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Abstract

The recent growth in the consumption of online media
by children during early childhood necessitates data-driven
tools enabling educators to filter out appropriate educa-
tional content for young learners. This paper presents an
approach for detecting educational content in online videos.
We focus on two widely used educational content classes:
literacy and math. For each class, we choose prominent
codes (sub-classes) based on the Common Core Standards.
For example, literacy codes include ‘letter names’, ‘letter
sounds’, and math codes include ‘counting’, ‘sorting’. We
pose this as a fine-grained multilabel classification problem
as videos can contain multiple types of educational content
and the content classes can get visually similar (e.g., ‘letter
names’ vs ‘letter sounds’). We propose a novel class proto-
types based supervised contrastive learning approach that
can handle fine-grained samples associated with multiple
labels. We learn a class prototype for each class and a loss
function is employed to minimize the distances between a
class prototype and the samples from the class. Similarly,
distances between a class prototype and the samples from
other classes are maximized. As the alignment between vi-
sual and audio cues are crucial for effective comprehen-
sion, we consider a multimodal transformer network to cap-
ture the interaction between visual and audio cues in videos
while learning the embedding for videos. For evaluation,
we present a dataset, APPROVE, employing educational
videos from YouTube labeled with fine-grained education
classes by education researchers. APPROVE consists of
193 hours of expert-annotated videos with 19 classes. The
proposed approach outperforms strong baselines on AP-
PROVE and other benchmarks such as Youtube-8M, and
COIN. The dataset is available at https://nusci.
csl.sri.com/project/APPROVE.

*Work partly done during an internship at SRI International.

1. Introduction
With the expansion of internet access and the ubiquitous

availability of smart devices, children increasingly spend a
significant amount of time watching online videos. A recent
nationally representative survey reported that 89% of par-
ents of children aged 11 or younger say their child watches
videos on YouTube [4]. Moreover, it is estimated that young
children in the age range of two to four years consume 2.5
hours and five to eight years consume 3.0 hours per day on
average [45,46]. Childhood is typically a key period for ed-
ucation, especially for learning basic skills such as literacy
and math [20, 25]. Unlike generic online videos, watch-
ing appropriate educational videos supports healthy child
development and learning [7, 22, 23]. Thus, analyzing the
content of these videos may help parents, teachers, and me-
dia developers increase young children’s exposure to high-
quality education videos, which has been shown to produce
meaningful learning gains [22]. As the amount of online
content produced grows exponentially, automated content
understanding methods are essential to facilitate this.

In this work, given a video, our goal is to determine
whether the video contains any educational content and
characterize the content. Detecting educational content re-
quires identifying multiple distinct types of content in a
video while distinguishing between similar content types.
The task is challenging as the education codes by Com-
mon Core Standards [3, 40] can be similar such as ‘letter
names’ and ‘letter sounds’, where the former focuses on the
name of the letter and the latter is based on the phonetic
sound of the letter. Also, understanding education content
requires analyzing both visual and audio cues simultane-
ously as both signals are to be present to ensure effective
learning [3, 40]. This is in contrast to standard video classi-
fication benchmarks such as the sports or generic YouTube
videos in UCF101 [54] Kinetics400 [53], YouTube-8M [1],
where visual cues are often sufficient to detect the different
classes. Finally, unlike standard well-known action videos,
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education codes are more structured and not accessible to
common users. Thus, it requires a carefully curated set
of videos and expert annotations to create a dataset to en-
able a data-driven approach. In this work, we focus on two
widely used educational content classes: literacy and math.
For each class, we choose prominent codes (sub-classes)
based on the Common Core Standards that outline age-
appropriate learning standards [3,40]. For example, literacy
codes include ‘letter names’, ‘letter sounds’, ‘rhyming’, and
math codes include ‘counting’, ‘addition subtraction’, ‘sort-
ing’, ‘analyze shapes’.

