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Figure 1. The mode collapse issue. For NADA [21] and our method, the same generator pre-trained on the source domain of “Photo” is
adapted to the unseen target domains of “Disney”, “Anime painting”, “Wall painting” and “Ukiyo-e” only with the domain labels. The
images above the dotted line are some examples from the internet. The generated images of NADA exhibit some similar unseen patterns
(yellow box areas) which are undesired in terms of quality and diversity. This issue is largely addressed by our method.

Abstract

Recently, CLIP-guided image synthesis has shown ap-
pealing performance on adapting a pre-trained source-
domain generator to an unseen target domain. It does not
require any target-domain samples but only the textual do-
main labels. The training is highly efficient, e.g., a few
minutes. However, existing methods still have some lim-
itations in the quality of generated images and may suf-
fer from the mode collapse issue. A key reason is that a
fixed adaptation direction is applied for all cross-domain
image pairs, which leads to identical supervision signals.
To address this issue, we propose an Image-specific Prompt
Learning (IPL) method, which learns specific prompt vec-

*Equal contribution.
†Corresponding authors.

tors for each source-domain image. This produces a more
precise adaptation direction for every cross-domain image
pair, endowing the target-domain generator with greatly
enhanced flexibility. Qualitative and quantitative evalua-
tions on various domains demonstrate that IPL effectively
improves the quality and diversity of synthesized images
and alleviates the mode collapse. Moreover, IPL is inde-
pendent of the structure of the generative model, such as
generative adversarial networks or diffusion models. Code
is available at https://github.com/Picsart-AI-Research/IPL-
Zero-Shot-Generative-Model-Adaptation.

1. Introduction
In recent years, image synthesis using generative adver-

sarial networks (GANs) [11] has been rapidly developed.
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The state-of-the-art methods can generate images that are
hard to be distinguished from real data [14, 20, 21, 46, 50].
However, the GAN-based methods heavily rely on vast
quantities of training examples, and adopt a cumbersome
adversarial training scheme which generally costs many
hours of training time. Unfortunately, in many real-world
scenarios, data acquisition is difficult or expensive. For ex-
ample, in the artistic domains, it is impossible to have artists
make thousands of creations. The high training cost is also
unacceptable on some embedded devices, e.g., cellphones.

To address these issues, researchers begin to focus on
the generative model adaptation. The goal of this task is to
adapt a pre-trained source-domain generator to a target do-
main with limited data. Many few-shot GAN-based meth-
ods are proposed, such as TGAN [48], FreezeD [30], Min-
GAN [47], ADA [18], DiffAug [53], IDC [33] and RSSA
[49], etc. However, these methods still require some train-
ing images of the target domain and follow the adversarial
training scheme. As a pioneer work, StyleGAN-NADA [8]
(NADA for short) proposes a zero-shot adaptation method,
which only requires textual domain labels and discards the
cumbersome adversarial training scheme by introducing a
pre-trained CLIP model. Although efficient, it still has obvi-
ous deficiencies, i.e., the limited quality and mode collapse
of generated images. As shown in Fig.1, we adapt a pre-
trained generator of “Photo” domain to “Disney”, “Anime
painting”, “Wall painting” and “Ukiyo-e” domains. For
the results of NADA [8], we notice that the generated im-
ages of the same target domain always show some homo-
geneous patterns which degrade the image quality and di-
versity, such as deep nasolabial folds in “Disney”, squinting
eyes in “Anime painting”, red cheeks in “Wall painting” and
blue eyebrows in “Ukiyo-e” (yellow box areas).

By exploring the factors behind this phenomenon, we
find that the key factor is the fixed adaptation direction pro-
duced by manually designed prompts. Sharing the direction
for all cross-domain image pairs leads to identical supervi-
sion signals for the model adaptation. Consider the exam-
ple, adapting a generator of “Human” domain to “Tolkien
elf” domain as shown in Fig.2. The previous works [8, 22]
adopt manually designed prompts (e.g., “A photo of a”) plus
the domain label to produce a fixed adaptation direction,
which is shared by all cross-domain image pairs (Fig.2 (a))
in the adaptation process. We argue that the constraint is
too restrictive and suppresses the image-specific features,
leading to homogeneous generated patterns.

