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Abstract

Prompt tuning has been employed as an efficient way to
adapt large vision-language pre-trained models (e.g. CLIP)
to various downstream tasks in data-limited or label-limited
settings. Nonetheless, visual data (e.g., images) is by de-
fault prerequisite for learning prompts in existing methods.
In this work, we advocate that the effectiveness of image-
text contrastive learning in aligning the two modalities (for
training CLIP) further makes it feasible to treat texts as im-
ages for prompt tuning and introduce TaI prompting. In
contrast to the visual data, text descriptions are easy to col-
lect, and their class labels can be directly derived. Particu-
larly, we apply TaI prompting to multi-label image recogni-
tion, where sentences in the wild serve as alternatives to im-
ages for prompt tuning. Moreover, with TaI, double-grained
prompt tuning (TaI-DPT) is further presented to extract both
coarse-grained and fine-grained embeddings for enhanc-
ing the multi-label recognition performance. Experimen-
tal results show that our proposed TaI-DPT outperforms
zero-shot CLIP by a large margin on multiple benchmarks,
e.g., MS-COCO, VOC2007, and NUS-WIDE, while it can
be combined with existing methods of prompting from im-
ages to improve recognition performance further. The code
is released at https://github.com/guozix/TaI-DPT.

1. Introduction

Recent few years have witnessed rapid progress in large
vision-language (VL) pre-trained models [1, 16, 19, 24, 33,
36] as well as their remarkable performance on downstream
vision tasks. A VL pre-trained model generally involves
data encoders, and it is becoming increasingly popular to
exploit image-test contrastive loss [24] to align the embed-
ding of images and texts into a shared space. When adapt-
ing to downstream tasks in data-limited or label-limited set-
tings, it is often ineffective to fine-tune the entire model, due
to its high complexity. Then, prompt tuning as a represen-
tative parameter-efficient learning paradigm has emerged as

*This work was done when Zixian Guo was a research intern at TAL.

Figure 1. A comparison between prompting from images and
our text-as-image (TaI) prompting. (a) Prompting from images
(e.g., [41]) uses labeled images of task categories to learn the text
prompts. Instead, (b) our TaI prompting learn the prompts with
easily-accessed text descriptions containing target categories. (c)
After training, the learned prompts in (a) or (b) can be readily ap-
plied to test images.

an efficient way to adapt VL models to downstream tasks.
Albeit considerable achievements have been made, ex-

isting prompt tuning methods generally require visual data
to learn prompts (as shown in Fig. 1(a)). For example,
CoOp [41] learns from annotated images. CoCoOp [40]
further introduces generalizable input-conditional prompts.
DualCoOp [28] adapts CLIP to multi-label recognition
tasks by training pairs of positive and negative prompts with
partial-labeled images. Nonetheless, the performance of
these prompting methods may be limited when it is infeasi-
ble to obtain sufficient image data or annotate the required
images.

In this paper, we advocate treating Texts as Images for
prompt tuning, i.e., TaI prompting. It is considered feasible
as the image encoder and text encoder in many pre-trained
VL models [16, 24] encode images and texts into a shared
space. Given an image and its caption, the visual features
produced by the image encoder will be close to the text fea-
ture of the caption produced by the text encoder. There-
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fore, in addition to extracting visual features from images,
it is also feasible to extract text features as alternatives form,
for example, descriptive sentences and captions, for prompt
tuning (see Fig. 1(b)). TaI prompting has several interesting
properties and merits. Taking a downstream image recog-
nition task as an example, given a set of object categories,
one can easily crawl a large set of text descriptions that con-
tain object names from these categories. Text descriptions
are easily accessible in this way, and class labels can be di-
rectly derived from text descriptions, which means, in con-
trast to prompting from images, TaI prompting may suffer
less from the data-limited and label-limited issues.

