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Question: Are there both ties and glasses in the picture?
Program:
BOX0=Loc(image=IMAGE, object=‘ties’)
ANSWER0=Count(box=BOX0)
BOX1=Loc(image=IMAGE, object=‘glasses’)
ANSWER1=Count(box=BOX1)
ANSWER2=Eval(“‘yes’ if {ANSWER0} > 0 and {ANSWER1} > 0 else ‘no’”)
RESULT=ANSWER2
Prediction: no

IMAGE:

Compositional Visual Question Answering

LEFT: RIGHT:

Statement: The left and right image contains a total of six people and two boats.
Program:
ANSWER0=Vqa(image=LEFT, question=‘How many people are in the image?’)
ANSWER1=Vqa(image=RIGHT, question=‘How many people are in the image?’)
ANSWER2=Vqa(image=LEFT, question=‘How many boats are in the image?’)
ANSWER3=Vqa(image=RIGHT, question=‘How many boats are in the image?’)
ANSWER4=Eval(‘{ANSWER0} + {ANSWER1} == 6 and {ANSWER2} + {ANSWER3} == 2’)
RESULT=ANSWER4
Prediction: False

Natural Language Visual Reasoning

IMAGE: Prediction: IMAGE0

Instruction: Tag the 7 main characters on the TV show Big Bang Theory
Program:
OBJ0=FaceDet(image=IMAGE)
LIST0=List(query=‘main characters on the TV show Big Bang Theory’, max=7)
OBJ1=Classify(image=IMAGE, object=OBJ0, categories=LIST0)
IMAGE0=Tag(image=IMAGE, object=OBJ1)
RESULT=IMAGE0

Factual Knowledge Object Tagging

IMAGE: Prediction: IMAGE1

Instruction: Hide Daniel Craig with 8) and Sean Connery with ;)
Program:
OBJ0=FaceDet(image=IMAGE)
OBJ1=Select(image=IMAGE, object=OBJ0, query=‘Daniel Craig’, category=None)
IMAGE0=Emoji(image=IMAGE, object=OBJ1, emoji=‘smiling_face_with_sunglasses’)
OBJ2=Select(image=IMAGE, object=OBJ0, query=‘Sean Connery’, category: None)
IMAGE1=Emoji(image=IMAGE0, object=OBJ2, emoji=‘winking_face’)
RESULT=IMAGE1

Natural Language Image Editing

IMAGE: Prediction: IMAGE0

Instruction: Replace desert with lush green grass
Program:
OBJ0=Seg(image=IMAGE)
OBJ1=Select(image=IMAGE, object=OBJ0, query=‘desert’, category=None)
IMAGE0=Replace(image=IMAGE, object=OBJ1, prompt=‘lush green grass’)
RESULT=IMAGE0

IMAGE: Prediction: IMAGE0

Instruction: Create a color pop of Barack Obama (person)
Program:
OBJ0=Seg(image=IMAGE)
OBJ1=Select(image=IMAGE, object=OBJ0, query=‘Barack Obama’, category=‘person’)
IMAGE0=ColorPop(image=IMAGE, object=OBJ1)
RESULT=IMAGE0
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Figure 1. VISPROG is a modular and interpretable neuro-symbolic system for compositional visual reasoning. Given a few examples
of natural language instructions and the desired high-level programs, VISPROG generates a program for any new instruction using in-
context learning in GPT-3 and then executes the program on the input image(s) to obtain the prediction. VISPROG also summarizes the
intermediate outputs into an interpretable visual rationale (Fig. 4). We demonstrate VISPROG on tasks that require composing a diverse
set of modules for image understanding and manipulation, knowledge retrieval, and arithmetic and logical operations.

Abstract

We present VISPROG, a neuro-symbolic approach to
solving complex and compositional visual tasks given nat-
ural language instructions. VISPROG avoids the need
for any task-specific training. Instead, it uses the in-
context learning ability of large language models to gener-
ate python-like modular programs, which are then executed
to get both the solution and a comprehensive and inter-
pretable rationale. Each line of the generated program may
invoke one of several off-the-shelf computer vision models,

image processing subroutines, or python functions to pro-
duce intermediate outputs that may be consumed by subse-
quent parts of the program. We demonstrate the flexibility
of VISPROG on 4 diverse tasks - compositional visual ques-
tion answering, zero-shot reasoning on image pairs, factual
knowledge object tagging, and language-guided image edit-
ing. We believe neuro-symbolic approaches like VISPROG
are an exciting avenue to easily and effectively expand the
scope of AI systems to serve the long tail of complex tasks
that people may wish to perform.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
The pursuit of general purpose AI systems has lead to