In this paper, we propose an Image-specific Prompt
Learning (IPL) method to address the above issue. The mo-
tivation is setting more precise and diversified adaptation
directions by customizing more image-specific prompts, for
instance “Asian girl”, “Curly hair lady” and “Elder glass
man” (Fig.2 (b)). These adaptation directions endow the
target-domain generator with high flexibility to synthesize

(a) Manual prompts:
a shared fixed reference direction

(b) Learnable prompts:
image-specific reference directions
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Figure 2. An illustration of our motivation. The previous meth-
ods adopt manual prompts to compute a fixed adaptation direction
for all cross-domain image pairs, while our method learns image-
specific prompts for producing more precise and diversified adap-
tation directions.

more diversified images. The proposed IPL is a two-stage
method. In Stage 1, a latent mapper is trained to produce an
image-specific set of prompt vectors conditioned on each
source-domain image by a contrastive training scheme. The
learned prompt vectors contain more specific and diversi-
fied features of the source-domain images than the fixed
prompt vectors. We further propose a domain regularization
loss to ensure that the learned prompt vectors are compat-
ible with the target domain. In Stage 2, we compute more
precise and diversified adaptation directions for each cross-
domain image pair, and train the target-domain generator
with an adaptive directional CLIP loss, which can be viewed
as an improved version of the Directional CLIP Loss [8].
As shown in Fig.1, our method alleviates the mode collapse
issue well. Extensive experiments across a wide range of
domains demonstrate that the proposed IPL effectively im-
proves the quality of synthesized images and overcomes the
mode collapse issue. User studies and ablation studies are
also conducted to validate the effectiveness of our method.

It is worth noting that our proposed IPL method is inde-
pendent of the structure of the generative model, and can
be applied to the recent diffusion models [13,27,31,35,41–
43, 51]. Thus we also combine IPL with diffusion mod-
els and get a more robust and stronger generative capacity,
especially on complex images, which shows the high effec-
tiveness and adaptability of our approach.

2. Related Work
Generative model adaptation. Generative model adapta-
tion is the task of adapting a generative model trained on a
large-scale source domain to a data-limited target domain.

11495



According to the size of the training dataset of the target
domain, it can be directly divided into two main categories:
few-shot generative model adaptation and zero-shot gener-
ative model adaptation. For the few-shot generative model
adaptation task, the most natural approach is to fine-tune
a pre-trained GAN [2, 4, 26, 48]. However, fine-tuning the
entire network weights used to result in overfitting. Sub-
sequently, many methods were proposed to alleviate the
overfitting issue. They either imposed strong regulariza-
tion [52, 54], or modified the network parameters with a
slight perturbation [30, 32, 37, 47], or preserved some im-
portant information by cross-domain alignment [33, 49], or
performed data augmentation [45, 53, 55].

For the zero-shot generative model adaptation task,
NADA [8] first proposed to introduce a pre-trained CLIP
model for supplying necessary prior knowledge. It only re-
quired textual domain labels, and encoded the domain gap
as a text-guided adaptation direction in CLIP space. To en-
hance the identity-preserving capability of real-world image
translation, Kim et al. further proposed DiffusionCLIP [22]
which utilized diffusion models [42] instead of StyleGANs
[18–21] in NADA. Nevertheless, these existing works all
adopt a fixed adaptation direction which only contains the
basic domain knowledge but no image-specific features. In
this paper, we argue that this shared fixed adaptation direc-
tion may lead to the mode collapse issue. To produce more
accurate and adaptive adaptation directions, we propose to
learn diverse and specific prompt vectors for each image.

Prompt learning. Prompt engineering is first introduced
as a knowledge probing approach [34]. Given cloze-
style prompts, it induces pre-trained language models to
generate the corresponding answers. However, manually
designed prompts may be sub-optimal and provide im-
precise guidance. To tackle this issue, prompt learning
[9, 16, 23, 25, 28, 40, 56] has been widely studied in natu-
ral language processing to automatically explore the opti-
mal set of prompts. With the unprecedented development of
vision-language models [15,36] in recent years, researchers
begin to apply prompt learning to computer vision tasks
[7, 10, 17, 24, 57, 58]. In specific, Zhou et al. [57, 58] first
adopted context optimization in image classification tasks
by modeling context words with continuous vectors in the
word embedding space. Subsequently, many downstream
tasks in computer vision were also explored, e.g., object de-
tection [7], visual grounding [24], video understanding [17]
and transfer learning [10]. As far as we know, this is the
first work to propose an adaptive prompt learning scheme
for generative model adaptation. Different from previous
prompt learning schemes, our method introduces a latent
mapper to learn a specific set of prompt vectors for each im-
age. When training the target-domain generator, the learned
image-specific prompt vectors could produce more precise
adaptation directions to provide better supervision signals.