We use multi-label image recognition [8, 9, 11, 20, 35] to
verify the effectiveness of our TaI prompting in this paper.
To begin with, we crawl the captions from the public image
caption datasets (e.g., MS-COCO [20]) and localized narra-
tives from object detection datasets (e.g., Open Images [18])
to form the training set of text descriptions. For any specific
multi-label recognition task, we adopt a noun filter to map
the nouns in the text descriptions to the corresponding ob-
ject categories, and then only keep the text descriptions that
contain one or more classes of target objects. To better cope
with multi-label classification, we introduce double-grained
prompt tuning (i.e., TaI-DPT) which involves: (i) a set
of global prompts to generate embeddings for classifying
whole sentences or images, and (ii) a set of local prompts to
extract embeddings for discriminating text tokens or image
patches. Given a set of text descriptions, global and local
prompts can be tuned by minimizing the ranking loss [14].
Note that, though these prompts are learned from text de-
scriptions solely, they can be readily deployed to classify
whole images as well as image patches during testing (see
Fig. 1(c)). Experimental results show that, without using
any labeled images, our TaI prompting surpasses zero-shot
CLIP [24] by a large margin on multiple benchmarks, e.g.,
MS-COCO, VOC2007, and NUS-WIDE.

Moreover, when images are also available during train-
ing, our TaI prompting can be combined with existing meth-
ods of prompting from images to improve its performance.
In particular, given a few annotated images, our TaI-DPT
can be integrated with CoOp as a prompt ensemble for im-
proving classification accuracy. With partially labeled train-
ing data being provided, we may also combine TaI-DPT and
DualCoOp [28] to improve multi-label recognition accuracy
consistently. Extensive results verify the effectiveness of
our TaI-DPT in comparison to state-of-the-art. To sum up,
the contributions of this work include:

• We propose Texts as Images in prompt tuning (i.e., TaI
prompting) to adapt VL pre-trained models to multi-
label image recognition. Text descriptions are easily
accessible and, in contrast to images, their class labels
can be directly derived, making our TaI prompting very
compelling in practice.

• We present double-grained prompt tuning (i.e. TaI-
DPT) to extract both coarse-grained and fine-grained
embeddings for enhancing multi-label image recogni-
tion. Experiments on multiple benchmarks show that
TaI-DPT achieves comparable multi-label recognition
accuracy against state-of-the-arts.

• The prompts learned by TaI-DPT can be easily com-
bined with existing methods of prompting from images
in an off-the-shelf manner, further improving multi-
label recognition performance.

2. Related Work
2.1. Multi-Label Image Recognition

Multi-label image recognition [3,7,8,12,15,21,32,35,37]
aims to recognize all the object categories [11, 20] or con-
cepts [9] in an input image. Various modules [6, 30] have
been introduced to better represent the inter-class relation-
ships, and modern classification losses [3, 14] have been
used to make model learning easier.

To model the label dependencies, CNN-RNN [30] intro-
duces recurrent neural networks, e.g., RNN and LSTM, to
predict appeared classes in a sequential manner. [6,8,31,35]
use graph convolution modules to learn the correlation be-
tween class labels. CHAMP [29] measures the severity of
misclassification by building a domain-specific hierarchy
tree according to the relation of categories, where each class
is related to a tree node, to improve the robustness of the
model. Albeit effective, these methods require a consider-
able number of labeled images to learn the category rela-
tionships sufficiently. While in data-limited or label-limited
regimes, e.g., few-shot or partial-label data, it will be diffi-
cult for these models to learn well as expected. Specifically
designed loss functions also struggle to obtain significant
improvements when learning with limited data.
Multi-Label Recognition from Few-shot Samples. To
better exploit the small number of samples, LaSO [2] syn-
thesizes samples by manipulating the features of paired
training images. Different ways of manipulating label sets
are used to train the model, resulting in generalizable dis-
criminative features. [27] introduces a meta-learning frame-
work for better learning of past tasks and generalization to
new tasks, and leverages the number of labels as useful in-
formation for learning.
Multi-Label Recognition from Partial-label Data.
Partial-label refers to the scenarios where some labels are
unknown. [10] propose a normalized BCE loss to balance
the proportion of known labels. [5] learns to complement
unknown labels by utilizing within-image and cross-image
semantic correlations. [23] blends the representation of
training images and class proxies to compensate for the
loss of information due to unknown labels.