the development of capable end-to-end trainable models
[1, 5, 8, 13, 17, 22, 24], many of which aspire to provide a
simple natural language interface for a user to interact with
the model. The predominant approach to building these
systems has been massive-scale unsupervised pretraining
followed by supervised multitask training. However, this
approach requires a well curated dataset for each task that
makes it challenging to scale to the infinitely long tail of
complex tasks we would eventually like these systems to
perform. In this work, we explore the use of large language
models to tackle the long tail of complex tasks by decom-
posing these tasks described in natural language into sim-
pler steps that may be handled by specialized end-to-end
trained models or other programs.

Imagine instructing a vision system to “Tag the 7 main
characters on the TV show Big Bang Theory in this image.”
To perform this task, the system first needs to understand
the intent of the instruction and then perform a sequence
of steps - detect the faces, retrieve list of main characters
on Big Bang Theory from a knowledge base, classify faces
using the list of characters, and tag the image with recog-
nized character’s faces and names. While different vision
and language systems exist to perform each of these steps,
executing this task described in natural language is beyond
the scope of end-to-end trained systems.

We introduce VISPROG which inputs visual data (a sin-
gle image or a set of images) along with a natural language
instruction, generates a sequence of steps, a visual pro-
gram if you will, and then executes these steps to produce
the desired output. Each line in a visual program invokes
one among a wide range of modules currently supported
by the system. Modules may be off-the-shelf computer vi-
sion models, language models, image processing subrou-
tines in OpenCV [4], or arithmetic and logical operators.
Modules consume inputs that are produced by executing
previous lines of code and output intermediate results that
can be consumed downstream. In the example above, the
visual program generated by VISPROG invokes a face de-
tector [16], GPT-3 [5] as a knowledge retrieval system, and
CLIP [20] as an open-vocabulary image classifier to pro-
duce the desired output (see Fig. 1).

VISPROG improves upon previous methods for gener-
ating and executing programs for vision applications. For
the visual question answering (VQA) task, Neural Module
Networks (NMN) [2,9,10,12] compose a question-specific,
end-to-end trainable network from specialized, differen-
tiable neural modules. These approaches either use brittle,
off-the-shelf semantic parsers to deterministically compute
the layout of modules, or learn a layout generator through
weak answer supervision via REINFORCE [30]. In con-
trast, VISPROG uses a powerful language model (GPT-3)

Figure 2. Modules currently supported in VISPROG. Red
modules use neural models (OWL-ViT [19], DSFD [16], Mask-
Former [6], CLIP [20], ViLT [15], and Stable Diffusion [25]).
Blue modules use image processing and other python subroutines.
These modules are invoked in programs generated from natural
language instructions. Adding new modules to extend VISPROG’s
capabilities is straightforward (Code. 1).

and a small number of in-context examples to create com-
plex programs without requiring any training1. Programs
created by VISPROG also use a higher-level of abstraction
than NMNs and invoke trained state-of-the-art models and
non-neural python subroutines (Fig. 2). These advantages
make VISPROG an easy-to-use, performant, and modular
neuro-symbolic system.

VISPROG is also highly interpretable. First, VISPROG
produces easy-to-understand programs which a user can
verify for logical correctness. Second, by breaking down
the prediction into simple steps, VISPROG allows a user to
inspect the outputs of intermediate steps to diagnose errors
and if required, intervene in the reasoning process. Alto-
gether, an executed program with intermediate step results
(e.g. text, bounding boxes, segmentation masks, generated
images, etc.) linked together to depict the flow of informa-
tion serves as a visual rationale for the prediction.

To demonstrate its flexibility, we use VISPROG for 4 dif-
ferent tasks that share some common skills (e.g. for im-
age parsing) while also requiring some degree of special-
ized reasoning and visual manipulation capabilities. These
tasks are - (i) compositional visual question answering; (ii)
zero-shot natural language visual reasoning (NLVR) on im-
age pairs; (iii) factual knowledge object tagging from natu-
ral language instructions; and (iv) language-guided image
editing. We emphasize that neither the language model
nor any of the modules are finetuned in any way. Adapt-
ing VISPROG to any task is as simple as providing a few
in-context examples consisting of natural language instruc-
tions and the corresponding programs. While easy to use,
VISPROG shows an impressive gain of 2.7 points over a
base VQA model on the compositional VQA task, strong
zero-shot accuracy of 62.4% on NLVR without ever train-
ing on image pairs, and delightful qualitative and quantita-
tive results on knowledge tagging and image editing tasks.

