively degrade HDR to
SDR by grading/Habel TMO/another learned network.

In other restoration tasks [ 1-16], DMs are designed to
have proper extent and diversity of degradation so network
can learn appropriate restore capability and good general-
ization. Accordingly, we argue that current DMs are not fa-
vorable for training. Specifically, the motive of YouTube is
to synthesize HDR view for user possessing only SDR dis-
play, it tends to enhance/increase the brightness and satura-
tion so network will, vise-versa, learn to deteriorate/decline
them. Also, tone-mapping e.g. Reinhard and 2446a dedi-
cate to preserve as much information from HDR, they have
monotonically increasing mapping curves (Fig.5) without
highlight clipping, therefore the trained network is not
likely to recover much information in over-exposed areas.
Above observations are later proven in Tab.6, Fig.1&6 efc.

3. Proposed Method
The overview of our method is illustrated in Fig.2.

3.1. Network structure

Problem formulation helps the researcher to clarify
what degradation the network should restore. Given x the

SDR, y the HDR. Previous methods [7,47, 49] hypothesis
that x and y are from single RAW file of same camera.

This applies to SDR-HDR synchronous production
where x is also of high quality, thus up-conversion (y =
f(x)) is only supposed to follow specific style and recover
less missing information. However, since our method is for
existing SDR, we assume that SDR (x) and it imaginary
HDR counterpart (y) were simultaneously shot by different
camera and later pipeline, similar to [18]. The imperfection
of SDR pipeline makes existing SDR susceptible to limited
latitude, narrow gamut and other degradations (x = d(y)).

Some works [7,35] suppose d(-) are introduced orderly,
and assign hierarchical sub-networks to for f(-). Since cas-
caded networks are bulky for real application, we instead
formulate that specific degradation is more visible in differ-
ent luminance range. Concretely, over-exposure occurs in
high-luminance range in SDR (x},), low-luminance range
(x;) is more susceptible to noise efc., while the quality of
mid-luminance range (X,,) is relatively higher. Segmented
luminance ranges are treated separately by some traditional
up-conversion operators ( [59] etc.), and here we introduce
this idea to our deep neural network (DNN)—LSN:

Luminance Segmented Network (LSN) consist of an
trunk on full-luminance range (x), and 2 branches respec-
tively on x; and x;, which are segmented by:
tTX), xp, = max(0, le +1) @
where x € [0,1]. That is, luminance range lower/higher
than threshold ¢ (empirically set to 0.05) is linearly mapped
to more significant value [0, 1], as in top-right Fig.2.

After segmentation, x, x; and xj, require distinct DNN
operation. First, as found by [7] etc. (§2.1), the majority of
£ () belongs to global (pixel-independent) operation similar
to image enhancement/retouching. Therefore, we assign 5
cascaded receptive-field-free 1 x 1 convolution layers on
full luminance range (x) as the Global Mapping Trunk.
Similar to [7, 9, ], we append a modulation branch
(Fig.3 left) to involve x’s global prior into DNN’s decision.

On the other hand, f(-) still involves non-global restora-
tion where local semantic should be aggregated. Specifi-
cally, DNN’s mission in X; is similar to denoising and low-
light enhancement, while that in xj; resembles image in-
painting (claimed by [60, 61]) where lost content is halluci-
nated. These low-level vision tasks require larger receptive-
filed, we hence choose Transformer blocks [ | 7] specializing
long-distance dependency, and arranged them as encoder-
decoder with skip-connections (UNet). Transformer-style
UNet branches on x; and x;, share the same structure but
different parameters. The detail of LSN is depicted in Fig.3.

3.2. HDRTV4K dataset

x; = max(0,

After designing LSN, we need better training set to un-
leash its capability. We start with the quality of label HDR:
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Figure 2. Overview of this work. Our Luminance Segmented Network (LSN, §3.1) is designed based on novel problem fromulation, then
supervisedly trained with label HDR from the proposed HDRTV4K dataset (§3.2), and input SDR degraded by novel degradation models
(DMs, §3.3). The major concerns of our LSN, HDRTV4K dataset, and DMs are respectively: recovering dark&bright areas, improving
the quality (Tab.5) and diversity (Fig.4) of label GT-HDR, and ensuring the LQ-SDR is with proper style and degradation (Tab.6 & Fig.5).
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Figure 3. Detailed structure of LSN modules. ‘k3s1nl16’ means
convolution layer with 3x3 kernel, stride=1, out nc=16,
and ‘FC32’ is fully-connected layer with out nc=32. We deploy
only 1 Transformer block [17] at each en/decode level of UNet to
lighten LSN (#param=325k) for its application on 4K resolution.