Albeit significant progress has been made, it remains a
challenging issue for learning multi-label image recognition
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Figure 2. Training and testing pipeline of our proposed Text-as-Image (TaI) prompting, where we use text descriptions instead of labeled
images to train the prompts. (a) During training, we use two identical text encoders from pre-trained CLIP to extract the global & local
class embeddings (G&L) and overall & sequential text embeddings (h&H) respectively from the prompts and text description. The
corresponding cosine similarity (p&P) between the embeddings are guided by the derived pseudo labels with ranking loss. (b) During
testing, we replace the input from text descriptions to images. The global and local class embeddings can discriminate target classes from
global & local image features (f&F). The final classification results are obtained by merging the scores of the two branches.

in image-limited or label-limited regimes. Built upon VL
pre-trained models, this paper suggests learning prompts
from texts instead of images, thereby offering a novel
yet complementary perspective for handling low-resource
multi-label image recognition.

2.2. Prompt Tuning for Vision-Language Models

To transfer pre-trained knowledge to downstream tasks
in data-limited settings, prompt tuning [13,17,34,39,41,42]
has become a popular parameter-efficient way to achieve
the goal, due to its flexibility and ease of use. CoOp [41]
learns the prompts by using (a few) annotated images of
each class from the target dataset. CoCoOp [40] further pro-
poses to improve CoOp [41] by formulating the prompts in
an image-conditional way to maintain better generalization
to unseen classes. To avoid overfitting, ProGrad [42] lever-
ages predictions from zero-shot CLIP to regularize gradi-
ents in prompt learning process. TPT [26] suggests opti-
mizing test-time prompts by promoting the consistency of
augmented test images. ProDA [22] uses multiple pieces of
prompts to estimate the distribution of classifier weights for
better handling of varying visual features. DualCoOp [28]
firstly adapts CLIP to multi-label image recognition with
partially labeled data by learning pairs of positive and neg-
ative prompts for each class to ensure independent binary
classification for each class.

Albeit existing prompt tuning approaches have achieved
significant improvements in downstream tasks, images as
well as a portion of class labels are prerequisite to supervise
the optimization of the learnable prompts. In this paper, we
propose to treat texts as images in prompt tuning, which,
compared to labeled images, are much easier to collect with
existing caption datasets and modern search engines. Our

proposed TaI-DPT surpasses zero-shot CLIP by a large mar-
gin and can be combined with the prompts learned by ex-
isting methods of prompting from images to further boost
recognition performance.

3. Proposed Method

Here we present Text-as-Image prompting, i.e., TaI
prompting, for adapting pre-trained VL models to multi-
label image recognition. Our TaI prompting uses only
easily-accessed free-form texts as training data to learn
effective prompts for downstream multi-label recognition
tasks. To begin with, We present an overview of TaI prompt-
ing in Sec. 3.1. Then, we introduce our preparation of train-
ing texts in Sec. 3.2. We further explain the design of the
double-grained prompt tuning (i.e., TaI-DPT) in Sec. 3.3,
and provide the loss function used to train the model in
Sec. 3.4. Finally, we propose to ensemble prompts from
TaI-DPT with prompts learned from images as a flexible in-
tegration to improve multi-label recognition performance.

3.1. Overview of Our Method

Fig. 2 illustrates the design of our proposed TaI-DPT
framework, including the training and testing phases. Dur-
ing training, we learn prompts with only supervision from
texts. Two identical copies of the text encoder EncT from
the pre-trained CLIP are used to encode the prompts and
text data, respectively. We introduce two sorts of trainable
prompts (i.e., the global prompts and local prompts) to ob-
tain global and regional class embeddings. A noun filter-
ing strategy is used to generate classification pseudo-labels
for each text description, which is applied to supervise the
classification scores obtained by calculating the cosine sim-
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ilarity of class embeddings and text features. Only the pa-
rameters in prompts are optimized in the training phase,
while the text encoders are both kept frozen. During test-
ing, the class embeddings are obtained by encoding the two
sets of learned prompts with the text encoder EncT as in
training, while the other input source changes from text de-
scriptions to test images. Pre-trained image encoder EncI
from CLIP is used to extract global and dense features of
each test image, then the cosine similarity are computed be-
tween features and class embeddings of the global and local
prompts. The final classification result is obtained by fus-
ing the global and local cosine scores. In the following, we
explain the details of our proposed method.