3. Methodology
The goal of zero-shot generative model adaptation is to

adapt a pre-trained source-domain generator Gs to an un-
seen target domain, and get the target-domain generator Gt.
The source domain with the domain label Ys, e.g., “Hu-
man”, can obtain plentiful high-quality images by Gs. The
target domain is described only through the domain label
Yt, e.g., “Tolkien elf”, with no images. Following [8, 22],
a pre-trained CLIP model [36] including an image encoder
EI and a text encoder ET is introduced.

We propose a two-stage method named Image-specific
Prompt Learning (IPL). Its framework is shown in Fig.3.
In Stage 1, a latent mapper F is trained to produce a set
of image-specific prompt vectors {[V]i1, [V]i2, · · · , [V]im}
for each latent code wi of a source-domain image. Each
prompt vector has the same dimension with word embed-
dings in CLIP space. The training loss consists of a con-
trastive learning loss Lcontr and a domain regularization
loss Ldomain. The former aims to preserve the image-
specific features of each source domain image in the learned
prompt vectors. The latter constrains the image-specific
features to be suitable to the target domain, which means
the learned features should not conflict with the target do-
main. For example, the features of prompts like “round ear”
should not be contained in the ideal prompt vectors if the
target domain is “Tolkien elf”. In Stage 2, the trained latent
mapper F is plugged into the training process of the target-
domain generator Gt, and produces more precise and diver-
sified adaptation directions for cross-domain image pairs.
This training stage follows [8] except that learned prompt
vectors produced by the latent mapper F replace the fixed
prompt vectors. The final textual supervision information
includes shared learned prompt vectors and respective em-
beddings of the original domain labels.

3.1. Image-specific prompt learning

General prompts. The previous methods [8, 22] com-
pute a fixed adaptation direction produced by two embed-
dings of manually designed prompts, e.g., “a photo of a
human” and “a photo of a Tolkien elf”, then constrain
the directions of all cross-domain pairs to be parallel with
the adaptation direction. In contrast to manually designed
prompts, prompt learning [58] aims to find the optimal set
of prompt vectors for a domain by directly tuning the em-
beddings of prompts. Formally, we define a general prompt
matrix Md to represent a given domain d. Md consists of
the prompt vectors [V]1, [V]2, · · · , [V]m and the embedding
of the domain label [Yd] as below:

Md = [V]1[V]2 · · · [V]m[Yd], (1)

where m is the number of prompts. Suppose the dimen-
sion of each embedding is k. Then the dimension of Md

should be (m + 1) × k. In [8, 22], the prompt vectors
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Figure 3. The framework of our method. In Stage 1, a latent mapper F is trained for prompt learning by a contrastive learning loss Lcontr

and a domain regularization loss Ldomain. The image encoder EI and the text encoder ET are from the CLIP model [36]. In Stage 2, the
target-domain generator Gt is trained for image synthesis by the improved Directional CLIP Loss Ladapt in which the adaptive prompts
produced by the latent mapper are applied. In two stages, the locked modules are fixed while the unlocked modules are trained. For
simplicity, we replace EI(Gs(w

i)) and ET(M
i
s) with Ii andTi

s, respectively.

[V]1, [V]2, · · · , [V]m are fixed embeddings of manually de-
signed prompts. For prompt learning [58], the prompt vec-
tors are learned by encoding each training image of the do-
main d with EI and the prompt matrix Md with ET, and
then maximizing the cosine similarity between them.