Motivation. In §1, we argue the quality of label HDR in
current datasets. Here, it is assessed from 3 aspects by 10
metrics in Tab.4, based on following considerations:

First, greater extent of HDR/WCG stands more proba-
bility for network to learn pixel in advanced WCG-HDR
volume beyond SDR’s capability. Meanwhile, higher intra-
frame diversity means better generalization the network can
learn within small batch-size, i.e. bigger SI/CF/stdL indi-
cate more diversified high-frequency patterns/richer color
volume/greater luminance contrast for network to learn.

Also, style distillation [51] has become a major contrib-
utor to method’s performance in similar task e.g. image en-
hancement/retouching, we therefore append 3 metrics quan-
tifying the overall-style of label HDR. Note that network’s
learned style will be, substantially, affected more by degra-
dation model (DM) which will be discussed later.

Metrics on the extent of HDR/WCG |
Fraction of HighLight Pixel: Spatial ratio of ‘highlight’ pixel
i.e. whose normalized luminance Y = 0.2627R + 0.6780G
+0.0593B > 0.01 (100nit, SDR’s peak luminance.)
Extent of HighLight: Average pxiel () distance between
the luminance of HDR and its clip-to-100nt version®:

1577 VIV — clip(Yy)]?, clip(x) = clamp(x,0,0.01)
Fraction of Wide-Gamut Pixel: Spatial ratio of WCG pixel i.e.
whose [z, y] coordinates fall inside BT.2020 but outside
SDR’s BT.709 gamut in Y 2y chromaticity diagram.

Extent of Wide-Gamut [62]: Average pixel-distance between
WCG-HDR and its gamut-hard-clipped [63] version?:

L5 |IS; — HC(S)l,, S = [X,Y, 2]"

Metrics on intra-frame diversity |, (all variance-based)
Spatial Information: Standard deviation over the pixels of
Sobel-filtered frame, defined in Annex 6 of [64].
ColorFulness: Defined in [05].
standard deviation of Luminance, over all pixels of a frame.
Metrics on overall-style |,
Average Saturation Level: Normalized pixel-average length
of HDR chrominance component C = [C, Cpp] ™ [66]:
257, 1ICilly, € € [<0.5,0.5]
ALL Average Luminance Level: Pixel-average of Y in FHLP.
HDRBQ HDR Brightness Quantification [67], visual salience involved.
1. EHL is to compensate cases e.g. an all-101m.2¢ HDR frame with 100% FHLP but less extent of highlight.

FHLP

EHL

FWGP

EWG

SI

CF
stdL

ASL

2. You can find the formulation of gamut hard-clipping (F C'(-)) at Eq.5.

Table 4. The quality and diversity of label HDR is measured from
3 aspects by 10 metrics above (both in positive correlation), results
are in Tab.5. See supplementary material for full illustration.

Our work. Statistics in Tab.5 confirms the deficiency of
current datasets, i.e. lower intra-frame diversity, and most
importantly, less extent of HDR/WCG preventing their net-
work from producing true HDR-WCG volume. To this end,
we propose a new dataset HDRTV4K consisting of 3878
BT.2020/PQ1000 (Tab.2) HDR frames with higher quality.

Specifically, these frames are manually extracted and
aligned from various open content ( [68—72] etc.) with
greater extent of HDR/WCG, higher intra-frame diversity
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Metrics Extent of HDR Extent of WCG Intra-frame diversity Overall-style
Dataset FHLP EHL | FWGP EWG SI CF stdLL ASL ALL HDRBQ
KAIST [4] 1.5250  0.2025 | 5.4771 0.1104 | 1.9372 5.9485 0.9597 8.9087 17.2854 1.8597
Zeng20 [6] 0.0197 0.0012 | 0.4792 0.0034 | 0.1231 4.2048 0.3146 3.8061 6.0805 0.3781
HDRTVIK [7] 1.2843 0.1971 | 2.9089 0.1633 | 2.2378 11.0722 1.8006 | 10.9414 15.1626 2.7970
HDRTV4K (ours) 5.3083 0.9595 | 2.6369 0.5123 | 3.5508 10.5882 3.4837 9.8274  21.1996 5.1593

Table 5. Quality of label HDR frames, manifested in the frame-average of 10 metrics from Tab.4. Greater extent of HDR/WCG encourages
network to produce more pixels in non-SDR volume, while intra-frame diversity is helpful for network’s generalization ability. All numbers

are in percentage (%), and we highlight those the most favorable to training. Their diversity is further demonstrated in Fig.4.

and reasonable style (Tab. 5). Note that we re-grade some
original footage using DaVinci Resolve to add some pertur-
bation on the diversity. The thumbnails of our dataset and
its frame distribution comparison are visualized in Fig.4.

