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Figure 1. Qualitative results of the proposed framework for the skeleton-based action recognition (top) and spatio-temporal localization
task (bottom). The input keypoints and the estimated action labels are visualized in the figure. We achieve state-of-the-art accuracy for the
recognition task while it runs ∼1800FPS on a single RTX 3080Ti GPU. In addition, the proposed method outperforms the state-of-the-art
weakly supervised spatio-temporal localization methods. See the website for the demo video.

Abstract

This paper simultaneously addresses three limitations
associated with conventional skeleton-based action recog-
nition; skeleton detection and tracking errors, poor va-
riety of the targeted actions, as well as person-wise and
frame-wise action recognition. A point cloud deep-learning
paradigm is introduced to the action recognition, and a uni-
fied framework along with a novel deep neural network ar-
chitecture called Structured Keypoint Pooling is proposed.
The proposed method sparsely aggregates keypoint features
in a cascaded manner based on prior knowledge of the
data structure (which is inherent in skeletons), such as
the instances and frames to which each keypoint belongs,
and achieves robustness against input errors. Its less con-
strained and tracking-free architecture enables time-series
keypoints consisting of human skeletons and nonhuman ob-
ject contours to be efficiently treated as an input 3D point
cloud and extends the variety of the targeted action. Fur-
thermore, we propose a Pooling-Switching Trick inspired
by Structured Keypoint Pooling. This trick switches the

* Equal contribution.

pooling kernels between the training and inference phases
to detect person-wise and frame-wise actions in a weakly
supervised manner using only video-level action labels.
This trick enables our training scheme to naturally intro-
duce novel data augmentation, which mixes multiple point
clouds extracted from different videos. In the experiments,
we comprehensively verify the effectiveness of the pro-
posed method against the limitations, and the method out-
performs state-of-the-art skeleton-based action recognition
and spatio-temporal action localization methods.

1. Introduction
Recognizing the actions of a person in a video plays an

essential role in various applications such as robotics [28,
41] and surveillance cameras [11, 25, 49]. The approach
to the action recognition task differs depending on whether
leveraging appearance information in a video or human
skeletons1 detected in the video. The former appearance-
based approaches [2,7,11,18,20–23,25,32,45,51,52,56,58]
directly use video as an input to deep neural networks

1Joints or keypoints specific to a person are referred to as skeletons for
clarity, although some are not actual human joints.
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(DNNs) and thus even can recognize actions with relatively
small movements. However, they are less robust to appear-
ances of the people or scenes that differ from the training
data [34, 55]. On the other hand, the latter skeleton-based
approaches [5,9,10,13,17,29,33,34,49,57,60] are relatively
robust to such appearance changes of a scene or a person be-
cause they only input low-information keypoints detected
using the multi-person pose estimation methods [6, 42, 50].

Starting from ST-GCN [57], various skeleton-based ap-
proaches employing graph convolutional networks (GCNs)
have emerged [5,9,10,13,33,44]. These approaches model
the relationship among keypoints by densely connecting
them in a spatio-temporal space using GCNs, which treat
every keypoint as a node at each time step. However, most
approaches exhibit low scalability in practical scenarios,
and further performance improvement is required since they
exhibit three limitations regarding network architectures or
their problem settings, as described below.
Skeleton Detection and Tracking Errors. Conventional
GCN-based methods heavily rely on dense graphs, whose
node keypoints are accurately detected and grouped by the
same instance. These methods assume that the DNN fea-
tures are correctly propagated. Therefore, if false positives
(FPs) or false negatives (FNs) occur during keypoint detec-
tion, or if the multi-person pose tracking [39,47] fails, such
assumptions no longer hold, and the action recognition ac-
curacy is degraded [17, 62].
Poor Variety of the Targeted Actions. Conventional ap-
proaches limit the number of input skeletons to at most one
or two. Therefore, the recognition of actions performed by
many people or those interacting with nonhuman objects is
an ill-posed problem. On the other hand, for a wide range
of applications, it is desirable to eliminate such restrictions
and target a variety of action categories.
Person-wise and Frame-wise Action Recognition. Con-
ventional approaches classify an entire video into actions,
while practical scenes are complex and include multiple
persons performing different actions in different time win-
dows. Hence, recognizing each person’s action for each
frame (spatio-temporal action localization) is necessary.