Inspired by prompt learning, in the zero-shot generative
model adaptation task, a natural idea is to learn an opti-
mal set of prompt vectors instead of the manually designed
prompts in NADA [8]. Although the adaptation direction
calculated by the learned prompt vectors seems to be more
reasonable than that of the manually designed prompts, it
is still fixed and shared for all cross-domain image pairs.
These fixed learned prompt vectors can not solve the mode
collapse issue (Experimental validations can be seen in Sec.
4.4). To obtain more flexible and diversified adaptation di-
rections, we further propose to learn a set of image-specific
prompt vectors for each image, which can be regarded as an
improved version of prompt learning.

Image-specific prompts. Utilizing the source-domain
generator Gs, we train a latent mapper F as shown in Fig.3
(Stage 1). Through the mapper, each image of the source
domain can be matched to an optimal set of prompt vec-
tors. Formally, given a latent code wi, corresponding to

the ith image in the source domain, the image-specific set
of prompt vectors {[V]i1, [V]i2, · · · , [V]im} can be obtained
by F (wi, θ), where θ denotes the parameters of the latent
mapper F . Following the definition of the prompt matrix
in Eq.(1), we define an image-specific prompt matrix of the
ith source-domain image as:

Mi
s = F (wi, θ)[Ys] = [V]i1[V]i2 · · · [V]im[Ys]. (2)

In this paper, F is a common four-layer fully-connected net-
work. Next, we show how to train it.

Contrastive training scheme. Given a batch of latent
codes {w1, w2, ..., wn}, we can produce a batch of sets of
prompt matrices {M1

s ,M
2
s , ...,M

n
s } by F and a batch of im-

ages {Gs(w
1), Gs(w

2), ..., Gs(w
n)} by Gs. Then n × n

pairs < Gs(w
i),Mj

s >, i, j ∈ {1, 2, ..., n} have been ob-
tained. Then, we take the pairs of i = j as positive samples,
and the pairs of i ̸= j as negative samples for contrastive
training. Specifically, we compute the similarity between
embeddings of the ith image and the jth prompt matrix in
CLIP space as:

Simij = Cos(Norm(EI(Gs(w
i))),Norm(ET(M

j
s))), (3)

where Norm(·) and Cos(·) represent L2 normalization and
the cosine function, respectively. The similarities of pos-
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itive samples are maximized while the similarities of neg-
ative samples are minimized. The contrastive loss is ex-
pressed as:

Lcontr = Ew∈W(
∑
i ̸=j

(Simij)−
∑
i=j

(Simij)). (4)

Domain regularization loss. For the target domain
without any prior knowledge except the domain label Yt,
we can simply share the learned prompt vectors between
the source and target domains following [8]. However, the
shared prompt vectors may lead to the risk of generating un-
realistic images for the target domain, because some learned
prompt vectors may contain strongly relevant features to the
source domain, leading to conflict with the target domain.
For example, an image of “Human” domain is matched to
prompt vectors of “round ear”, but a corresponding image
of “Tolkien elf” domain should not contain the features of
“round ear”. Sharing these prompt vectors is harmful to
the target-domain image generation. Therefore, we fur-
ther propose a domain regularization loss. Specifically, we
constrain the angles between the embeddings of the image-
specific prompt matrix Mi

t and the target-domain label Yt in
CLIP space to be small, to avoid the learned prompt vectors
conflicting with the target domain. Formally, the domain
regularization loss is described as:

Ldomain = −Ewi∈W

n∑
i=1

(Cos(ET(M
i
t), ET(Yt))), (5)

where Mi
t is calculated by Eq.(2) except replacing the do-

main label, Cos(·) represents the cosine similarity.
As a summary, the whole training loss function of the

latent mapper F is:

L = Lconstr + λLdomain, (6)

where λ is the ratio parameter. Optimized by L, the learned
prompt vectors can not only reflect the features of the
source-domain images, but also adapt to the target domain.

3.2. Latent mapper guided generator training

After training the latent mapper F , we conduct the sec-
ond stage: training the target-domain generator Gt as shown
in Fig.3 (Stage 2). In specific, we plug in the trained latent
mapper, and train Gt with an improved Directional CLIP
Loss Ladapt. Its main difference with [8] is using the image-
specific prompt vectors that are produced on-the-fly by F
instead of the fixed ones of manually designed prompts.
Formally, given a latent code wi, we calculate the direction
of the ith source and target image pair as below:

∆Ii = Norm(EI(Gt(w
i))−Norm(EI(Gs(w

i)), (7)

where Norm(·) represents L2 normalization. The image-
specific adaptation direction is calculated as below:

∆Ti = Norm(ET(M
i
t))−Norm(ET(M

i
s)). (8)

The improved Directional CLIP Loss Ladapt is:

Ladapt = Ewi∈W

n∑
i=1

(1− ∆Ii ·∆Ti

|∆Ii||∆Ti|
), (9)

where n is the batch size of latent codes. Ladapt constrains
the direction of each image pair ∆Ii with an image-specific
adaptation direction ∆Ti.