1We use “training” to refer to gradient-based learning to differentiate it
from in-context learning which only involves a feedforward pass.
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Our key contributions include - (i) VISPROG - a sys-
tem that uses the in-context learning ability of a language
model to generate visual programs from natural language
instructions for compositional visual tasks (Sec. 3); (ii)
demonstrating the flexibility of VISPROG on complex vi-
sual tasks such as factual knowledge object tagging and lan-
guage guided image editing (Secs. 4.3 and 4.4) that have
eluded or seen limited success with a single end-to-end
model; and (iii) producing visual rationales for these tasks
and showing their utility for error analysis and user-driven
instruction tuning to improve VISPROG’s performance sig-
nificantly (Sec. 5.3).

2. Related Work
Neuro-symbolic approaches have seen renewed momen-

tum owing to the incredible understanding, generation, and
in-context learning capabilities of large language models
(LLMs). We now discuss previous program generation and
execution approaches for visual tasks, recent work in using
LLMs for vision, and advances in reasoning methods for
language tasks.
Program generation and execution for visual tasks. Neu-
ral module networks (NMN) [2] pioneered modular and
compositional approaches for the visual question answer-
ing (VQA) task. NMNs compose neural modules into an
end-to-end differentiable network. While early attempts use
off-the-shelf parsers [2], recent methods [9, 10, 12] learn
the layout generation model jointly with the neural mod-
ules using REINFORCE [30] and weak answer supervision.
While similar in spirit to NMNs, VISPROG has several ad-
vantages over NMNs. First, VISPROG generates high-level
programs that invoke trained state-of-the-art neural models
and other python functions at intermediate steps as opposed
to generating end-to-end neural networks. This makes it
easy to incorporate symbolic, non-differentiable modules.
Second, VISPROG leverages the in-context learning ability
of LLMs [5] to generate programs by prompting the LLM
(GPT-3) with a natural language instruction (or a visual
question or a statement to be verified) along with a few ex-
amples of similar instructions and their corresponding pro-
grams thereby removing the need to train specialized pro-
gram generators for each task.
LLMs for visual tasks. LLMs and in-context learning have
been applied to visual tasks. PICa [31] uses LLMs for a
knowledge-based VQA [18] task. PICa represents the vi-
sual information in images as text via captions, objects, and
attributes and feeds this textual representation to GPT-3
along with the question and in-context examples to directly
generate the answer. Socratic models (SMs) [33], com-
pose pretrained models from different modalities such as
language (BERT [7], GPT-2 [21]), vision-language (CLIP
[20]), and audio-language (mSLAM [3]), to perform a num-
ber of zero-shot tasks, including image captioning, video-

to-text retrieval, and robot planning. However, in SMs the
composition is pre-determined and fixed for each task. In
contrast, VISPROG determines how to compose models for
each instance by generating programs based on the instruc-
tion, question, or statement. We demonstrate VISPROG’s
ability to handle complex instructions that involve diverse
capabilities (20 modules) and varied input (text, image, and
image pairs), intermediate (text, image, bounding boxes,
segmentation masks), and output modalities (text and im-
ages). Similar to VISPROG, ProgPrompt [26] is a concur-
rent work that demonstrates the ability of LLMs to gener-
ate python-like situated robot action plans from natural lan-
guage instructions. While ProgPrompt modules (such as
“find” or “grab”) take strings (typically object names) as in-
put, VISPROG programs are more general. In each step in
a VISPROG program, a module could accept multiple ar-
guments including strings, numbers, arithmetic and logical
expressions, or arbitrary python objects (such as list() or
dict() instances containing bounding boxes or segmenta-
tion masks) produced by previous steps.
Reasoning via Prompting in NLP. There is a growing
body of literature on using LLMs for language reason-
ing tasks via prompting. Chain-of-Thought (CoT) prompt-
ing [29], where a language model is prompted with in-
context examples of inputs, chain-of-thought rationales (a
series of intermediate reasoning steps), and outputs, has
shown impressive abilities for solving math reasoning prob-
lems. While CoT relies on the ability of LLMs to both gen-
erate a reasoning path and execute it, approaches similar to
VISPROG have been applied to language tasks, where a de-
composer pompt [14] is used first to generate a sequence of
sub-tasks which are then handled by sub-task handlers.