In this paper, a unified action recognition framework and
a novel DNN architecture called Structured Keypoint Pool-
ing, which enhances the applicability and scalability of the
skeleton-based action recognition (see Fig. 1), is proposed
to simultaneously address the above three limitations. Un-
like previous methods, which concatenate the keypoint co-
ordinates and input them into a DNN designed on a pre-
defined graph structure of a skeleton, the proposed method
introduces a point cloud deep-learning paradigm [37,38,61]
to the action recognition and treats a set of keypoints as an
input 3D point cloud. PointNet [37], which was proposed
in such a paradigm, is an innovative research, whose output
is permutation-invariant to the order of the input points. It

extracts the features for each input point and sparsely aggre-
gates them to the output feature vector using Max-Pooling.
Unlike PointNet, the proposed network architecture aggre-
gates the features extracted from the point cloud in a cas-
caded manner based on prior knowledge of the data struc-
ture, which is inherent in the point cloud, such as the frames
or the detection results of the persons (instances) to which
each keypoint belongs. As a result, it is less constrained
than conventional approaches and tracking-free. Also, its
feature propagation among keypoints is relatively sparse.
Therefore, the range of the DNNs affected by the keypoint
errors (e.g., FPs, FNs, and tracking errors) associated with
the first robustness limitation can also be limited.

In addition, the permutation-invariant property of the in-
put in the proposed network architecture eliminates the con-
straints of the data structure and size (e.g., number of in-
stances and pose tracking) found in the GCN-based meth-
ods. This property is exploited, and the nonhuman object
keypoints2 defined on the contour of the objects are used
as an input in addition to human skeletons. Thus, the sec-
ond target-action limitation mentioned above is addressed
by increasing the input information without relying on the
appearances while avoiding overfitting on them [14,34,55].

Finally, the third multi-action limitation is addressed
by extending the proposed network architecture concept
to a weakly supervised spatio-temporal action localiza-
tion, which only requires a video-level action label dur-
ing training. This is achieved using the proposed Pooling-
Switching Trick inspired by Structured Keypoint Pooling,
which switches the pooling structures according to the
training and inference phases. Furthermore, this pooling-
switching technique naturally enables the proposed training
scheme to introduce novel data augmentation, which mixes
multiple point clouds extracted from different videos.

In summary, our main contributions are three-fold: (1)
We propose Structured Keypoint Pooling based on point
cloud deep-learning in the context of action recognition.
This method incorporates prior knowledge of the data struc-
ture to which each keypoint belongs into a DNN architec-
ture as an inductive bias using a simple Max-Pooling oper-
ation. (2) In addition to the human skeletons, object key-
points are introduced as an additional input for skeleton-
based action recognition. (3) A skeleton-based, weakly su-
pervised spatio-temporal action localization is achieved by
introducing a Pooling-Switching Trick, which exploits the
feature aggregation scheme of Structured Keypoint Pooling.

2. Related Work
2.1. Action Recognition

Appearance-based Action Recognition. Numerous prior
works rely on RGB images, which are used as inputs

2Nonhuman objects are referred to as objects for simplicity.
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to DNNs [7, 20–23, 45, 51, 52, 56, 58]. In early deep-
learning-based approaches, RGB and optical flow images
are used as inputs to a 2D convolutional neural network
(CNN) to explicitly model the appearance and motion fea-
tures [45, 58]. The methods that extract spatio-temporal
features using a 3D CNN obtain the motion feature ex-
tractors in a data-driven manner [7, 22, 51]. On the other
hand, some studies have focused on reducing the com-
putational cost and the number of parameters of a 3D
CNN [20, 21, 52, 56]. Recently, methods that extract long-
range features using the Transformer [53] have been pro-
posed [2, 23, 32]. These appearance-based approaches have
an advantage over skeleton-based methods because they use
more detailed movement features.
Skeleton-based Action Recognition. Skeleton-based
approaches have been actively investigated since ST-
GCN [57], which models the relationships among time-
series keypoints using GCNs. Upon the ST-GCN, the ro-
bustness and performance of these approaches have been
improved by extracting the features from distant keypoints
in the spatio-temporal space [9, 10, 29, 33] or by employing
efficient graph convolution layers [5, 60]. In these meth-
ods, the input skeleton sequences can capture only motion
information that is immune to contextual nuisances such as
background variation and lighting changes [14,34,55]. De-
spite their significant success, GCN-based methods exhibit
the three limitations mentioned in Sec. 1.