4. Experiments
In this section, we evaluate our method qualitatively and

quantitatively. The experimental setup is firstly presented in
Sec. 4.1. Then we show image synthesis results across var-
ious domains in Sec. 4.2. Utilizing a GAN inversion model
and diffusion models, results of real-world image transla-
tion are provided in Sec. 4.3. Finally, we carefully conduct
ablation studies on prompt designing schemes and loss term
ratios in Sec. 4.4.

4.1. Experimental setup

Baselines and settings. Two strong methods are chosen
as our competitors. For zero-shot image synthesis, NADA
[8] is the state-of-the-art method. Following NADA [8],
we adapt the pre-trained StyleGANv2 [21] generators on
(i) Flickr-Faces-HQ (FFHQ) [8] and (ii) Animal FacesHQ
(AFHQ) [3], utilize the same pre-trained CLIP [36] built
on ViT-B/32 [6]. For zero-shot real-world image transla-
tion, we utilize Restyle [1] with e4e [44] encoder to invert
a real image into the latent space W for StyleGANs. Dif-
fusionCLIP (Diff-CLIP for short) [22] is the state-of-the-art
method. We follow the setting of [22] except replacing de-
noising diffusion implicit models (DDIM) [42] with diffu-
sion autoencoders [35]. The training process includes 300
iterations for prompt learning and 300 iterations for genera-
tor adaptation using a single NVIDIA RTX 3090 GPU. The
batch size is set to 32 for prompt learning and 2 for genera-
tor adaptation. The number of learned prompt vectors m is
set to 4. For each domain, the ratio parameter λ in Eq.(6)
is selected among [1, 10], according to the best Inception
Score [38] of adapted generators. The whole training pro-
cess requires about 10∼20 minutes. More implementation
details can be seen in supplementary materials.

Evaluation metrics. The ideal generated images should
have: 1) high quality and diversity, 2) correct target-domain
style, and 3) necessary source-domain information preser-
vation (e.g., structure or identity). For a comprehensive
evaluation, we utilize the popular Inception Score (IS) [38]
to evaluate the image quality and diversity, the Single Im-
age Fréchet Inception Distance (SIFID) [39] to evaluate the
target-domain style, the Structural Consistency Score (SCS)
[49] to evaluate the structure preservation, the identity simi-
larity (ID) [5,12] to evaluate the identity preservation. More
details can be seen in supplementary materials.
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Figure 4. Image synthesis comparison results. For FFHQ [21], the source domain is “Human” and the target domains are “Pixar character”,
“Tolkien elf”, and “Werewolf”. For AFHQ-Dog [3], the source domain is “Photo” and the target domains are “Cartoon”, “Pointillism”,
and “Cubism”. The yellow box areas show the mode collapse problem of NADA [8].

Table 1. Quantitative evaluation results. US denotes user study. The best results are bold.

Dataset Source→Target
IS [38] (↑) SCS [49] (↑) ID [5, 12] (↑) SIFID [39] (↓)

US (↑)
NADA IPL NADA IPL NADA IPL

NADA IPL
R1 R2 R3 R1 R2 R3

FFHQ [8]

Photo→Disney 2.721 3.089 0.407 0.448 0.782 0.801 2.776 3.136 3.670 2.517 2.930 3.497 82.6%
Photo→Anime painting 2.450 3.051 0.324 0.518 0.666 0.776 2.956 1.811 1.242 2.845 1.595 1.021 79.3%
Photo→Wall painting 2.183 2.676 0.439 0.487 0.594 0.637 1.944 1.220 1.331 1.930 1.183 1.274 80.9%

Photo→Ukiyo-e 2.205 2.974 0.420 0.506 0.775 0.632 1.954 1.990 1.326 1.165 1.255 0.878 85.9%
Human→Pixar character 2.703 2.785 0.379 0.461 0.757 0.853 0.793 0.932 0.865 0.638 0.821 1.092 86.7%