3. Visual Programming
Over the last few years, the AI community has pro-

duced high-performance, task-specific models for many vi-
sion and language tasks such as object detection, segmenta-
tion, VQA, captioning, and text-to-image generation. While
each of these models solves a well-defined but narrow prob-
lem, the tasks we usually want to solve in the real world are
often broader and loosely defined.

To solve such practical tasks, one has to either collect a
new task-specific dataset, which can be expensive, or metic-
ulously compose a program that invokes multiple neural
models, image processing subroutines (e.g. image resizing,
cropping, filtering, and colorspace conversions), and other
computation (e.g. database lookup, or arithmetic and logi-
cal operations). Manually creating these programs for the
infinitely long tail of complex tasks we encounter daily not
only requires programming expertise but is also slow, la-
bor intensive, and ultimately insufficient to cover the space
of all tasks. What if, we could describe the task in natural
language and have an AI system generate and execute the
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Figure 3. Program generation in VISPROG.

corresponding visual program without any training?
Large language models for visual programming. Large
language models such as GPT-3 have shown a remark-
able ability to generalize to new samples for a task hav-
ing seen a handful of input and output demonstrations in-
context. For example, prompting GPT-3 with two English-
to-French translation examples and a new English phrase

good morning -> bonjour
good day -> bonne journée
good evening ->

produces the French translation “bonsoir”. Note that we did
not have to finetune GPT-3 to perform the task of trans-
lation on the thrid phrase. VISPROG uses this in-context
learning ability of GPT-3 to output visual programs for nat-
ural language instructions.

Similar to English and French translation pairs in the ex-
ample above, we prompt GPT-3 with pairs of instructions
and the desired high-level program. Fig. 3 shows such a
prompt for an image editing task. The programs in the in-
context examples are manually written and can typically be
constructed without an accompanying image. Each line of
a VISPROG program, or a program step, consists of the
name of a module, module’s input argument names and
their values, and an output variable name. VISPROG pro-
grams often use output variables from past steps as inputs
to future steps. We use descriptive module names (e.g. “Se-
lect”, “ColorPop”, “Replace”), argument names (e.g. “im-
age”, “object”, “query”), and variable names (e.g. “IM-
AGE”, “OBJ”) to allow GPT-3 to understand the input and
output type, and function of each module. During execu-
tion the output variables may be used to store arbitrary data
types. For instance “OBJ”s are list of objects in the image,

with mask, bounding box, and text (e.g. category name) as-
sociated with each object.

These in-context examples are fed into GPT-3 along
with a new natural language instruction. Without observ-
ing the image or its content, VISPROG generates a program
(bottom of Fig. 3) that can be executed on the input image(s)
to perform the described task.

class VisProgModule():
def __init__(self):
# load a trained model; move to GPU

def html(self,inputs: List,output: Any):
# return an html string visualizing step I/O

def parse(self,step: str):
# parse step and return list of input values/variable names
# and output variable name

def execute(self,step: str,state: Dict):
inputs,input_var_names,output_var_name = self.parse(step)

# get values of input variables from state
for var_name in input_var_names:
inputs.append(state[var_name])

# perform computation using the loaded model
output = some_computation(inputs)

# update state
state[output_var_name] = output

# visual summary of the step computation
step_html = self.html(inputs,output)
return output, step_html

Code 1. Implementation of a VISPROG module.

Modules. VISPROG currently supports 20 modules (Fig. 2)
for enabling capabilities such as image understanding, im-
age manipulation (including generation), knowledge re-
trieval, and performing arithmetic and logical operations. In
VISPROG, each module is implemented as a Python class
(Code. 1) that has methods to: (i) parse the line to ex-
tract the input argument names and values, and the out-
put variable name; (ii) execute the necessary computation
that may involve trained neural models and update the pro-
gram state with the output variable name and value; and (iii)
summarize the step’s computation visually using html (used
later to create a visual rationale). Adding new modules to
VISPROG simply requires implementing and registering a
module class, while the execution of the programs using
this module is handled automatically by the VISPROG in-
terpreter, which is described next.
Program Execution. The program execution is handled by
an interpreter. The interpreter initializes the program state
(a dictionary mapping variables names to their values) with
the inputs, and steps through the program line-by-line while
invoking the correct module with the inputs specified in that
line. After executing each step, the program state is updated
with the name and value of the step’s output.
Visual Rationale. In addition to performing the necessary
computation, each module class also implements a method
called html() to visually summarize the inputs and outputs
of the module in an HTML snippet. The interpreter sim-
ply stitches the HTML summary of all program steps into
a visual rationale (Fig. 4) that can be used to analyze the
logical correctness of the program as well as inspect the in-
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ß IMAGE