SPIL [49], which uses an attention mechanism among
keypoints, also handles skeleton sequences as an input 3D
point cloud and competes with the proposed method only
with respect to the network architecture concept. Unlike
SPIL, the proposed method does not rely on such a redun-
dant attention module. Instead, it introduces a simple and
sparse feature aggregation structure, which exploits prior
knowledge of the data structure to which each keypoint be-
longs as an inductive bias.

2.2. Spatio-temporal Action Localization

When multiple persons appearing in a video perform
different actions in different time windows, according to
the third multi-action limitation mentioned in Sec. 1, this
can be handled as a spatio-temporal action localization
task. In the fully-supervised setting, appearance-based ap-
proaches [27, 30, 36] have been proposed but require dense
instance-level annotations during the training. To reduce the
annotation cost, weakly supervised methods [3, 12, 19] use
only a single label for the video as supervision. These meth-
ods employ the multiple instance learning framework [16]
for the weakly supervised setting to which this study also
focuses on. Unlike such appearance-based approaches, our
input keypoint information is less sensitive to the appear-
ance changes. In addition, weakly supervised learning is
achieved using a simple Pooling-Switching Trick, which

exploits our point cloud-based setting and only changes the
pooling kernels between the training and inference phases.

3. Proposed Framework

3.1. Overview

The proposed network architecture and its components
are shown in Fig. 2. One of our core ideas is the feature ag-
gregation by a Max-Pooling operator based on groups be-
longing to the same instance or the same frame (referred
to as local groups). Limiting the feature-propagation range
to the local group is essentially similar to the convolution
operation, which extracts the pixel features locally; this is
introduced as an inductive bias in our model. The proposed
model essentially consists of only a few conventional DNN
modules; nevertheless, its original design and inputs con-
tribute to a significant performance improvement. In the
following, we describe the network architecture along its
process and each component in detail.

First, multi-person pose estimation and object keypoint
detection are applied to the input video, and human joints as
well as object contour points (collectively denoted as key-
points) are obtained. Then, the keypoints extracted from
all frames in the video are treated as a point cloud and
used as inputs to the network. Each keypoint is represented
by a four-dimensional vector, which consists of the two-
dimensional image coordinates, the confidence score, and
the category index of the instance in which the keypoint be-
longs (e.g., 0 denotes person, 1 denotes car, etc.). Each
element of the input vector is normalized between 0 and 1.

Structured Keypoint Pooling fθ predicts logit z, where
z ∈ RC for the action recognition task and for the training
phase in a weakly supervised action localization task. As
discussed later, z ∈ RFI×C for the inference phase in the
action localization task. F denotes the number of frames in
the video clip, I denotes the number of instances per frame,
and C denotes the number of target classes. θ in fθ rep-
resents the trainable parameters, and fθ mainly consists of
MLP Blocks and Grouped Pool Blocks (GPB). During the
training phase, the cross-entropy loss Lθ (softmax(z), l) is
computed using the softmax layer and the ground-truth ac-
tion label l; θ is updated via backpropagation.

The Point embedding layer embeds the input vector into
a high-dimensional feature vector using multilayer percep-
trons (MLPs). The weights of the MLP are shared across
all keypoints. We adopt keypoint index encoding, which
replaces the position in the original sinusoid positional en-
coding [53] with a keypoint index. The keypoint index rep-
resents its type, for example, 0 for the left shoulder and 1 for
the right shoulder regarding the skeleton keypoints; also, it
is 0 for up left and 1 for up right regarding these objects.