We formulate the problem as a multilabel fine-grained
video classification task as a video may contain multiple
types of content that can be similar. We employ multi-
modal cues since besides visual cues, audio cues provide
important cues to distinguish between similar types of ed-
ucational content. We propose a class prototypes based su-
pervised contrastive learning approach to address the above-
mentioned challenges. We learn a prototype embedding for
each class. Then a loss function is employed to minimize
the distance between a class prototype and the samples asso-
ciated with the class label. Similarly, the distance between
a class prototype and the samples without that class label
is maximized. This is unlike the standard supervised con-
trastive learning setup where inter-class distance is maxi-
mized and intra-class distance is minimized by considering
classwise positive and negative samples. This approach is
shown to be effective for single-label setups [26]. However,
it is not straightforward to extend this for the proposed mul-
tilabel setup as samples cannot be identified as positive or
negative due to the multiple labels. We jointly learn the em-
bedding of the class prototypes and the samples. The em-
beddings are learned by a multimodal transformer network
(MTN) that captures the interaction between visual and au-
dio cues in videos. We employ automatic speech recogni-
tion (ASR) to transcribe text from the audio. The MTN con-
sists of video and text encoders that learn modality-specific
embedding and a cross-attention mechanism is employed to
capture the interaction between them. The MTN is end-to-
end learned through the contrastive loss.

Due to the lack of suitable datasets for evaluating fine-
grained classification of education videos, we propose a
new dataset, called APPROVE, of curated YouTube videos
annotated with educational content. We follow Common
Core Standards [3, 40] to select education content suitable
for the kindergarten level. We consider two high-level
classes of educational content: literacy and math. For each
of these content classes, we select a set of codes. For the lit-
eracy class, we select 7 codes and for the math class, we se-
lect 11 codes. Each video is associated with multiple labels
corresponding to these codes. The videos are annotated by
trained education researchers following standard validation
protocol [41] to ensure correctness. APPROVE also con-

sists of carefully chosen background videos, i.e., without
educational content, that are visually similar to the videos
with educational content. APPROVE consists of 193 hours
of expert-annotated videos with 19 classes (7 literacy codes,
11 math codes, and a background) where each video has 3
labels on average.
Our contributions can be summarized as follows:

• APPROVE, a fine-grained multi-label dataset of edu-
cation videos, to promote exploration in this field.

• Class prototypes based contrastive learning frame-
work along with a multi-modal fusion transformer suit-
able for the problem where videos have multiple fine-
grained labels.

• Outperforming relevant baselines on three datasets:
APPROVE, YouTube-8M [1] and COIN [55].

2. Related Works
Self-Supervised Contastive Learning (CL) has been an
effective paradigm for visual representation learning. Meth-
ods such as SimCLR [8], MoCo (Momentum Contrastive
learning) [18], Augmented Multiscale Deep InfoMax
(AMDIM) [5], Contrastive Predictive Coding (CPC) [39],
MoCov2 [10], MoCov3 [12] and SimCLRv2 [9] have
achieved strong performance on image classification bench-
marks. The shared property between these CL frameworks
is that data augmentation is used to generate positive pairs
for CL from a single instance, where other data instances
are treated as negatives. Prototypical Contrastive Learn-
ing (PCL) [30] extends self-supervised contrastive learn-
ing with the idea of clustering data representations during
training to generate unsupervised prototypes which repre-
sent intra-class variation. We utilize class prototypes in-
stead in the supervised setting, to learn fine-grained distinc-
tions between classes.
Supervised CL methods such as SupCon [26] utilize la-
bels to enhance contrastive learning by forming positive
and negative pairs using labels instead of data augmenta-
tion. Supervised Contrastive Learning has also been used
for other tasks such as image segmentation [57] and clas-
sification in the presence of noisy labels [32]. Hierarchical
CL [63] extends SupCon to the hierarchical classification
case. However, SupCon cannot be extended to the multi-
label case in a straightforward manner, as pairs of data sam-
ples with multiple labels cannot be clearly classified just
into positives and negatives.
Weakly-Supervised Multi-Modal CL: Weakly aligned
text-image/video datasets scraped from the web such as
Conceptual Captions [50] and WebVid-10M [6] enable
learning of multi-modal representations. CLIP [42] applies
a cross-modal contrastive loss to train individual text and
image encoders. Everything at Once [51] is able to addition-
ally utilize the audio modality and incorporates a pairwise
fusion encoder which encodes pairs of modalities, as a re-
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Figure 1. Sample video frames from the APPROVE dataset. Videos belong to the (a) literacy classes, (b) math classes, and (c) back-
ground. Background videos do not contain educational content but share visual similarities with educational videos. The videos are labeled
with fine-grained sub-classes, e.g., letter names vs letter sounds.