3.2. Preparation of Text Descriptions

To obtain sufficient category information from the lan-
guage that helps in image recognition, we have to ensure
that: 1) the collected texts should contain content-rich de-
scriptions of a scene, and 2) the contents of all text descrip-
tions need to cover the category set of the target dataset
for comprehensive representations of all categories. With
the aim of ensuring reproducibility, we use readily avail-
able captions from the public image caption datasets (e.g.,
MS-COCO [20]) and localized narratives from object detec-
tion datasets (e.g., OpenImages [18]) as our language data
source, while avoiding the workloads associated with ran-
domly crawling texts from the Internet in this paper. Note
that although each caption is paired with a corresponding
image and human-annotated labels, we only use the cap-
tions, and no information from the pictures and labels is
disclosed during training.

For a target multi-label recognition dataset X that has a
category set S = {s1, s2, s3, ..., sC}, where C denotes the
number of categories and si denotes particular class name
like “dog”, “plane”, etc., we search for sentences that con-
tain at least one class name si in S. Since multiple words or
phrases usually exist to represent the same meaning for each
class, searching solely for exact match of category names
in texts may lead to many false negatives in the obtained
pseudo ground-truth labels, which is harmful to prompt tun-
ing. Towards tackling this issue, we introduce a noun filter
to map nouns with similar meanings into the corresponding
class label. Specifically, we construct a synonym dictionary
D by including common synonyms of each class name in
the target dataset. If a word in a text description matches
any synonym of a specific class name, it is considered to
contain a description of that category. Several examples of
synonyms are shown as follows:

{’dog’,’pup’,’puppy’,’doggy’}
{’person’,’people’,’man’,’woman’,’human’}
{’bicycle’,’bike’,’cycle’}
{’car’,’taxi’,’automobile’}
{’boat’,’raft’,’dinghy’}
...

More details of the dictionary D are provided in the Suppl.

Then we conduct noun filtration by the following steps.
First, for each text description, we use the tokenizer and
lemmatizer from NLTK [4] to recover the stem of each word
in the sentences. Next, for all keywords in D, which con-
tains all synonyms of the category set S, we search in our
language data source for sentences that contains at least one
class name. For the text descriptions that do not match any
synonym of any class name, we simply drop them away
to ensure each piece of data has at least one concerned la-
bel. Finally, for each retained text description, we convert
the class names it contains into binary pseudo-ground-truth
vectors by setting classes that appear as positive and other
classes as negative, following the order of class labels in the
target dataset X .

The word-level filtered labels may not be precisely cor-
rect since our searching strategy mentioned above is rather
simple considering the diversity of free-form texts, where
complex paraphrases and misspellings that widely exist in
the corpus are not fully addressed. However, such a sim-
ple noun filtration can guarantee the reproducibility of this
work, and our experiments also demonstrate that this simple
and efficient data preparation leads to compelling results of
multi-label recognition of our TaI prompting.

3.3. Text-as-Image for Dual-grained Prompt Tuning

Following [41], a prompt is defined as:

ti = [v1,v2,v3, ...,vM , si] (1)

where i ∈ {1, 2, ..., C} is the class index, si denotes word
embedding of the i-th class name si. For j ∈ {1, . . . ,M},
vj is a learnable word embedding whose dimension is the
same as the dimension of normal word embeddings in the
vocabulary. Just like in previous methods, e.g. CoOp [41],
the prompts are learned by maximizing the probability of
classifying each image into its ground-truth class:

p(y = i|x) = exp(〈EncT(ti),EncI(x)〉/τ)∑C
j=1 exp(〈EncT(tj),EncI(x)〉/τ)

(2)

where x denotes the labeled training image and 〈·, ·〉 calcu-
lates the cosine similarity.

After large-scale image-text contrastive pre-training, text
features have been well-aligned to the image features of the
same semantic meanings. Thus, features of texts that de-
scribe a certain type of object also exhibit categorical dis-
criminability. Therefore, based on the aligned VL represen-
tation, we advocate considering the feature of a piece of text
description that describes a specific category, as an alterna-
tive to an image feature.