(4) UGC

(5) Documentary

(9) Test
Footage

-40 (7) Graded Movie

o (8) Animation
HDRTV4K (ours) . Zeng20

g0 | @ HDRTVIK @ «aisT

Figure 4. Diversity comparison: our HDRTV4K dataset vs. oth-
ers. Here, each 2D-coordinate is the projection of single frame’s
10-D vector (containing 10 metrics from Tab.5) using t-SNE [73]
(exg=3, prep=50). We also depict thumbnail HDR frames from
our dataset (1)-(9) with their corresponding 2D-coordinates high-
lighted with gray circle. As seen, our dataset provides wider frame
distribution i.e. more diversified scenes for network to learn.

3.3. New degradation models

After obtaining label HDR with higher quality, we focus
on degradation model (DM) which determines the restora-
tion network will learn. As claimed in §2.3, current DMs
fail for undue saturation & brightness change and mea-
ger over-exposure degradation, which are verified by ALL,

ASL, FOEP in Tab.6. That is, YouTube/2446a tend to in-
crease/decline both ASL & ALL so network will learn to si-
multaneously de/over-saturate and unduly-darken/brighten.
Also, 2446a and Rienhard provide small FOEP which is
adverse to network ‘s over-exposure hallucination ability.

SDR Degraded by FOEP! ALL ASL? SI CF
Cur- 2446a 0.181 5.880 3.624 6.041 6.573
rent Reinhard 1.264 21.887 7.442 14.147 12.568
DM YouTube 5.439 28219  14.641 18.545 25225
Ours 2446c+GM 1.739 11.669  10.183  12.503 19.391
DM HC+GM 4252 14.062 10377  15.090  20.146

0CI02 1.580 18.887 9.977 13578  18.052
criteriaf: better when kept3 samller kept - -
Sourse HDR (Tab.5)* 5.308 21.200 9.827 3.551 10.588

1. FOEP: Fraction of Over-exposed Pixels: Spatial ratio of pixels whose normalized lumiannce Y= 1.
2. For SDR, ASL is also calculated as Tab.4, but with G = [C,, C] T [55] rather [Cy, Cp] T

3. Assuming that HDR’s highlight (>100m.i£) part should all be clipped to 1 (over-exposure) in SDR.

4. Gy means container discrepancy i.e. HDR/SDR’s metric should be different even for well-degraded SDR.

Table 6. Given label HDR from HDRTV4K dataset, SDR’s statis-
tics alters when degraded by different DMs. Results are in percent-
age, we mark those unfavorable / neutral / beneficial for training
based on the observation in §2.3 & 3.3. As seen, our DMs provide
adequate over-exposure (FOEP) and no undue brightness (ALL)
& saturation (ASL) change for network to learn. Example of dif-
ferent degraded SDR can be found in supplementary material.

This motivate us to utilize/exploit new DMs with proper
extent of degradation and no deficiencies on style:

(1) OCIO2: OpenColorIO v2 [74], commercial method
from BT.2020/PQ1000 HDR container to BT.709/gamma
SDR, implemented by 3D look-up table (LUT) here.

(2) 2446¢+GM: Modified Method C tone-mapping from
Rec.2446 [58], followed by Gamut Mapping. Here, each
HDR encoded value E' = [R', G’, B']T (we use superscript
" for non-linearity) is linearize to E by PQ EOTF, and then
transferred to Yzy. Then Y is globally mapped to Yspr,
while xy are kept and then recomposed with Ysp g to form
Espr and later E Rroo* Our modification lies in:

Yspr = clamp(T Maya6.(Y), 0, 100nit) )

where T May46:(+) € [0, 118nit] is the original global map-
ping curve in [58] (Fig.5 dashed line). That is, we clip the
original output range to 100nit to produce more FOEP,
rather than linear-scale which share same shortcoming with
DM 2446a. Gamut mapping will be introduced in Eq.4&S5.
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Figure 5. One of the key ideas of the proposed degradation mod-
els (DMs, §3.3): HDR’s luminance (left) and color (right) volume
should be properly clipped, so that network will learn correspond-
ing restoration. Another idea is keeping a sensible brightness &
color/saturation style during degradation, please refer to Tab.6.