sult, 6 forward passes of the fusion model are required for 3
modalities. Frozen in Time [6] is able to utilize both image-
text and video-text datasets through the use of a Space-Time
Transformer Visual Encoder. Visual Conditioned GPT [37]
uses a single cross-attention fusion layer to combine pre-
trained CLIP text and visual features. Flamingo [2] adds
cross-attention layers interleaved with language decoder
layers to fuse visual information into text generation. MER-
LOT [60,61] and Triple Contrastive Learning [58] combine
contrastive learning and generative language modeling to
learn aligned text-image representations.

Supervised Multi-Modal Learning: Supervised Multi-
Modal Learning typically relies on crowd-captioned
datasets such as Flickr30k [59] and MS-COCO Cap-
tions [11]. Some prior works such as OSCAR [33] and
VinVL [62] have utilized pre-trained object detectors and
multi-modal transformers to learn image captioning using
supervised aligned datasets. BLIP [28] takes a hybrid ap-
proach where it bootstraps an image captioner using a la-
beled dataset and uses it to generate captions for web im-
ages. This generated corpus is then filtered and used for
learning an aligned representation. ALign BEfore Fuse [29]
highlights the importance of aligning text and image tokens
before fusing them using a multi-modal transformer.

In this paper, we focus on the fine-grained classification
of multilabel educational videos. Due to the lack of suitable
datasets, we propose a new dataset, APPROVE, which is
described next.

3. APPROVE Dataset
We propose a dataset, called APPROVE, of curated

YouTube videos annotated with educational content. AP-
PROVE consists of 193 hours of expert-annotated videos
with 19 classes (7 literacy codes, 11 math, and background)
and each video is associated with approximately 3 labels
on average. We follow the Common Core Standards [3, 40]
to select education content suitable for kindergarten level.
The Common Core Standards outline what students are ex-
pected to know and do at various age ranges and grades.
This is a widely accepted standard followed by a range of

educators. We consider two high-level classes of educa-
tional content: literacy and math. For each of these content
classes, we select a set of codes. For the literacy class, we
select 7 codes including letter names, letter sounds, follow
words, sight words, letters in words, sounds in words, and
rhyming. For the math class, we select 11 codes including
counting, individual number, comparing groups, addition
subtraction, measurable attributes, sorting, spatial language,
shape identification, building drawing, analyzing and com-
paring shapes. More details about the standard and the de-
scription of the codes are provided in the supplementary
material. APPROVE also consists of carefully chosen back-
ground videos, i.e., without educational content, that are vi-
sually similar to the videos with educational content. We
present frames corresponding to these classes in Fig. 1.

Figure 2. Frequency of the classes in APPROVE.
Math codes are in Orange and literacy codes in Blue.

To ensure the quality and correctness of the annotations,
we consider educational researchers to annotate the videos
and follow a standard validation protocol [41]. Each anno-
tator is trained by an expert and annotations on a selected
set are examined before engaging the annotator for the fi-
nal annotation. Annotators start once they reach more than
90% agreement with the expert. Further, we estimate inter-
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Figure 3. Distribution of the number of labels per video.

annotator consistency to filter out anomalies. Details about
the validation process are provided in the supplementary
material. It takes a month to train an education researcher
to match expert-level coding accuracy. On average, it takes
the trained annotators 1 min to annotate 1 min of video.

The videos are curated from YouTube and are annotated
by the trained annotators to determine educational content
in them. Each video can have multiple class labels that are
quite similar making the task a multi-label and fine-grained
classification problem. For example ‘letter names’ and ‘let-
ter sounds’ where visual letters are shown in both but in
’letter sounds’, the phonetic sound on the letter is empha-
sized (Fig. 1 (a)). Similarly, in both ‘build and draw shapes’
and ‘analyzing and comparing shapes’, multiple shapes can
appear but the latter focuses on comparing multiple shapes
by shape and size (Fig. 1 (b)). Class-wise stats are pre-
sented in Fig. 2. Note that the task is different from common
video classification setups where either multi-label or fine-
grained aspects are dealt separately. Single-label datasets
such as HMDB51 [27], UCF101 [54], Kinetics700 [53]
and multi-label ones such as Charades [52] are widely
used benchmarks for this problem. YouTube-Birds and
YouTube-Cars [64] are analogous datasets for object recog-
nition from videos. Multi-Sports [34] and FineGym [49]
label fine-grained action classes for sports. HVU [15] also
adds scenes and attributes annotations along with action and
objects. However, action, object and scene recognition are
not enough for fine-grained video understanding. For in-
stance, videos from a given education provider might share
similar objects (person, chalkboard, etc.) and actions (writ-
ing on chalkboard) while covering different topics (count-
ing, shape recognition etc.) in each video.