Apart from using the global sentence representation (i.e.,
the coarsest-grained text feature), we find that the sequential
feature of word tokens from CLIP also possesses rich fine-
grained information which is very similar to the region fea-
ture of dense image feature. In CLIP [24], cosine similarity
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Figure 3. Visualization of correlations P between the local class embedding L and sequential token feature from texts. Each class embed-
ding clearly correlates to words that describe the corresponding class (shown in highlight regions) rather than the global <EOS> token.

Figure 4. Visualization of correlations between the local class em-
bedding L and dense image feature. The learned class embeddings
can focus on the location of the object effectively.

between global image features, obtained by visual attention
pooling, and global text features, obtained by projecting the
feature of the last <EOS> token, are directly supervised
with contrastive loss. In general, the global feature is suffi-
cient for single-label classification because the target object
usually is prominent in the picture. However, in multi-label
recognition, the global feature is usually dominated by ma-
jor objects, suppressing the recognition of non-significant
objects concurrently existing in the image. Thus, it moti-
vates us to explore fine-grained features and avoid the dom-
ination of the overly prominent object.

To grasp the discriminability of global features as well
as learn from fine-grained features, we propose double-
grained prompt tuning (i.e., TaI-DPT) that uses two sets of
prompts to handle global (i.e., the coarsest-grained level)
and local (i.e., the fine-grained level) features, respectively,
in two parallel branches. Formally, the double-grained
prompt is defined as follows:

tGi = [v1,v2,v3, ...,vM , si],

tLi = [v′1,v
′
2,v
′
3, ...,v

′
M , si],

(3)

where vj and v′j are learnable embeddings that are concate-
nated with word embedding si of the i-th class to obtain the

global prompt tGi and local prompt tLi , respectively. The se-
quences in Eq. (3) are fed to a copy of the text encoder EncT
of CLIP to generate global and local class embeddings for
each class, i.e. Gi = EncT(t

G
i ) and Li = EncT(t

L
i ),

G = {Gi}Ci=1 and L = {Li}Ci=1 are encouraged to be
correlated with global and local features, respectively. Note
that the proposed double-grained prompts are different from
dual prompts [28], which include a pair of contrastive pos-
itive and negative prompts for each class (More discussion
about the differences between our method and DualCoOp is
provided in the Suppl).

To preserve the fine-grained region features for the input
image, we maintain the feature map before attention pool-
ing layer of CLIP. As for the input text description, we pre-
serve the sequential token features of the entire sentence
instead of only the <EOS>token features. So we have:

{f ,F } = EncI(x),

{h,H} = EncT(r),
(4)

where r denotes a piece of training text description. f ,h ∈
RD are the extracted global image and text features. F ∈
RN1×D and H ∈ RN2×D are the flattened dense image
features and sequential token features, respectively, where
N1 = H × W denotes the flattened spatial dimension of
visual feature and N2 denotes the length of text tokens.

Then, the global and local similarities are computed by:

pi = 〈u,Gi〉,P ij = 〈U j ,Li〉 (5)

where u denotes either language feature h in training or
visual feature f in testing, and U denotes H or F coordi-
nately. Information in local branch P (visualized in Fig. 3
and Fig. 4) is aggregated in a spatially weighted manner:

p′i =
∑N

j=1

exp(P ij/τs)∑N
j=1 exp(P ij/τs)

· P ij (6)

where τs accommodates the extent of focusing on a specific
location. pi and p′i are optimized by the loss terms Lglobal
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Figure 5. Our learned double-grained prompt tuning is easy to
combine with existing prompt tuning methods with ensemble.

and Llocal, respectively, which we will discuss in Sec. 3.4.
And in the testing phase, p and p′ are combined to obtain
the final classification score.

The visualization in Fig. 3 and Fig. 4 show that the
learned local class embedding L can focus on the specific
location where corresponding classes appear, both in sen-
tences and images, even if the fine-grained visual and lan-
guage features are not explicitly supervised in the training
of CLIP.

3.4. Learning Objective

The overall learning objective is defined as L =
Lglobal+Llocal, where Lglobal and Llocal are loss terms for
global text embedding and local text tokens, respectively.
We adopt the ranking loss [14] to measure the discrepancy
between classification scores and pseudo-ground-truth la-
bels. Specifically, Lglobal and Llocal are formulated as fol-
lows:

Lglobal=
∑

i∈{c+}

∑
j∈{c−}

max(0,m−pi+pj),

Llocal=
∑

i∈{c+}

∑
j∈{c−}

max(0,m−p′i+p′j)
(7)

where p and p′ are global and aggregated local similarities
described in Sec. 3.3,m is the margin controlling how much
higher the similarity score with the positive classes is than
with the negative classes. During training, we minimize the
overall objective Lwith frozen text encoders, by optimizing
the global and local prompts.