ß OBJ0=Seg(
image=IMAGE)

ß OBJ1=Select(
image=IMAGE,
object=OBJ0,
query=‘ground’)

ß IMAGE0=Replace(
image=IMAGE,
object=OBJ1,
prompt=‘white snow’)

ß OBJ2=Seg(
image=IMAGE0)

ß OBJ3=Select(
image=IMAGE0,
object=OBJ2,
query=‘bear’)

ß IMAGE1=Replace(
image=IMAGE0,
object=OBJ3,
prompt=‘white polar bear’)

Instruction: Replace the ground 
with white snow and the bear 
with a white polar bear

Prediction:

ß LEFT

ß RIGHT

2 ß ANSWER0=Vqa(
image=LEFT,
question=‘How many animals         
are in the flowered field?’)

1 ß ANSWER1=Vqa(
image=RIGHT,
question=‘How many animals         
are in the flowered field?’)

True ß ANSWER2=Eval(expr=‘{ANSWER0} + {ANSWER1} >= 3?’)
=Eval(expr=‘2 + 1 >= 3?’)

Statement: At least three 
animals are in a flowered field

Prediction: True 

LEFT:

RIGHT:

Figure 4. Visual rationales generated by VISPROG. These ra-
tionales visually summarize the input and output of each computa-
tional step in the generated program during inference for an image
editing (top) and NLVR task (bottom).

termediate outputs. The visual rationales also enable users
to understand reasons for failure and tweak the natural lan-
guage instructions minimally to improve performance. See
Sec. 5.3 for more details.

4. Tasks
VISPROG provides a flexible framework that can be ap-

plied to a diverse range of complex visual tasks. We eval-
uate VISPROG on 4 tasks that require capabilities ranging
from spatial reasoning, reasoning about multiple images,
knowledge retrieval, and image generation and manipula-
tion. Fig. 5 summarizes the inputs, outputs, and modules
used for these tasks. We now describe these tasks, their
evaluation settings, and the choice of in-context examples.

4.1. Compositional Visual Question Answering

VISPROG is compositional by construction which makes
it suitable for the compositional, multi-step visual ques-
tion answering task: GQA [11]. Modules for the GQA
task include those for open vocabulary localization, a VQA
module, functions for cropping image regions given bound-
ing box co-ordinates or spatial prepositions (such as above,
left, etc.), module to count boxes, and a module to evaluate
Python expressions. For example, consider the question:

Figure 5. We evaluate VISPROG on a diverse set of tasks. The
tasks span a variety of inputs and outputs and reuse modules (Loc,
FaceDet, VQA) whenever possible.

“Is the small truck to the left or to the right of the people
that are wearing helmets?”. VISPROG first localizes “peo-
ple wearing helmets”, crops the region to the left (or right)
of these people, checks if there is a “small truck” on that
side, and return “left” if so and “right” otherwise. VISPROG
uses the question answering module based on VILT [15],
but instead of simply passing the complex original question
to VILT, VISPROG invokes it for simpler tasks like identi-
fying the contents within an image patch. As a result, our
resulting VISPROG for GQA is not only more interpretable
than VILT but also more accurate (Tab. 1). Alternatively,
one could completely eliminate the need for a QA model
like ViLT and use other systems like CLIP and object de-
tectors, but we leave that for future investigation.
Evaluation. In order to limit the money spent on generating
programs with GPT-3, we create a subset of GQA for eval-
uation. Each question in GQA is annotated with a question
type. To evaluate on a diverse set of question types (∼ 100
detailed types), we randomly sample up to k samples per
question type from the balanced val (k = 5) and testdev
(k = 20) sets.
Prompts. We manually annotate 31 random questions from
the balanced train set with desired VISPROG programs. An-
notating questions with programs is easy and requires writ-
ing down the chain of reasoning required to answer that par-
ticular question. We provide a smaller subset of in context
examples to GPT-3, randomly sampled from this list to re-
duce the cost of answering each GQA question.