The MLP Block computes the feature vectors consider-
ing the sparse relationships among them via Max-Pooling,
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Figure 2. Overview of the Structured Keypoint Pooling network architecture (top) and its original components (bottom).

and the GPB aggregates such feature vectors into local
groups. Similar to keypoint index encoding, we adopt time
index encoding, which encodes the frame index in the video
clip. The feature vectors are finally aggregated by global
max-pooling (GMPool) to generate a single feature vector
for the entire video. The logit is predicted via the fully-
connected (FC) layers.

The reduction in the number of feature vectors by the
GPB is described in the following. We denote K as the
number of keypoints per instance, in addition to F and I
defined above. The number of keypoints input to the net-
work is F · I · K, which is reduced to F · I points by the
first Grouped Pool Bock that aggregates K keypoint-wise
features into a single vector. Then, the second GPB that ag-
gregates I instance-wise features in a single vector reduces
the number of points from F · I to F .

The Max-Pooling operator outputs a feature vector by se-
lecting a maximum value for each dimension from N input
vectors. Therefore, elements from maximum D points are
selected (D is the feature dimension size of input vectors).
As N ≫ D (e.g., N = F · I ·K = 300 · 2 · 18, D = 512)
for the skeleton-based action recognition task, most points
will be disregarded for the GMPool (pooling across all in-
put points). Reducing the number of points (N ) by cascaded
feature aggregation and limiting the pooling range using lo-
cal max-pooling (LMPool), which applies Max-Pooling to
each local group to which the input feature vectors belong,
are helpful to generate informative and robust feature vec-
tors. The effect of using this cascaded reduction during the
feature extraction will be quantitatively verified in Sec. 4.6.

The process in each block is invariant to the position and
order of the input feature vectors, and the entire network
can handle permutation-invariant inputs.

3.2. Grouped Pool Block (GPB)

The GPB consists of GMPool ϕG and LMPool ϕL. The
first GPB outputs feature vectors containing the number of

instances in the video, and the subsequent GPB outputs fea-
ture vectors containing the number of frames.

The GPB can be expressed as follows:

Y =
{[

ϕL (X)j ;ϕG (X)
]}

j∈{1,...,M}
. (1)

X and Y are the matrices of the input and output feature
vectors, respectively, as described below. M denotes the
number of local groups in X; M = F · I in the first block;
M = F in the second block. Therefore, the input feature
vector xi ∈ X is grouped into M local groups, and X can
be expressed by a concatenated matrix as follows:

X = (x1, . . . , xN )
T
= (X1; . . . ;XM )

T
. (2)

Consequently, Y is computed using the output vector yj as
follows:

Y = (y1, . . . , yM )
T
. (3)

In Eq. (1), we concatenate each feature vector ϕL (X)j
computed for the local group j and the global feature vector
ϕG (X) in a channel dimension. Also, LMPool ϕL(·) can
be expressed as follows:

ϕL (X) = {MaxPool(Xj)}j={1,...,M} , (4)

where MaxPool(·) is the operation used to obtain the max
value for each channel from the feature vectors. GM-
Pool ϕG(·) is expressed as follows:

ϕG(X) = MaxPool(X). (5)

3.3. MLP Block

The MLP Block consists of two residual blocks. The first
block models the relationship among feature vectors within
each local group. The subsequent block applies MLPs for
each feature vector. Each MLP block is repeated r times.
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Figure 3. Pooling-Switching Trick for point cloud-based spatio-
temporal action localization. The modules same as those in Fig. 2
are abbreviated with the same color. The dotted GMPool layer is
only applied during the training phase.

The first residual block can be written using the input
and output matrices X and Y , respectively, as follows:

Y = ConcatPool(Norm(X)) +X, (6)

where Norm(·) is the normalization layer, and
ConcatPool(·) is the learnable layer represented as

ConcatPool(X) =
{
σ
([

xi;ϕL (X)ji

]
W1

)}
i∈{1,...,N}

,

(7)
where σ(·) is a nonlinear activation function and ji ∈
{1, . . . ,M} is the local group index of the i-th feature vec-
tor. W1 ∈ R2D×D is a learnable weight matrix, and D is
the number of channels of X .

The second residual block can be expressed as follows:

Y = σ (Norm (X)W2)W3 +X, (8)

where W2 ∈ RD×αD and W3 ∈ RαD×D are learnable
weight matrices, and α is the MLP expansion ratio.