(3) HC+GM: Hard-Clipping and Gamut Mapping, a
container conversion with SDR part unchanged and all lu-
minance/color in HDR/WCG volume hard-clipped. For lu-
niannce part, we clip all >100n:t pixels to 100n:t:

Espr = 100 x clamp(E,0,0.01), E € [0,1] (3)

where 0.01 correspond to 1007t in normalized linear HDR
E (PQ container), and x100 is to adapt the container dis-
crepancy (nominal peak 1 means 10000nit — 100n:t).

So far, Egpp is still in BT.2020 gamut. Therefore, we
append Gamut Mapping (+GM): First, Color Space Trans-
form (CST) from BT.2020 RGB primaries to BT.709:

Esprooe = MEgpr, M =

—0.1246 1.1329 0.0083 4)

1.6605 0.5876 —0.0728
—0.0182 —0.1006 1.1187

where 3 Espr,oe ¢ [0,1] i.e. out-of-gamut (OOG) pixels
will fall outside valid range after CST to a narrower volume.
Dealing OOG is the key of gamut mapping, instead of soft-
mapping [63,75] (used by [76]’s DM) preserving as much
WCG information to narrow gamut, we use hard-clipping
which clips all OOG pixels to BT.709 boundary (Fig.5):

EsDRqg = clamp(Esproog, 0, 1) )

Then, Egpr.,, from both (2) & (3) is converted to SDR
encoded value Ep, by BT.1886 [77] OETF (approxi-
mate gamma?2.22) and 8bit JPEG compression with QF=80.

Our philosophy lies in that most explicitly-defined op-
erations can be streamlined to a clamp(-) function: Only
when luminance and color volume is clipped, multiple-to-
one mapping occurs in DM, the trained network can learn
corresponding recovery ability. Also, ALL & ASL in Tab.6
show that these DMs produce SDR with reasonable style,
ensuring that network will not learn style deterioration.

4. Experiments

Training detail. For each HDR frame randomly resized
to [0.25x,1x], 6 patches sized 600 x 600 are cropped from

random position. Then, each of 6 x3878 HDR patches is de-
graded to SDR by 1 of the 3 proposed DMs in equal prob-
ability, and again stored in JPEG with QF=75.

All LSN parameters are Kaiming initialized, optimized
by [ loss and AdaM with learning rate starting from 2 x
10~* and decaying to half every 10° iters till 4 x 10°.

4.1. Criteria and configuration

Criteria. Since the destination of SDR-to-HDRTV up-
conversion is human perception, to provide a ‘step-change’
improvement [ 1] of HDRTV than SDRTYV, methods should
be assessed based on if: CI: result is visually-pleasuring,
from both brightness (C1A) & color appearance (C1B) etc.,
C2: HDRTV’s advance on HDR/WCG volume is properly
recovered and utilized, C3: bright and dark areas are re-
covered or at least enhanced and C4: artifacts are avoided.
Yet, as found by [ 18, 19], current distance-based metrics e.g.
PSNR fails, since the main contributor of an appealing score
lies in the accuracy of learned numerical distribution, rather
C1-4. Hence, we use new assessment criteria in Tab.7.

Visuals in Fig.1&6 Metrics in Tab.8 subj. exp. (§4.3)
CIA ALL, HDRBQ overall
CIB ) ASL rating &
Cc3 yellow&blue boxes selection of
C4 detailed visuals attribution
C2 3D Yxy diagram FHL(WG)P, EHL(WG)

Table 7. How each criteria C1-4 is assessed: via detailed visuals,
fine-grained tailored metrics and subjective experiment.

Competitors. As in Tab.8, our method is compared with
6 learning-based methods [4-9], and 2 commercial software
DaVinci and Nuke. Results from joint-SR methods [4—6] are
bilinear downscaled before comparison. Note that learning-
based methods are not re-trained with our dataset since we
treat dataset as a crucial attribution to performance.