4.2. Zero-Shot Reasoning on Image Pairs

VQA models are trained to answer questions about a sin-
gle image. In practice, one might require a system to an-
swer questions about a collection of images. For example,
a user may ask a system to parse their vacation photo album
and answer the question: “Which landmark did we visit, the
day after we saw the Eiffel Tower?”. Instead of assembling
an expensive dataset and training a multi-image model, we
demonstrate the ability of VISPROG to use a single-image
VQA system to solve a task involving multiple images with-
out training on multi-image examples.

We showcase this ability on the NLVRV2 [27] bench-
mark, which involves verifying statements about image
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pairs. Typically, tackling the NLVRV2 challenge requires
training custom architectures that take image pairs as input
on NLVRV2’s train set. Instead, VISPROG achieves this by
decomposing a complex statement into simpler questions
about individual images and a python expression involving
arithmetic and logical operators and answers to the image-
level questions. The VQA model VILT-VQA is used to get
image-level answers, and the python expression is evaluated
to verify the statement.
Evaluation. We create a small validation set by sampling
250 random samples from the NLVRV2 dev set to guide
prompt selection, and test generalization on NLVRV2’s full
public test set.
Prompts. We sample and annotate VISPROG programs for
16 random statements in the NLVRV2 train set. Since some
of these examples are redundant (similar program structure)
we also create a curated subset of 12 examples by removing
4 redundant ones.

4.3. Factual Knowledge Object Tagging

We often want to identify people and objects in images
whose names are unknown to us. For instance, we might
want to identify celebrities, politicians, characters in TV
shows, flags of countries, logos of corporations, popular
cars and their manufacturers, species of organisms, and so
on. Solving this task requires not only localizing people,
faces, and objects but also looking up factual knowledge in
an external knowledge base to construct a set of categories
for classification, such as names of the characters on a TV
show. We refer to this task as Factual Knowledge Object
Tagging or Knowledge Tagging for short.

For solving Knowledge Tagging, VISPROG uses GPT-3
as an implicit knowledge base that can be queried with nat-
ural language prompts such as “List the main characters on
the TV show Big Bang Theory separated by commas.” This
generated category list can then be used by a CLIP image
classification module that classifies image regions produced
by localization and face detection modules. VISPROG’s
program generator automatically determines whether to use
a face detector or an open-vocabulary localizer depending
on the context in the natural language instruction. VISPROG
also estimates the maximum size of the category list re-
trieved. For instance, “Tag the logos of the top 5 german
car companies” generates a list of 5 categories, while “Tag
the logos of german car companies” produces a list of arbi-
trary length determined by GPT-3 with a cut-off at 20. This
allows users to easily control the noise in the classification
process by tweaking their instructions.
Evaluation. To evaluate VISPROG on this task, we anno-
tate 100 tagging instructions across 46 images that require
external knowledge to tag 253 object instances including
personalities across pop culture, politics, sports, and art, as
well as a varieties of objects (e.g. cars, flags, fruits, appli-

ances, furniture etc.). For each instruction, we measure both
localization and tagging performance via precision (fraction
of predicted boxes that are correct) and recall (fraction of
ground truth objects that are correctly predicted). Tagging
metrics require both the predicted bounding box and the as-
sociated tag or class label to be correct, while localization
ignores the tag. To determine localization correctness, we
use an IoU threshold of 0.5. We summarize localization
and tagging performance by F1 scores (harmonic mean of
the average precision and recall across instructions).
Prompts. We create 14 in-context examples for this task.
Note that the instructions for these examples were halluci-
nated i.e. no images were associated with these examples.