4. Proposed Approach
In this section, we first describe the proposed class pro-

totypes based contrastive learning framework suitable for
videos containing multiple educational codes. Then we
present the approach to learning the class prototypes and
finally describe the multimodal transformer network that
learns features by fusing visual and text cues from videos.

4.1. Class prototypes based contrastive learning
In a contrastive learning framework, feature represen-

tations are typically learned by simultaneously minimiz-
ing the distance between positive samples and maximizing

Dataset
Size

(in hr)
Multi-Label

Fine
Grained

Type Annotators

Action Recognition
HMDB 5 ✘ ✘ V Authors
UCF 27 ✘ ✘ V Authors
Kinetics 800 ✘ ✘ V+A Crowd

Video Classification
COIN 476 ✘ ✘ V+A Crowd
YT-8M - ✔ ✘ F Machine

APPROVE 193 ✔ ✔ V+T+A Experts

Table 1. APPROVE dataset compared with selected prior datasets.
V→Video Frames, A→Audio, T→Text, F→Features only.

the distance between negative samples (See Figure 4.(a)).
The positive and negative samples are determined with re-
spect to an anchor sample usually based on the class labels.
For example, supervised contrastive learning (SupCon) [26]
learns a representation to minimize the intra-class distances
and maximize inter-class distances. We denote xi and yi
as the ith sample and its label, respectively. Let’s define
zi as the representation of the ith sample in a batch A, and
sim(zi, zj) =

zi·zj

|zi||zj | the cosine similarity, then the Sup-
Con loss [26] is defined as:

LSupCon =
∑
i∈A

−1

|P (i)|
∑

p∈P (i)

log
exp(sim(zi, zp)/τ)∑

a∈A\i
exp(sim(zi, za)/τ)

,

(1)
where P (i) is the set of positive samples, i.e., with the same
label as zi, in the batch excluding i and a ∈ A\i is the index
of all samples in the batch excluding the ith sample. τ is a
scalar temperature parameter used for scaling similarity val-
ues. The positive pairs are grouped into the numerator and
minimizing the loss minimizes their distance in the learned
representation and vice versa for negative pairs. SupCon is
known to be effective for classifying samples with a single
label. However, it is not straightforward to extend this for
the multilabel setup as beyond positive samples, where all
labels are the same, and negative samples, where none of
the labels is the same, there can be a third scenario where
labels are partially overlapping. Though SupCon has been
extended to hierarchical classification [63], it cannot be di-
rectly extended to the true multi-label case.

To address this issue, we learn class prototypes as the
representative for each class and consider these as anchors
while determining positive and negative samples. Specif-
ically, for a specific class prototype, a representation is
learned to minimize distances between the prototype and
samples with this class label and maximize the distances
between the prototype and samples without this class la-
bel. We compare the proposed approach with the standard
single-label contrastive learning in figure 4. We iteratively
update the class prototypes while learning the feature rep-
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(a) Supervised Contrastive Learning [26] (b) Multi-Label Contrastive Learning [ours]

…

…

…

Figure 4. Contrastive learning operates on the feature space by bringing the representations of similar samples close and pushing distinct
samples apart. Prior work in (a) Supervised Contrastive Learning [26] trains the network by treating instances from the same class as
positive pairs and instances from different classes as negative pairs. This approach doesn’t generalize to multi-label classification tasks,
as some instance pairs have partially overlapping labels. We propose the use of class prototypes to enable (b) Multi-Label Prototypes
Contrastive Learning. Each sample and the class prototypes corresponding to the labels associated with the sample are treated as positive
pairs. Similarly, negative pairs are determined based on the missing class labels. Prototypes are represented by stars (⋆) and inputs as
circles (◦) colored with all their relevant labels. We discuss strategies for initializing and learning the label prototypes in Sec. 4.2.