Test set. We select 12 4K SDR videos with 10s duration
and 50 fps. 3 of 12 are degraded from HDR-GT counterpart
by YouTube DM (§2.3), the rest 9 are graded from HDR se-
quence No. 2,13,15,20,21,22,42,44,55 in [78]. Experiment
fairness is guaranteed since both DMs (SDR-HDR relation-
ship) in test set are ‘unseen’ by our network (this even gives
a bonus to methods trained with YouTube DM [4,5,7-9]).

4.2. Result

Results from all competitors are shown in Tab.8 & Fig.6.

Metrics. From Tab.8 we know that methods trained with
YouTube DM all tend to produce lower satiation (ASL) and
brightness (ALL&HDRBQ), and their ASL is lower even
than input SDR. Also, SR-ITM-GAN [6] recovers least
HDR&WCG volume since its label HDR (from Zeng20
dataset) is of least extent of HDR/WCG (Tab.5). Note that
current methods produce adequate FWGP, but from 3D Yxy
chromaticity diagram in Fig.6 we known that their WCG

22236



Method how network is trained (recovery rate %, GT is 100%) how HDR/WCG volume is recovered (shift rate %, GT is 0%) overall-style conventional metrics

(network) dataset (GT) | DM FHLP EHL FWGP EWG ASL ALL HDRBQ PSNR SSIM AE 'VDP3
Input SDR - 0 0 0 0 6.570 10.76 - 23.92dB 0.8861 44.97 6.571
Deep SR-ITM [1] | KAIST YouTube (14.03)0.2323 (9.70)0.372 (175.2)1.0964 (71.96)0.172 (-20.33)5.485 (-15.06)9.580 (-72.80)1.428 26.59dB 0.8115 3254 6917
JSI-GAN [5] (12.33)0.2041 (3.55)0.136 (213.1)1.3334 (88.23)0.212 (-16.62)5.741 (-14.36)9.659 (-79.20)1.092 27.87dB 0.8420 30.23 7.452
SR-ITM-GAN [0] Zeng20 Reinhard (8.04)0.1332 (14.33)0.550 (00.00)0.0000 (00.00)0.000 (-7.04)6.400 (-30.37)7.853 (-57.12)2.251 28.04dB 0.8831 2478 6.707
HDRTVNet [7] HDRTVIK (18.59)0.3078 (16.29)0.625 (388.8)2.4334 (28.82)0.069 (-15.51)5.817 (-13.47)9.759 (-69.65)1.593 30.82dB 0.8812 27.58 8.120
KPN-MFI %] own YouTube (1.17)0.0193 (0.02)0.001 (392.9)2.4592 (15.82)0.038 (-21.74)5.388 (-16.10)9.462 (-82.47)0.920 29.37dB 0.8746 27.47 7.785
FMNet [9] HDRTVIK (13.67)0.2264 (12.35)0.474 (396.5)2.4813 (91.29)0.220 (-16.91)5.770 (-13.48)9.758 (-71.24)1.510 30.91dB 0.8855 27.16 8.069
LSN (ours) HDRTV4K ours X 3 (256.6)4.2509 (71.96)2.599 (109.8)0.6873 (150.0)0.361 (+9.25)7.522 (+81.12)20.42 (-27.04)3.829 24.47dB 0.8310 37.84 8.130
DaVinci (54.96)0.9103 (43.16)1.655 (310.0)1.9399 (85.22)0.205 (-21.36)5.414 (-21.42)8.863 (-39.23)3.190 26.39dB 0.8918 35.47 8.528
Nuke - (112.1)1.8565 (24.70)0.384 (00.00)0.0000 (00.00)0.000 (-27.53)4.990 (+17.93)13.30 (-51.19)2.562 20.87dB 0.7273 64.29 7.479

HDR-GT (ref.) I (100.0)1.6562 (100.0)3.835 (100.0)0.6258 (100.0)0.240 (0.00)6.885 (0.00)11.28 (0.00)5.248 - - - -

ablation studies |

HDRTV4K YouTube (13.09)0.2168 (6.63)0.254 (401.3)2.5118 (59.81)0.144 (-14.68)5.874 (-13.46)9.760 (-76.89)1.213 30.15dB 0.8858 28.04 7.902
LSN (ours) HDRTV4K Reinhard (9.06)0.1501 (19.14)0.734 (00.00)0.0000 (00.00)0.000 (-5.74)6.490 (-25.65)8.387 (-52.84)2.475 27.70dB 0.8436 26.03 6.832
Zeng20 ours X 3 (109.6)1.8147 (9.00)0.345 (0.95)0.0593 (0.76)0.002 (+3.36)7.117 (+66.64)18.79 (-59.52)2.124 25.17dB 0.8179 28.58 7.874
HDRTVIK ours X 3 (177.5)2.9405 (52.49)2.013 (279.5)1.7494 (70.43)0.169 (+6.56)7.337 (+52.30)17.18 (-34.83)3.420 24.30dB 0.8351 38.03 8.002