4.4. Image Editing with Natural Language

Text to image generation has made impressive strides
over the last few years with models like DALL-E [23],
Parti [32], and Stable Diffusion [25]. However, it is still be-
yond the capability of these models to handle prompts like
”Hide the face of Daniel Craig with :p” (de-identification
or privacy preservation), or ”Create a color pop of Daniel
Craig and blur the background” (object highlighting) even
though these are relatively simple to achieve programmat-
ically using a combination of face detection, segmentation
and image processing modules. Achieving a sophisticated
edit such as ”Replace Barack Obama with Barack Obama
wearing sunglasses” (object replacement), first requires
identifying the object of interest, generating a mask of the
object to be replaced and then invoking an image inpaint-
ing model (we use Stable Diffusion) with the original im-
age, mask specifying the pixels to replace, and a description
of the new pixels to generate at that location. VISPROG,
when equipped with the necessary modules and example
programs, can handle very complex instructions with ease.
Evaluation. To test VISPROG on the image editing instruc-
tions for de-identification, object highlighting, and object
replacement, we collect 107 instructions across 65 images.
We manually score the predictions for correctness and re-
port accuracy. Note that we do not penalize visual artifacts
for the object replacement sub-task which uses Stable Diffu-
sion as long as the generated image is semantically correct.
Prompts. Similar to knowledge tagging, we create 10 in-
context examples for this task with no associated images.

5. Experiments and Analysis

Our experiments evaluate the effect of number of
prompts on GQA and NLVR performance (Sec. 5.1), gen-
eralization of VISPROG on the four tasks comparing vari-
ous prompting strategies (Sec. 5.2), analyze the sources of
error for each task (Fig. 9), and study the utility of visual
rationales for diagnosing errors and improving VISPROG’s
performance through instruction tuning (Sec. 5.3).
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Figure 6. Performance improves with number of in-context ex-
amples on GQA and NLVRV2 validation sets. The error bars
represent 95% confidence interval across 5 runs. Predictions from
the same runs are used for majority voting. (Sec. 5.1)

5.1. Effect of prompt size

Fig. 6 shows that validation performance increases pro-
gressively with the number of in-context examples used in
the prompts for both GQA and NLVR. Each run randomly
selects a subset of the annotated in-context examples based
on a random seed. We also find that majority voting across
the random seeds leads to consistently better performance
than the average performance across runs. This is consis-
tent with findings in Chain-of-Thought [29] reasoning liter-
ature for math reasoning problems [28]. On NLVR, the per-
formance of VISPROG saturates with fewer prompts than
GQA. We believe this is because NLVRV2 programs re-
quire fewer modules and hence fewer demonstrations for
using those modules than GQA.

5.2. Generalization

GQA. In Tab. 1 we evaluate different prompting strategies
on the GQA testdev set. For the largest prompt size evalu-
ated on the val set (24 in-context examples), we compare the
random strategy consisting of the VISPROG’s best prompt
chosen amongst 5 runs on the validation set (each run ran-
domly samples in-context examples from 31 annotated ex-
amples) and the majority voting strategy which takes max-
imum consensus predictions for each question across 5
runs. While “random” prompts only slightly outperform
VILT-VQA, voting leads to a significant gain of 2.7 points.
This is because voting across multiple runs, each with a dif-
ferent set of in-context examples, effectively increases the
total number of in-context examples seen for each predic-
tion. We also evaluate a manually curated prompt consist-
ing of 20 examples - 16 from the 31 annotated examples,
and 4 additional hallucinated examples meant to provide a
better coverage for failure cases observed in the validation
set. The curated prompt performs just as well as the vot-
ing strategy while using 5× less compute, highlighting the
promise of prompt engineering.
NLVR. Tab. 2 shows performance of VISPROG on the
NLVRV2 test set and compares random, voting, and
curated prompting strategies as done with GQA. While
VISPROG performs the NLVR task zero-shot without ever

Method
Prompting

strategy Runs
Context examples

per run Accuracy

VILT-VQA - 1 - 47.8
VISPROG curated 1 20 50.0
VISPROG random 1 24 48.2
VISPROG voting 5 24 50.5

Table 1. GQA testdev results. We report performance on a subset
of the original GQA testdev set as described in Sec. 4.1.

Method
Prompting

strategy Finetuned Runs
Context examples

per run Accuracy

VILT-NLVR - ✓ 1 - 76.3
VISPROG curated ✗ 1 12 61.8
VISPROG random ✗ 1 16 61.3
VISPROG voting ✗ 5 16 62.4

Table 2. NLVRV2 test results. VISPROG performs NLVR zero-
shot i.e. without training any module on image pairs. VILT-NLVR,
a VILT model finetuned on NLVRV2, serves as an upper bound.

Instructions Tagging Localization
precision recall F1 precision recall F1

Original 69.0 59.1 63.7 87.2 74.9 80.6
Modified 77.6 73.9 75.7 87.4 82.5 84.9

Table 3. Knowledge tagging results. The table shows perfor-
mance on original instructions as well as modified instructions
created after inspecting visual rationales to understand instance-
specific sources of errors.