Binary cross-entropy loss and its variations such as
asymmetric loss [25] have shown remarkable results in clas-
sification tasks [25, 28]. They are generally accompanied
by a sigmoid function σ(x) = 1/(1 + exp(−x)) to convert
model outputs to probabilities. Nevertheless, we found that
directly optimizing the probability σ(p) leads to a perfor-
mance gap between training texts and testing images. We
attribute this phenomenon to the modality gap between vi-
sion and language. Thus we consider ranking loss to be a
more flexible and suitable way of supervision in the pres-
ence of the modality gap. A comparison of results between
different loss functions is provided in Suppl.

3.5. Incorporating with Prompting from Images

Though our TaI-DPT is very different from existing
methods of prompting from images, it is also complemen-
tary to them. To show this, we utilize an off-the-shelf
prompt ensemble strategy to combine our TaI-DPT with ex-
isting methods in this section. As illustrated in Fig. 5, us-
ing CoOp [41] as an example, we can simply combine the
scores of CoOp [41] and that of our TaI-DPT in a weighted
sum manner. In particular, our TaI-DPT can be integrated
with CoOp [41] when a few annotated images are provided
and integrated with DualCoOp [28] when partially labeled
training data are available.

We ensemble prompts by fusing the predicted scores,
rather than averaging the class embeddings generated by
different prompts, since the image encoder used in differ-
ent methods may be different (e.g. we conduct our exper-
iments with ResNet50, while DualCoOp uses ResNet101
for partial-label prompting). So ensembling with the clas-
sification score is more convenient. In Sec. 4.3, we also
empirically show that our prompt ensemble strategy is ef-
fective in advancing multi-label recognition performance in
the few-shot and partially labeled settings.

4. Experiments
4.1. Implementation Details

Architecture. We adopt CLIP ResNet-50 [24] as the visual
encoder, and use the CLIP Transformer as the text encoder.
During training, the parameters of the two encoders are kept
frozen, and only learnable prompts are optimized.
Learnable Prompts. Our learnable prompts are shared
among classes of all datasets. Class-specific prompting [41]
(i.e., an individual set of parameters for each category) has
also been explored, but brings limited benefits. We initial-
ize the value of each parameter with the Gaussian noise
sampled from N (0, 0.02). The length of both the global
prompts and local prompts are set toM = 16, while a longer
sequence brings trivial improvements.
Datasets. To evaluate our TaI-DPT, we conduct the ex-
periments on VOC2007 [11], MS-COCO [20], and NUS-
WIDE [9]. VOC2007 contains 20 common categories, and
following [6, 8, 28], we form the training/test set based on
the official trainval/test split (5,011 images/4,952 im-
ages). MS-COCO includes 80 categories with 82,081 train-
ing images and 40,504 testing images. NUS-WIDE in-
cludes 81 concepts with 161,789 images for training. We
adopt its test set (107,859 images) to evaluate our method.
For zero-shot experiments in Sec. 4.2, the training sets of
the datasets are not used, and we use only text data to
learn the prompts as mentioned in Sec. 3.2. Besides, for
VOC2007 and MS-COCO, the language data sources are
captions from MS-COCO. For NUS-WIDE, we introduce
localized narratives from OpenImages [18], which have a
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Figure 6. Comparison of different methods in few-shot multi-label recognition on
VOC2007 and MS-COCO. Our zero-shot TaI-DPT can achieve comparable results with
methods trained by 16-shot labeled image samples. And learned prompt ensemble proofs
the complementarity between images and texts.

Figure 7. Ablation experiment on the num-
ber of texts and performance of TaI prompt-
ing on VOC2007.

Table 1. Comparison with zero-shot methods on VOC2007, MS-
COCO, and NUS-WIDE. Our proposed TaI-DPT outperforms
CLIP [24] by a large margin on all datasets.