resentations. We define C = {c1, . . . , cK} as the set of
classes where K is the number of classes. For a sample
x, let’s define Pml(x) = {c+k }, c

+
k ∈ C as the set of mul-

tiple class labels associated with x (positive classes) and
c−k ∈ C \ Pml(x) denotes the missing classes (negative
classes). We define CP = {cp1, . . . , cpK} as the set of
class prototypes. Considering z is the representation for the
sample x, the class prototypes based multilabel contrastive
loss is defined as:

Lmlc(x) =

−1

|Pml(x)|
∑

c+k ∈Pml(x)

[
log

exp(sim(z, cpk)/τ)∑
c−j ∈C\Pml(x)

exp(sim(z, cpj)/τ)

]
.

(2)
Here, minimizing the loss of the positive class prototype
and instance pairs in the numerator minimizes the distance
between the representation z and the class prototypes corre-
sponding to the sample, and vice versa for negative classes.
We also utilize negative sampling to account for the class
imbalance between positives and negatives.

4.2. Learning class prototypes
We aim to learn class-specific prototypes such that the

multilabel samples can be thought of as the combinations of
the class prototypes selected based on the associated labels.
Lets assume Zt is an N × d matrix of d-dimensional rep-
resentations , i.e., zs), of N samples and L ∈ {0, 1}N×K

is corresponding labels matrix with K classes. Let’s de-
note CPt is a matrix of size K × d of K class prototypes
at a training iteration t. Then, Zt = L× CPt + ε, where
ε is the residual noise term. Assuming a Gaussian noise
that is unbiased and uncorrelated with the labels L, the class
prototypes can be approximated as CP ∗

t ≈ (LTL)−1LTZt,
where operation (LTL) results in a square matrix amenable
to inversion. Note that for single labels, this implies averag-

ing the features of the instances belonging to a given class
as the prototype for that class. In a multi-label setup, addi-
tionally, the co-occurrence between the labels is considered.
Finally, the class prototypes are updated with learning iter-
ations as:

CPt+1 = β · CPt + (1− β) · CP ∗
t , (3)

where β is the decay parameter for the exponential moving
averaging. The moving averaging avoids collapsing proto-
types across the training iterations [31].

4.3. Multi-Modal Fusion Transformer
Given a sample video x, we consider multimodal cues

such as visual and audio cues to learn its representation z.
Considering multimodal cues is crucial for content recogni-
tion, specifically for education videos as effective compre-
hension requires attending to both visual demonstration and
audio explaining the educational content [3, 40]. To cap-
ture audio cues, we consider the audio track of the video
and extract speech by removing the background such as
tunes or instruments [21]. Then we employ the automatic
speech recognition (ASR) technique to transcribe text from
the speech [43]. We notice that separating speech from the
background is important for an accurate ASR transcription.
Given the video frames and text transcription, we propose a
multimodal transformer network (MTN) to fuse these cues
using cross-modal attention.

Our MTN (Figure 5) has three components: image en-
coder, text encoder, and fusion encoder to learn visual (zv),
text (zt), and fusion (zf ) representations, respectively. The
sample representation is comprised of these three repre-
sentations z = {zv, zt, zf}.The image encoder is imple-
mented by a vision transformer (ViT) [16] that learns frame
embeddings from the video frames along with a special
CLS for each frame [14]. We pool the CLS tokens across
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Figure 5. Multi-Modal Classification Network. A text encoder
is used to encode ASR text from the video, while an Image En-
coder is used to get tokens representing each frame of the video.
Unimodal pre-training is carried out on the text & image encoders
respectively. Multi-label contrastive loss is used along with shared
prototypes to align the representations across both modalities.
This is followed by joint end-to-end learning of the whole multi-
modal network including the fusion encoder which applies multi-
head self-attention within and across the modalities. The proto-
types are further refined during the multi-modal training phase.

the frames and consider this as a compact video represen-
tation. Similarly, we consider the BERT-based text trans-
former [24] to learn the word embeddings along with the
text CLS token for the entire transcription. We consider
the text CLS as the text representation. Finally, the fusion
encoder fuses the visual and text cues by leveraging cross-
modal attention between frame and word embeddings.