3.4. Pooling-Switching Trick for Spatio-Temporal
Action Localization

The proposed network architecture of the spatio-
temporal action localization is shown in Fig. 3. To avoid ag-
gregating instance-level features into frame-level features,
the second GPB in Fig. 2 is changed. We propose a Pooling-
Switching Trick, which switches the group of the pooling
(kernel) from the training to the inference phases. This trick
naturally enables our weakly supervised training scheme to
introduce the proposed batch-mixing data augmentation.
Weakly Supervised Training. During the training, the loss
is computed between the ground-truth action label assigned
to the input video and the video-level logit predicted by
aggregating instance-level features using the last GMPool.
During the inference, the proposed method estimates the
actions against targets different from the training, such as
each instance, each frame, or each video, by switching the
pooling kernel (target local group) at the last GMPool oper-
ation. For the spatio-temporal action localization task, the

GMPool operation is simply removed from the network ar-
chitecture (Fig. 3) to estimate the instance-level logit. The
weights of the FC layer are shared across all targets.
Batch-Mixing Augmentation. To improve the localiza-
tion robustness, we propose a novel data augmentation
technique in the Pooling-Switching Trick. This technique
mixes the point clouds extracted from different videos and
promotes classifying multiple actions. Let X ∈ RFI×D

and l denote instance-level features and the corresponding
ground-truth one-hot label, respectively. Two training sam-
ples (Xa, la) and (Xb, lb) are mixed for augmentation.

First, we mask two training samples as follows:

X̂a = B ⊙Xa, X̂b = (1−B)⊙Xb, (9)

where B ∈ RFI×D denotes a binary mask indicating which
keypoint is used in the two samples. Each column vector in
B is 0 or 1, and ⊙ denotes the element-wise multiplication.
Also, the ground-truth label is mixed with a certain ratio λ
as follows:

l̂ = λla + (1− λ)lb. (10)

A random sampling of the mixing ratio λ and the binary
mask is followed to the CutMix strategy [59].

Instead of aggregating a set of feature vectors in the
global feature using GMPool within each training sample
(intra-sample), GMPool (two green boxes in Fig. 3) aggre-
gates between two training samples (inter-samples) to the
global feature vector during the training phase as follows:

ϕG

(
X̂a, X̂b

)
= MaxPool(X̂a; X̂b). (11)

Finally, the mixed logit ẑ is predicted, and the cross-entropy
loss Lθ

(
softmax (ẑ) , l̂

)
is computed.

4. Experiments
4.1. Datasets

Kinetics-400. The Kinetics-400 [7] dataset is a large-scale
video dataset collected from YouTube videos with 400 ac-
tion classes. It contains 250K training and 19K validation
10-second video clips.
UCF101 and HMDB51. The UCF101 [48] and
HMDB51 [26] datasets contain 13K YouTube videos with
101 action labels and 6.7K videos with 51 action labels, re-
spectively. We employ split1 for training and test data split-
ting, according to the previous work [17].
RWF-2000, Hockey-Fight, Crowd Violence, and
Movies-Fight. The RWF-2000 [11], Hockey-Fight [4],
Crowd Violence [24], and Movies-Fight [35] datasets are
violence recognition datasets. These datasets contain two
types of actions, violence and non-violence, with various
people and backgrounds.
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Figure 4. Examples of human skeletons (blue) and eight object
contour keypoints (green).

Mimetics. The Mimetics dataset [55] contains 713
YouTube video clips of mimed actions that form a subset
of 50 classes obtained from the Kinetics-400 dataset. This
dataset evaluates human actions with out-of-context appear-
ances different from the Kinetics-400 dataset, and thus the
methods have been trained on only the Kinetics-400 dataset.
Mixamo. The Mixamo dataset [15] is an action recogni-
tion dataset that was proposed for the evaluation of domain
adaptation tasks. This dataset is synthetically generated us-
ing the Mixamo library [1]. The 3D virtual avatars perform
14 different actions with various backgrounds and objects.
The dataset contains 24K 2D-rendered videos.
UCF101-24. The UCF101-24 dataset [48] is a subset of the
UCF101 dataset. Its 24 class action labels are annotated for
each bounding box in the videos. Following the standard
practice [3, 12], we use the corrected annotation [46].