Method DPT VOC2007 MS-COCO NUSWIDE

ZSCLIP 7 76.2 47.3 36.4
X 77.3 49.7 37.4

TaI 7 86.0 61.1 44.9
X 88.3 65.1 46.5

broader range of content, to cover all the concepts in NUS-
WIDE. In Sec. 4.3 and Sec. 4.4, for each dataset, the cor-
responding training data is used to conduct the experiments
of partial-label and few-shot multi-label classification.
Training Details. We adopt SGD optimizer, and the train-
ing epoch is set to 20 for all datasets. The learning rates
for MS-COCO, VOC2007, and NUS-WIDE are empirically
initialized with 1e-4, 1e-4, and 1e-3, and decay by the co-
sine annealing rule. For ranking loss, we choose m = 1,
and scale the p and p′ by a factor of 4. τs is set as 0.02 via
validation.

4.2. Comparison with Zero-Shot Methods

To demonstrate the effectiveness of our proposed TaI and
DPT, we first compare it with the zero-shot CLIP (ZSCLIP).
For fair comparison, we also introduce the DPT to ZSCLIP.
Specifically, we adopt two identical default prompts “a
photo of a [CLASS]” to separately deal with global and
local features as DPT does. Table 1 lists the compari-
son results on VOC2007 [11], MS-COCO [20], and NUS-
WIDE [9] datasets. From the table, our TaI prompting
surpasses ZSCLIP by a large margin of 9.8%, 13.8%, and
8.5% mAP on VOC2007, MS-COCO, and NUS-WIDE, re-
spectively, showing the effectiveness of our TaI. Further-
more, after training with fine-grained token features ex-
tracted from texts, our proposed DPT demonstrates a more
powerful capability of discriminating local features than the
default hand-crafted prompts and single global prompts.

Table 2. Comparison with existing multi-label few-shot learning
methods on MS-COCO. The evaluation is based on mAP for zero-
shot, 1-shot and 5-shot with 16 novel classes.

Method 0-shot 1-shot 5-shot

LaSO [2] - 45.3 58.1
ML-FSL [27] - 54.4 63.6

CoOp [41] 40.2 (ZSCLIP) 46.9 55.6
Tip-Adapter [38] 40.2 (ZSCLIP) 53.8 59.7

TaI-DPT 59.2 - -

4.3. Comparison with Few-Shot Methods

We further compare with multi-label few-shot learning
methods to verify the effectiveness of our TaI-DPT. In con-
trast to the well-studied single-label few-shot classification
problem, few works tackle the multi-label few-shot sce-
nario. Existing methods [2,27] often deploy models trained
on seen classes to few-shot novel classes. In Table 2, we
compare zero-shot TaI-DPT to few-shot methods on 16
novel classes (see [2] for details about data split). TaI-DPT
is comparable to the methods trained on 5-shot samples.

Besides, we consider a new multi-label few-shot setting
where all the classes are regarded as novel classes. We se-
lect 1, 2, 4, 8, and 16-shot samples for each category fol-
lowing the strategy in [2]. For fair comparison, we train
CoOp [41] and our TaI in the same settings, and we also
extend them with DPT for a more comprehensive compari-
son. For CoOp-DPT, we set two sets of learnable prompts,
to deal with global and local features, respectively. The re-
sults are illustrated in Fig. 6. One can see that, even without
any image data regarding novel classes, our TaI can achieve
comparable results to CoOp trained on 16-shot. Similar
trends with the MS-COCO dataset and the DPT setting sup-
port our observation that the discriminative feature of text
data can be used as images for prompting. Moreover, ben-
efiting from the flexibility of prompts, we can easily inte-
grate our TaI-DPT with CoOp-DPT by ensembling as said
in Sec. 4.3. As illustrated in Fig. 6, though CoOp-DPT has
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Table 3. Results of integrating our TaI-DPT with partial-label multi-label recognition method based on pre-trained CLIP. Our approach
further improves the frontier performance of DualCoOp [28]. ∗ indicates the results based on our own reproduction.

Datasets Method 10% 20% 30% 40% 50% 60% 70% 80% 90% Avg.