Human→Tolkien elf 2.479 2.778 0.416 0.491 0.711 0.772 0.632 1.495 1.452 0.690 0.637 0.701 76.8%
Human→Werewolf 2.619 2.809 0.399 0.417 0.642 0.747 1.969 1.846 1.967 1.734 1.688 1.911 72.7%

AFHQ [3]
Photo→Cartoon 6.505 8.658 0.407 0.563 0.925 0.941 2.708 2.672 3.870 2.517 2.477 3.278 87.6%

Photo→Pointillism 5.419 6.913 0.224 0.542 0.775 0.881 7.081 5.288 7.142 4.818 3.089 4.074 78.5%
Photo→Cubism 4.165 6.450 0.386 0.463 0.934 0.943 2.779 2.938 3.199 2.431 2.956 2.284 74.3%

4.2. Generative model adaptation

Qualitative comparison. In addition to Fig.1, we con-
duct extensive experiments across a wide range of domains
as shown in Fig.4. All results indicate that our proposed
approach outperforms NADA consistently. The yellow box
areas in the figures denote the main different features be-
tween NADA and our IPL. From the quality of the gener-

ated images, the results of NADA have more incorrect fea-
tures and noise, such as green mussy noise on hairs (Tolkien
elf), ruined noses (Werewolf) and unshaped necks (Pointil-
lism), while the results of IPL are more clear and correct.
From the mode collapse perspective of the generated im-
ages, NADA is prone to collapse to some similar facial
features for different images, such as depressed emotions
(Pixar character), folded ears (Cartoon) and blue noses (Cu-
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Recon1 NADA Diff-CLIP Recon3GAN-IPL Recon2Real Images Diff-IPL

“Human” à “Tolkien elf”

“Photo” à “Wall painting”

Diff-CLIP+

Figure 5. Real-world image translation comparison results. Baselines are NADA [8], Diff-CLIP [22] and Diff-CLIP+ (an improved version
of Diff-CLIP). Recon1, Recon2 and Recon3 refer to inversion results via Restyle [1], DDIM and diffusion autoencoders, respectively.
GAN-IPL and Diff-IPL denote integrating IPL with NADA and Diff-CLIP+, respectively. Real images are from CelebA-HQ dataset [29]
and translated into two styles of images, “Wall painting” and “Tolkien elf”. The yellow boxes show the key observation areas.

bism), while IPL presents consistently higher diversity and
solve the mode collapse issue well. Our advantages mainly
come from the fact that the latent mapper preserves suf-
ficient image-specific and target-domain friendly features
from the source-domain images. The produced prompt vec-
tors provide more precise and diversified adaptation direc-
tions for the target-domain generator adaptation.

Quantitative comparison. To quantify the performance
improvement of IPL compared to NADA [8], IS, SCS, ID
and SIFID are evaluated. As reported in Tab.1, for IS,
IPL outperforms NADA on all 10 settings, indicating our
method achieves better image quality and diversity. For
SCS and ID, IPL outperforms NADA on most of the 10 set-
tings except “Human → Ukiyo-e”. It is mainly because that
“Ukiyo-e” naturally favors humans with narrow eyes and
pale skin, which encourages identity changes during train-
ing. For SIFID, we collect 3 reference images (R1, R2, and
R3) on the internet for each target domain. Tab.1 shows
that IPL outperforms NADA in most cases, indicating our
superiority in generating precise target-domain styles.

User studies. For each target domain, 32 images gen-
erated by NADA and our method are provided to human
observers, together with their corresponding source images
and textual labels of target domains. Human observers are
required to choose better synthesized images which are se-
mantically more consistent with the target domain labels
and preserve the useful source-domain information better.
We collect 1210 responses from 121 people using a survey
platform. As reported in the last column of Tab.1, 80.5% of

users prefer our approach to NADA on average.