4.2. Evaluation Metrics

We employ Top-1 Accuracy (%) (simply referred to as
accuracy) as the evaluation metric for an action recogni-
tion task. For a spatio-temporal action localization task,
we employ Video Average Precision (Video AP) (%) with
different 3D IoUs (0.2 and 0.5) as the evaluation metrics.
We use a machine equipped with Intel i7-10700K CPU,
32GB RAM, and GeForce RTX 3080Ti GPU to compute
the speed. See the supplementary material for the imple-
mentation details, the hyperparameters of the training, and
data augmentations pertaining to all experiments.

4.2.1 Keypoint Detectors

PPNv2. The pose proposal networks (PPNv2) [42, 43] si-
multaneously detect human skeletons and object keypoints
located onto the object contours from an RGB image at a
high speed. They are employed to generate keypoints in an
experiment using object information as an input and con-
sist of a Pelee backbone [54] trained on the MS-COCO
dataset [31] with both human and object keypoint annota-
tions. The definition of a human skeleton is the same as the
OpenPose [6] definition. The object keypoints are defined
as the eight extreme points on the contours with respect to
the eight directions centered on the object (see Fig. 4). The
input image is resized by 320× 224 px2.
HRNet. For a fair comparison with conventional skeleton-
based approaches [17, 33, 34, 49], the HRNet [50] is also
employed as the human keypoint detector. The HRNet

0 20 40 60 80
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Figure 5. Comparison of the robustness against skeleton detection
and tracking errors on the Kinetics-400 dataset. The methods are
trained and evaluated using HRNet skeletons for a fair comparison.

is a Top-Down pose detector that achieves superior hu-
man pose estimation performance. However, its compu-
tational cost, which includes a human detector (Faster R-
CNN [40]), is expensive. We use publicly available HRNet
skeletons [17] for the Kinetics-400, UCF101, and HMDB51
datasets. With the same setting [17], HRNet skeletons are
generated for the RWF-2000, Hockey-Fight, Crowd Vio-
lence, Movies-Fight, and Mimetics datasets.

4.3. Skeleton-based Action Recognition Perfor-
mance Comparisons on the Kinetics-400

In Tab. 1, the action recognition accuracy and the speed
between the proposed method and conventional skeleton-
based approaches are compared on the Kinetics-400 dataset.
It can be observed that the proposed method (Ours w/ ob-
jects), which inputs both the skeleton and object keypoints
detected by PPNv2, outperforms the conventional methods.
Moreover, its accuracy is improved by 9.2 percentage-point
by introducing object keypoints in addition to the skeletons
(Ours w/o objects vs. Ours w/ objects). The qualitative re-
sults are shown in Fig. 1 (top).

Compared with conventional methods that employ HR-
Net keypoints [50], the proposed method outperforms state-
of-the-art (SoTA) methods [17, 33] (MS-G3D and PoseC-
onv3D), while its runtime is 3x and 96x faster, respectively,
than the runtime of these methods. Considering ablation
studies, as discussed later, these results show that the pro-
posed method overcomes both the first robustness and the
second target-action limitations, mentioned in Sec. 1.

4.4. Robustness against Skeleton Detection and
Tracking Errors

The robustness of the proposed method against skeleton
detection errors (FPs, FNs, and tracking errors) is compared
with that of the MS-G3D [33], which is the best-performing
SoTA method considering both accuracy and runtime met-
rics, as shown in Tab. 1. Here, we synthetically generated
three types of skeleton detection errors, FPs, FNs, and track-
ing errors. The FPs were generated by adding noise sam-
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Table 1. Speed/Accuracy comparison of SoTA skeleton-based action recognition methods on
the Kinetics-400 dataset. Column Runtime shows the computation time of only the action
recognition model. Column Total FPS shows the speed, including keypoint detection and
action recognition. The joint-bone two-stream ensemble framework is employed for a fair
comparison with conventional methods [17, 33, 44]. Additionally, we combine HRNet human
joints and PPNv2 object keypoints, and the result is 61.4% (+11.1 percentage-point by using
objects).