Original Modified

Accuracy 59.8 66.4

Table 4. Image editing results. We manually evaluate each pre-
diction for semantic correctness.

training on image pairs, we report VILT-NLVR, a VILT
model finetuned on NLVRV2 as an upper bound on per-
formance. While several points behind the upper bound,
VISPROG shows strong zero-shot performance using only a
single-image VQA model for image understanding, and an
LLM for reasoning. Note that, VISPROG uses VILT-VQA
for its VQA module which is trained on VQAV2 a single
image question answer task, but not NLVRV2.
Knowledge Tagging. Tab. 3 shows localization and tag-
ging performance for the Knowledge Tagging task. All in-
structions for this task not only require open vocabulary lo-
calization but also querying a knowledge base to fetch the
categories to tag localized objects with. This makes it an
impossible task for object detectors alone. With the orig-
inal instructions, VISPROG achieves an impressive 63.7%
F1 score for tagging, which involves both correctly local-
izing and naming the objects, and 80.6% F1 score for lo-
calization alone. Visual rationales in VISPROG allow fur-
ther performance gains by modifying the instructions. See
Sec. 5.3 for more details on instruction tuning.
Image Editing. Tab. 4 shows the performance on the
language-guided image editing task. Fig. 7 shows the wide
range of manipulations possible with the current set of mod-
ules in VISPROG including face manipulations, highlight-
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Replace Leonardo DiCaprio 
with Leonardo DiCaprio 
wearing sunglasses

Replace Anne Hathaway with 
Emma Watson and Meryl Streep 
with Jennifer Lawrence

Create a color pop of the 
woman in blue and the woman in 
red and blur the background

Replace the desert 
by sandy beach

Replace the couch with a 
plush blue couch

Tag the women leaders of Germany, 
Taiwan, and New Zealand

Tag the three female lead 
characters from Friends series

Tag these Scandinavian flags 
with their countries

Tag the painting of Girl with a Pearl 
Earring with its painter

Figure 7. Qualitative results for image editing (top) and knowledge tagging tasks (bottom).

Figure 8. Instruction tuning using visual rationales. By reveal-
ing the reason for failures, VISPROG allows user to modify the
original instruction to improve performance.

ing one or more objects in the image via stylistic effects
like color popping and background blur, and changing scene
context by replacing key elements in the scene (e.g. desert).

5.3. Utility of Visual Rationales

Error Analysis. Visual rationales from VISPROG allow
a thorough analysis of failure modes. In Fig. 9, we in-
spect rationales for ∼ 100 samples per task to break down
the sources of errors. Such analysis provides a clear path
towards improving performance of VISPROG on various
tasks. For instance, since incorrect programs are the leading
source of errors on GQA affecting 16% of samples, perfor-
mance on GQA may be improved by providing more in-
context examples similar to the failed questions. Perfor-
mance may also be improved by upgrading models used to
implement the high-error modules to more performant ones.
For example, replacing the VILT-VQA model with a better
VQA model for NLVR could improve performance by up
to 24% (Fig. 9). Similarly, improving models used to im-
plement “List” and “Select” modules, the major sources of
error for knowledge tagging and image editing tasks, could
significantly reduce errors.
Instruction tuning. To be useful, a visual rationale must ul-
timately allow users to improve the performance of the sys-
tem on their task. For knowledge tagging and image editing
tasks, we study if visual rationales can help a user mod-

GQA NLVR

Knowledge 
Tagging

Image 
Editing

Figure 9. Sources of error in VISPROG.

ify or tune the instructions to achieve better performance.
Fig. 8 shows how a localization error revealed through vi-
sual rationales enables a user to modify the instructions such
that it results in a better query for the localization module.
Other ways of modifying instructions include providing a
better query for knowledge retrieval or a category name for
the Select module to restrict search to segmented regions
belonging to that category. Tables 3 and 4 show that in-
struction tuning results in significant gains for knowledge
tagging and image editing tasks.

6. Conclusion
VISPROG proposes visual programming as a simple

and effective way of bringing the reasoning capabilities of
LLMs to bear on complex visual tasks. VISPROG demon-
strates strong performance while generating highly inter-
pretable visual rationales. We believe investigating new
ways of incorporating user feedback to improve the per-
formance of neuro-symbolic systems such as VISPROG is
an exciting direction for building the next generation of
general-purpose vision systems.
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