Table 8. Metrics. We use fine-grained tailored metrics (column 3-9, defined in Tab.4) to assess criteria C1&2 (§4.1): The more significant
metrics in column 3-6 are, the better HDR&WCG volume is recovered (C2) by specific method. Also, column 8-10 closer with GT stands
for similar brightness&color appearance. Note that we allow column §8-10 slightly bigger than GT, which means result HDR is reasonably
more visual-pleasuring (CI) than GT. Based on this, we highlight those results unfavorable for viewing experience.

Deep SR-ITM ) SR-ITM-GAN HDRTVNet
S s - é 85.91nit ) - ot
|- -~

Saturation (ASL): ., | Brightness (HDRBQ): Saturation (ASL): .. Brightness (HDRBQ): Saturation (ASL):
(-1.55)6.60% 2.26%(-3.33) (-0.79)7.36% 1.53%(-4.06) (-1.76)6.39%

Saturation (ASL): .. Brightness (HDRBQ):
(-1.88)6.27% 1.50%(-4.09)

ar: " Saturation (ASL): Brightness (HDRBQ):
HORBQ 5 5.55% (+1.81)9.96% 1.62%(-3.97)

‘ ASL=8.15%

KPN-MFI ) ) Ours ) Nuke
I’ 734200t 404.13nit -
<A (6T:427.87)

199.86nit

ol ; Ay .
. o )
Brightness (HDRBQ): Saturation (ASL): ., Brightness (HDRBQ): Saturation (ASL): ., Brightness (HDRBQ); . Brightness (HDRBQ): Saturation (ASL): ., Brightness (HDRBQ): Saturation (ASL):
1.63%(-3.96) (-2.04)6.11% . 1.48%(-4.11) 48 (-1.71)6.44% . 5.34%(-0.25) , (+0.04)8.19% . 3.61%(-1.98) (-1.35)6.80% . 4.41%(-1.18) (-0.51)7.64%

more WCG pixels
Jum.

Figure 6. Visuals. We provide comparisons on 3D Yxy chromaticity diagram to assess how HDR/WCG volume is recovered (C2), and
detailed visuals on bright (yellow arrow, with luminance of same pixel indicated) and dark (blue arrow) areas to assess method’s recover
ability (C3). Note that conclusion ‘SDR is more vivid than HDR’ could not be drawn because HDR will appear dimmer than SDR in print
version (explained in Fig.1). We hence turn to ASL & HDRBQ (column 8-10) and later subjective experiment to see if HDR is indeed
dimmer (CI). Comparison on more scenes will be provided in supplementary material.

pixels mainly exists in low luminance range, which means Visuals. Methods’ recover ability is illustrated by Fig.6:
they are of little help to viewing experience. Our method Current ones underperform in both bright (yellow) and dark
is able to recover adequate HDR/WCG volume, meanwhile (blue) areas. Specifically, methods trained with YouTube
reasonably enhance the brightness and saturation. ' DM produce dim (HDRBQ) and desaturated (ASL) result,
and even get lower luminance than input SDR at same posi-

'We also provide conventional PSNR, SSIM, AE (color difference tion (arrow in yellow box). This confirms the finding in §2.3

[79)) and VDP3 (HDR-VDP-3 [50]), but they mostly represent output’s that network will learn to darken and desaturate if DM tend
closer value with GT (For example, result both dimmer (e.g. Deep SR-

ITM [4]) and more vivid (ours) than GT will have a similar low score.), to brlghten and over-saturate. Also, our method recovers

thus are helpless for our assessment. This phenomenon was first found more detail in bright and dark areas with a better style.
by [18, 19], and will be further explained in supplementary material.
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4.3. Subjective experiment