4.3. Real-world image translation

This task first inverts a real-world image to the latent
code by a pre-trained inversion model and then feeds it
to the trained target-domain generator to get the translated
target-domain image. For GAN-based generators, we com-
pare our method (GAN-IPL) with NADA by connecting the
inversion model Restyle [1]. For diffusion model gener-
ators, we compare our method (Diff-IPL) with Diff-CLIP
[22] and Diff-CLIP+ which is an improved version of Diff-
CLIP [22] by replacing the original DDIM [42] with a dif-
fusion autoencoder [35]. For these diffusion models, a de-
terministic inversion process is naturally provided.

As shown in Fig.5, comparing the results of NADA and
GAN-IPL, IPL’s superiority of alleviating mode collapse
over NADA can still be observed. Comparing the results
of Recon1, Recon2 and Recon3, diffusion models (Recon2
and Recon3) consistently perform better identity preserva-
tion than Restyle (Recon1) for real image inversion, espe-
cially for some uncommon stuffs in a human face photo,
e.g., the hats, hands and tattoos in Fig.5. However, this
property is not well inherited in the target domain gener-
ators with a fixed adaptation direction (see the results of
Diff-CLIP and Diff-CLIP+). Our proposed IPL could help
preserve the details in source images better and present the
target-domain styles correctly (see the results of Diff-IPL).
Quantitative evaluation results of Diff-CLIP, Diff-CLIP+
and Diff-IPL can be seen in supplementary materials.
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Figure 6. Ablation results of prompt designing schemes.

4.4. Ablation studies

Prompt designing schemes. We investigate four differ-
ent prompt designing schemes: 1) manually fixed prompts
(NADA), 2) learned fixed prompts, 3) random prompts and
4) adaptive prompts (Ours). Manually fixed prompts mean
simply utilizing the manually designed prompts as NADA
[8]. Learned fixed prompts denote unified prompt vectors
produced by common prompt learning strategy [58] and
shared for all images. Random prompts refer to prompt
vectors produced by a randomly initialized latent mapper.
Adaptive prompts denote the learned image-specific prompt
vectors produced by our IPL method.

As illustrated in Fig.6, synthesized images with manu-
ally fixed prompts and learned fixed prompts show some
similar mode collapse issues, e.g., blue eyebrows (Ukiyo-e)
and depressed emotions (Pixar character). They both pro-
duce a fixed adaptation direction, which leads to identical
supervision signals for all image pairs. Synthesized images
with random prompts present more photo-realistic results
but lack the desired target-domain style. A possible rea-
son is that the random prompts contain some features con-
flicting with the target domain and impede the learning of
the target domain style. Our adaptive prompts perform best
since the prompts contain more image-specific and target-
domain friendly features from the source-domain images.

Loss term ratios. We compare different values of the
ratio parameter λ in Eq.(6), which is used to adjust the in-
tensity of the domain regularization loss. Visual results are
shown in Fig.7. In specific, when we set λ to a small value
(λ = 0 as an extreme case), there is almost no constraint
from the target domain. The learned prompts would exces-
sively preserve the source-domain features. Thus the syn-
thesized images are similar to their corresponding source

𝜆 = 0 𝜆 = 1 𝜆 = 10 𝜆 = 20Source

“Photo” à “Ukiyo-e”

“Human” à “Pixar character”

Figure 7. Ablation results of loss term ratios.

images. In contrast, if λ is set to a large value (λ = 20
as an example), a strong target-domain constraint will limit
the diversity of the learned prompts. As a result, the synthe-
sized images would slightly show some similar undesired
patterns as images generated via fixed prompts. Therefore,
in practical applications, λ should be a trade-off value (i.e.,
between 1 and 10).

5. Conclusion
In this paper, we have proposed a novel zero-shot gen-

erative model adaptation approach called Image-specific
Prompt Learning (IPL). In specific, we build a projection
from latent codes to image-specific sets of prompt vectors
via a latent mapper. With a contrastive learning scheme
and a domain regularization constraint, the learned prompt
vectors represent image-specific but target-domain-friendly
features, producing more precise and diversified adapta-
tion directions for target domain generator training. Com-
pared with the state-of-the-art approaches, IPL consistently
improves the quality of synthesized images and alleviates
the mode collapse issue. Furthermore, IPL is indepen-
dent of the type of generator and works well with both
GANs and diffusion models, which exhibits good universal-
ity and adaptability. In the future, we will try to apply the
proposed image-specific prompt learning strategy in other
downstream tasks, such as unsupervised image captioning.
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