4.4. Inference using prototypes
Existing approaches in contrastive learning [8, 26] usu-

ally discard the MLP layer after the contrastive training, and
a linear classifier is trained on the frozen backbone network.
We rely on the class prototypes to carry out inference by
utilizing the cosine distance between the learned prototypes
and test features. Given our prototype loss-based training,
the estimated probability of a given class should be propor-
tional to the normalized temperature scaled cosine distance

(Equation 4). In practice, we normalize the cosine distance
such that −1 and 1 correspond to a confidence of 0 & 1
respectively. Thus the prediction is made following:

p̂(k|x) ∝ exp(sim(z, cpk)/τ), (4)

where z is the multimodal representation of the sample x.

4.5. Implementation Details
Training strategy for the multimodal fusion: We follow
a two-stage training process: during the initial unimodal
training phase, we utilize fixed prototypes in each modality
to align the representations. Then in the second stage, we
train the unimodal encoders and the multi-modal fusion en-
coder end-to-end. The cross-modal alignment learned dur-
ing the first stage improves the learning of the multi-modal
representation. The multi-modal learning phase consists of
alternating optimization steps of training the network using
our contrastive loss per Sec. 4.1 and refining the class pro-
totypes as described in Sec. 4.2.
Image encoder: For video frames, Random Resized
Crop and RandAugment [13] augmentations are used
from torchvision. We use ImageNet pretrained vision
encoders ResNet50 [19], ViT-B/32 (224×224 resolution)
and ViT-B/16 (384×384 resolution) [17].
Text encoder: We generate text from the videos
using Whisper [43], an open source ASR model.
For data augmentation, we generate four versions
of the ASR text by back-translation using the
Helsinki-NLP/opus-mt-{en-de, en-nl,
en-fr} models through the nlpaug library [38]. Syn-
onym replacement, text span removal and random word
swapping augmentations are also used for the text data. We
use DistilBERT-Base-uncased [48], and t5-small [44] from
HuggingFace transformers library as the text encoder.
Optimizer: We employ AdamW optimizer [36] for train-
ing with a learning rate of 0.0005. Weight decay of 1e-6
is utilized only on the MLP head during contrastive train-
ing and the classifier during BCE/Focal/Asym. loss. Since
pre-trained vision and text backbones are used, the back-
bone learning rate is set to 1/10th of the learning rate for the
head. Exponential Moving Averaging every 10 steps with a
decay of 0.999 was used for the model parameters.

5. Experiments
Datasets. In addition to the proposed APPROVE dataset,
we evaluate our approach on a subset of Youtube-8M [1]
and COIN [55] datasets. YT-8M consists of a diverse set
of YouTube videos with video and audio modalities. We
consider a subset of YT-8M dataset with 46K videos and
165 classes. COIN consists of instructional videos covering
a wide variety of domains and spanning over 180 classes.
Baselines. We compare the efficacy of our multilabel clas-
sification framework against the following baselines:
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Binary cross-entropy: In this baseline, loss for multiple
labels is computed by combining the binary cross-entropy
losses for individual classes.

Focal loss [35]: This considers a modified binary cross-
entropy to assign a higher weight to hard samples by ad-
justing a focusing parameter γ. Negative samples can also
be down-weighted by using a weight α. The focal loss for
a positive label is given as Lfocal(p) = −α(1− p)γ log(p).
We set γ = 2 and α = 0.2 in our experiments.

Asymmetric loss [47]: This builds upon the focal loss
by utilizing different focusing parameters γ+ and γ− for
positive and negative labels. It also ignores the negative
samples with a prediction probability lower than a mar-
gin m. Asymmetric Loss for prediction p corresponding
to label y is given as: Lasym(p, y) = −yL+ − (1− y)L−,
where L+ = (1− p)γ+ · log(p) and
L− = (max(p−m, 0))γ− · log(1−max(p−m, 0)). We
follow the 5-step procedure recommended by the origi-
nal authors to train this baseline. We experimentally set
{γ− = 2, γ+ = 1,m = 0.1} corresponding to the best
performance on APPROVE.
Metrics. In order to develop a reliable education content
detection framework, achieving high precision is crucial.
Thus we consider Recall @ 80% Precision (R@80) as the
primary metric. We also consider the standard area under
the precision-recall curve (AUPR) that is not sensitive to
a specific threshold for making the final prediction. We
also consider a label ranking average precision (LRAP) [56]
metric that is more suitable for the multilabel setup. This es-
timates whether the ground truth classes are predicted with
higher scores than the rest:

LRAP =
1

n

m∑
i=1

1

|Yi|
∑
λ∈Yi

|λ′ ∈ Yi : rnki(λ
′) ≤ rnki(λ)|

rnki(λ)
,

where rnki(λ) is the predicted rank of class λ for sample i.
LRAP is a ranking metric and in independent of a threshold.
Results on APPROVE. We compare the proposed ap-
proach with the baselines in Tab. 2. Our approach outper-
forms the strongest baselines by 3.1% and 2.3% with re-
spect to R@80 and AUPR, respectively. We also present
results for separate models trained on Math and Literacy
subsets of Approve respectively. Results on the Math sub-
set are higher compared to the Literacy subset, which in-
dicates the literacy classes are harder to distinguish mostly
due to the high inter-class similarity. The top three hardest
classes are follow words, letters in words, and
sounds in words and these are from the literacy set.
Results on YT-46K and COIN. Beyond the APPROVE
dataset, we also test our approach on two public datasets:
YT-46K and COIN. Here we provide the results for the
multi-modal models and the results for the single-modality
models are in Section D of the Supplementary Material.

Results on YT-46K are provided in Table 3. As YT-8M

Subset Modality Method AUPR LRAP R@80

All

V
BCE 45.5 54.3 6.9
Focal 45.9 56.6 15.0
Ours 46.7 57.9 19.6

T
BCE 79.8 85.1 63.3
Focal 79.9 85.7 72.8
Ours 82.5 87.4 75.4

V+T

BCE 84.3 88.4 76.3
Focal [35] 86.1 89.1 82.2
Asym. [47] 86.0 89.2 82.4

Ours 88.4 +2.3 90.7 +1.5 85.5 +3.1

MTH V+T
BCE 86.3 92.4 80.3
Focal 87.2 92.1 82.4
Ours 88.4 +1.2 93.2 +1.1 83.2 +0.8

LIT V+T
BCE 72.1 82.9 50.7
Focal 72.7 83.5 50.9
Ours 73.6 +0.9 84.7 +1.2 54.7 +3.8

Table 2. Results on APPROVE dataset. All metrics in %.
V→Video & T→Text. M→ Math & L→ Literacy Subsets.

Modality Method AUPR LRAP R@80

V+T BCE 64.6 70.2 42.3
V+T Focal [35] 69.7 72.7 44.6
V+T Ours 70.9 +1.2 74.9 +2.2 49.1 +4.5

Table 3. Results on YT-46K. V→Video Frames and T→Text.

Modality Method Top-1 Accuracy

V+T CE 53.7
V+T BCE 54.9
V+T Focal [35] 56.1
V+T SupCon [26] 54.7
V+T Ours 57.5 +1.4

Table 4. Results on COIN. V→Video Frames and T→Text.

was primarily collected with the intention of visual classifi-
cation, the additional use of text data leads to a smaller im-
provement compared to APPROVE. Results on COIN are
provided in Table 4. As each video from COIN is mapped
to a single task. Thus, we consider the Top-1 accuracy as
the metric. On COIN we compare our approach with Sup-
Con [26] which is effective for single labels. Note that our
approach outperforms SupCon and this justifies the effec-
tiveness of the class prototypes based training in a generic
contrastive learning framework.

5.1. Ablation Studies
We perform the following ablation studies to quantify

the impact of our approach for learning class prototypes,
the multimodal fusion module, and the choice of visual and
text encoding frameworks.
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(a) Class Prototypes
Variant APPROVE COIN
Random 84.1 56.6
Orthogonal 84.8 57.0
Learned 85.5 57.5
Hierarchical 86.0 57.8

(b) Fusion Encoder Size
Layers APPROVE COIN

1 84.9 57.1
2 85.5 57.5
4 85.3 57.6

(c) Vision Encoder
Vision Model APPROVE COIN
R50 84.8 55.2
ViT-B/32 85.5 57.5
ViT-B/16 83.8 57.8

(d) Text Encoder
Text Model APPROVE COIN
DistilBert-B 85.5 57.5
t5-S 87.3 57.9

Table 5. Ablation studies. R@80% Precision for APPROVE and Top-1 Accuracy for COIN. Default setup is underlined.