MS-COCO

SARB [23] 71.2 75.0 77.1 78.3 78.9 79.6 79.8 80.5 80.5 77.9
DualCoOp [28] 78.7 80.9 81.7 82.0 82.5 82.7 82.8 83.0 83.1 81.9

DualCoOp* 81.0 82.3 82.9 83.4 83.5 83.9 84.0 84.1 84.3 83.3
+TaI-DPT 81.5 82.6 83.3 83.7 83.9 84.0 84.2 84.4 84.5 83.6

PascalVOC 2007

SARB [23] 83.5 88.6 90.7 91.4 91.9 92.2 92.6 92.8 92.9 90.7
DualCoOp [28] 90.3 92.2 92.8 93.3 93.6 93.9 94.0 94.1 94.2 93.2

DualCoOp* 91.4 93.8 93.8 94.3 94.6 94.7 94.8 94.9 94.9 94.1
+TaI-DPT 93.3 94.6 94.8 94.9 95.1 95.0 95.1 95.3 95.5 94.8

NUS-WIDE DualCoOp* 54.0 56.2 56.9 57.4 57.9 57.9 57.6 58.2 58.8 57.2
+TaI-DPT 56.4 57.9 57.8 58.1 58.5 58.8 58.6 59.1 59.4 58.3

achieved a high accuracy, combining our prompts learned
with text data still brings further improvement on recogni-
tion performance. This also proves that texts and images are
complementary to each other to some extent.

4.4. Integration with Partially Labeled Methods

Partially-labeled data refers to the problem where merely
some labels of each sample are known. Following [5], we
created the partial-label data by randomly masking out la-
bels of the fully annotated data. During inference, the model
is evaluated on all categories.

We reproduce DualCoOp [28] on partial-labeled
VOC2007 and MS-COCO with the same experimental set-
ting as reported (reproduced results are marked with *)
and explore the enhancement brought by integration with
our TaI-DPT. We also deploy DualCoOp on partial-labeled
NUS-WIDE for a comprehensive comparison.

The results are reported in Table 3. With no prior knowl-
edge from pre-trained models, previous forefront method
like SARB [23] struggles to learn from incomplete labels.
DualCoOp, directly trained with entire image set, is well-
learned to classify multi-label images. Even so, for Pas-
calVOC and NUS-WIDE, by using texts from exogenous
sources, i.e., COCO and OpenImages, our method can bring
complementary enhancement to image prompting. While,
for COCO, we used captions derived from its own im-
ages, making it more difficult to provide additional benefits.
Analogous to VOC and NUS-WIDE, the COCO results can
also be further advanced by introducing more external text
data in future work.

4.5. Ablation Study

To thoroughly investigate the effect of each component,
we conduct a series of ablation studies on the quantity of
texts, training loss, different VL pre-trained models, ensem-
ble weights, and texts v.s. images for prompting. The com-
plete ablation experiments are shown in the Suppl.

Quantity of texts. Following the data preparation proce-
dure in Sec. 3.2, we end up with a total number of 66087
pieces of text that contain descriptions for 20 categories of
VOC2007. We test the performance of TaI-DPT with dif-
ferent numbers of randomly selected texts, and the results
are shown in Fig. 7. When no collected texts are avail-
able, 80 templates of hand-crafted prompts from [24], like
“a cropped photo of a [CLASS]”, are used for training (all
templates are shown in the Suppl), and each template sen-
tence correlates with one positive label corresponding to the
class name inserted in [CLASS]. The increasing number of
texts gradually forms a complete description of target cat-
egories, and the relationship between classes is also better
characterized, which results in ascending performance.

5. Conclusion

In this paper, we propose a new view of treating texts as
images in prompt tuning (i.e. TaI), which learns the prompt
from discriminative features of text descriptions. Compared
to prior prompt tuning methods trained with images, our TaI
benefits from the easy accessibility of scalable content-rich
texts, which enables prompt tuning for vision tasks (e.g.,
multi-label image recognition) even without downstream
image data. Double-grained prompting is further introduced
to utilize both the global and fine-grained features for better
multi-label recognition ability. Nonetheless, when few-shot
image samples or partial-labeled images are available, our
TaI-DPT can conveniently integrate with existing prompt-
ing methods. Experiments on multiple benchmarks show
the validity of TaI-DPT.
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