Currently, few subjective studies [19, 43,59, 81-83] are
designed for SDR-to-HDR procedure (rather between dif-
ferent HDR). Similar to [19], we judge if output HDR is
better than origin SDR. Specifically, as in Fig.7, we use 2
side-by-side SONY KD85X9000H display supporting both
SDR and HDRTY, one is calibrated to 100n:¢/BT.709 SDR
and another PQ1000n:¢/BT.2020 HDR. Each (input)SDR-
(output)HDR pair is displayed twice with 3s gray level in-
terval and following 10s for rating: each participant is asked
to continuously rate from -5(SDR much better) to O(same)
to S(HDR much better), meanwhile select at least 1 attri-
bution (bottom Fig.7) of his/her rating. Such process is re-
peated 9(#participant) x 9(#competitor) x 12(#clip) times.

Legend
method name
o outlier
X 0.71  meanvalue
o= A i CIA:x9  intheresultofa
SDR display—=® * " HDR display et
(on thecreen : {currently SRPTYIRT A1 the n of
input SDR) Fesult from HDRTVNet) good/bad rating.

C1: brightness C18: color/saturation

participant

[CHoRTVNVet |

O O@ O
@
A

o kN W & ow

“

o

SDR better ¢ rating > HDR better
u

LR

C1A: ;9 xiz x21 x‘ZE x‘ZZ x‘ZD x‘84 x‘47 x‘58
C1B:  x30 x36 x24 x65 x67 Xx58 x52 x61 x51
€3 x39 x39 x40 xa4 x47 x45 X69 X51 x68
€4: x102 x90 x87 x22 x21 x13 x24 X8 x14

attribution
of rating ¥ | .

Figure 7. Environment and result of subjective experiment. 2 dis-
plays are caliberated differently to ensure both SDR and HDR are
correctly visualized. Results are provided in quartile chart.

Result shows that only 2 methods (ours & DaVinci) are
recognized better than input SDR. For methods [4—6], their
main ‘attribution’ (bottom Fig.7) is artifact (C4, see Fig.6
blue box). For artifact-free ‘YouTube-DM’ methods [7-9],
they are rated slightly worse mainly for lower saturation
(CIB) and incapability in information recovery, consisting
with Tab.8 and Fig.6. Form ‘attribution’ we also notice that
our method got better score mainly for viewing experience
(CI) and information recovery (C3). Also, our ‘bad cases’
lies in recovered large dark area with intrinsic noise efc. am-
plified and uneliminated. This is why we got more checks
on C4(x24) than commercial methods DaVinci and Nuke.

4.4. Ablation studies

On DM. When DM is changed to YouTube, Tab.8 wit-
nesses a significant decline on FHLP, EHL, ASL, ALL

and HDRBQ, while Fig.8 confirms a result similar to those
‘YouTube-DM’ methods, i.e. worse viewing experience and
less recover ability. Also, when using Reinhard DM which
contains no clipping, result’s highlight area stay unlearned.

On dataset. Here, we use original DMs, but label HDR
from other dataset. In Fig.8 yellow box, our DMs encourage
the network to output higher luminance, but since Zeng20
is of least extent of HDR i.e. these highlight do not exist
in label HDR, our LSN will not ‘recognize’ them and thus
produce artifact. Since this dataset is also of least extent of
WCG, FWGP&EWG in Tab.8 drop obviously. When using
slightly-inferior HDRTV 1K as label, difference is relatively
less significant. Yet, in both cases, ASL&ALL are similar
since DM i.e. network’s style tendency is unaltered.

M)

e

dataset)

artfact:

Figure 8. Result of ablation studies proves the importance of both
high-quality label HDR and rational DMs. Specifically, absent of
both label HDR’s HDR/WCG volume (Zeng20) and DM’s degra-
dation (Reirnhard) will impair LSN’s recover ability, meanwhile
YouTube DM’s style will make our LSN commonplace as others.

5. Conclusion

There are 2 types of low level vision: ‘sole-restoration’
whose destination is only clean or GT e.g. denoising, and
‘perceptual-motivated’ aiming at better viewing experience
e.g. image enhancement/retouching. SDR-to-HDRTV up-
conversion belongs to both. Yet, current methods only real-
ize (it belongs to) the former and neglect the latter, leading
their concentration only on network mechanism.

To this end, our response is two-fold: (1) focusing on
the impact of training set, and ameliorating its quality by
proposing new dataset and DMs, (2) involving novel assess-
ment criteria based on the ‘perceptual’ principal.
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