(a) Noisy modalities.
% missing APPROVE COIN
0% 85.5 57.5
10% V 80.1 53.3
10% T 75.8 57.2
30% T 68.9 42.8

(b) Run-to-Run Variance
Method APPROVE COIN
BCE 76.3 ± 0.7 54.9 ± 0.6
Focal 82.2 ± 0.5 56.1 ± 0.3
Ours 85.5 ± 0.5 57.5 ± 0.8

(c) Initialization
Method APPROVE COIN
ImageNet &

Wiki-en+TBC
85.5 57.5

CLIP 86.7 63.5

Table 6. Robustness analysis. Our method is robust to partially missing modality and has similar run-to-run variance as baselines.

Learning class prototypes: We compare the two strate-
gies where after initializing the class prototypes, we 1) keep
them fixed and learn only the multimodal embedding of the
samples, and 2) class prototypes and sample embedding are
learned iteratively. The initialization can be done either ran-
domly, or with orthogonal constraints. We note that orthog-
onal initialization performs best in our experiments and it-
erative adjusting the class prototypes achieves better perfor-
mance as shown in Table 5 (a). We also consider hierar-
chical prototypes, for APPROVE, using a 2-level hierarchy
where the first level consists of 18 classes, and the second
level is the 3 super-classes: math, literacy, and background.
The 180 task categories of COIN are organized into 12 do-
mains in the taxonomy provided with the dataset. This hier-
archy imposes an additional constraint on learning the em-
beddings during training.
Fusion Encoder: This evaluates the effect of the number
of layers in the fusion encoder on the final performance. As
expected. the performance improves with more layers and
saturates around 4 layers (Table 5 (b)).
Vision Encoder: This evaluates the effect of the image en-
coder on the final performance. We consider ResNet [19]
and ViT variants [16]. We notice that the ViT-B/16-384 en-
coder works well for the larger COIN dataset, whereas the
ViT-B/32-224 encoder works best for APPROVE (Table 5
(c)).
Text Encoder: This evaluates the effect of the text en-
coder on the final performance. We test DistilBERT and
T5 backbones for the text encoder. BERT is trained to pre-
dict masked spans of text. T5’s unsupervised objective is
similar, however, it trains on predicting the entire sequence
instead of just the masked spans. GPT2 takes an auto-
regressive approach to language modeling (Table 5 (d)).

5.2. Robustness analysis
We evaluate the robustness of our approach as follows:
Noisy modality: YouTube videos may have noisy modal-
ities where some of the video frames are missing or ASR
transcription is noisy. We show that our approach is robust
against the cases where a percentage of video frames or text

words are missing as shown in Tab 6(a).
Run-to-Run variance: The low variance across runs
(Tab 6(b)) indicates that our approach is not sensitive to ran-
dom initialization of the class prototypes.
Initializing the encoders: We consider the ImageNet pre-
training for the image encoder, while English Wikipedia +
Toronto Book Corpus is used to pre-train the text encoder.
We provide results where the backbones are initialized with
CLIP [42], which provides a more aligned vision-text repre-
sentation. As expected, the results are better with the CLIP
initialization (Tab 6(c)). The improvements are more sig-
nificant on COIN than APPROVE as CLIP models may not
be exposed to educational videos.

6. Conclusion
We have proposed an approach for detecting educational

content in online videos. The problem is formulated as
a fine-grained multilabel video classification task and we
have considered class-prototypes based contrastive learn-
ing to address this. We have employed a multimodal trans-
former network to fuse visual and audio cues. This is cru-
cial for comprehending educational content as both visual
and audio cues are to be aligned to ensure effective compre-
hension. Our approach is shown to be effective in distin-
guishing fine-grained educational content with high inter-
class similarity. We have introduced APPROVE - a dataset
with 193 hours of expert-annotated educational videos. Be-
yond APPROVE, we have evaluated our approach on COIN
and YouTube-8M datasets where our approach outperforms
the competitive baselines.
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