Method Acc. (%) Keypoint Detector COCO APkp (%) Runtime (ms) Total FPS
ST-GCN [57] 30.7

OpenPose [6] 56.3
4.0 85.4

2s-AGCN [44] 36.1 27.6 84.8
MS-G3D [33] 38.0 28.2 84.8
MS-G3D [33] 45.1

HRNet [50] 74.6
28.2 8.8

PoseConv3D [17] 47.7 960.0 8.5
Ours w/o objects 50.3 9.8 8.8
Ours w/o objects 43.1 PPNv2 [42] 36.4 9.8 1913
Ours w/ objects 52.3 11.2 1896

Table 2. Ablation study of the GPB on the
Kinetics-400 dataset with HRNet skele-
tons.

Inst. Frame Acc. (%) Runtime (ms)
- - 47.3 89.5
✓ - 48.6 7.2
✓ ✓ 48.5 4.9

Table 3. Ablation study of the object key-
point input on the Kinetics-400 dataset
with PPNv2 keypoints.

Category Bbox Contours Acc. (%)
- - - 41.2
✓ ✓ - 48.6
✓ - ✓ 49.2

Table 4. Accuracy Comparison on UCF-101 (U), HMDB51 (HM), Mimetics
(Mi), RWF-2000 (R), Hockey-Fight (Ho), Crowd Violence (C), and Movies-
Fight (MF) datasets.

Method Input U HM Mi R Ho C MF
I3D [7]

RGB/
Flow

95.6 74.8 - 83.4 93.4 83.4 95.8
Flow Gated [11] - - - 87.3 98.0 88.8 97.3
3D ResNext [55] - - 10.5 - - - -
SlowOnly [21] 92.8 66.0 - - - - -

OmniSource [18] 98.6 87.0 - - - - -
SIP-Net [55]

Skeleton

- - 14.2 - - - -
IntegralAction [34] - - 15.3 - - - -
PoseConv3D [17] 87.0 69.7 - - - - -

SPIL [49] - - - 89.3 96.8 94.5 98.5
Ours 87.8 70.9 21.2 93.4 99.5 94.7 99.0

Table 5. Domain shift experiment on the Mixamo
dataset for training and the Kinetics-400 dataset for
evaluation. Unsupervised (US) and weakly supervised
(WS) domain adaptation (DA) methods are employed
as a comparison.

Method DA Input Acc. (%)
I3D [7] - RGB 11.2

TA3N [8] US RGB 10.0
CO2A [15] 16.4
TA3N [8] WS RGB 19.1

CO2A [15] 20.1

Ours - Skeleton 27.6
Skeleton+Object 28.4

Table 6. Ablation study of the overall framework on the Kinetics-400 dataset
with HRNet skeletons.

Design of the GPB
Design of the MLP Blocks

Only MLPs 1st MLP Block
→ MS-G3D

Ours
(MLP+ConcatPool)

w/o LMPool 30.3 45.5 47.3
Ours (w/ GPB) 44.5 45.7 48.5

Table 7. Comparison with SoTA weakly supervised
spatio-temporal action localization methods on the
UCF101-24 dataset.

Method Input AP@0.2 AP@0.5
Escorcia et al. [19]

RGB
45.5 -

Chéron et al. [12] 43.9 17.7
Anurag et al. [3] 61.7 35.0

Ours w/o Mix. Aug. Skeleton 60.4 37.4
Ours w/ Mix. Aug. 61.8 38.0

pled from a normal distribution to the keypoint image coor-
dinates. The FNs were generated by replacing the keypoint
image coordinates and the confidence score with 0 using a
certain ratio. The tracking errors were generated by switch-
ing the tracking indices with a certain interval. Note that
the action recognition accuracy of GCN-based methods re-
lies on tracking errors. On the other hand, the proposed
method does not because the proposed network architec-
ture is permutation-invariant for the input keypoints, and
the tracking indices are not used.

Fig. 5 shows that the performance of the SoTA method
(MS-G3D) is highly degraded by adding errors to the in-
puts. In contrast, since the performance degradation of the
proposed method is relatively small, the proposed method is
robust against skeleton detection and tracking errors, which
are described as the first robustness limitation in Sec. 1.

4.5. Action Recognition Accuracy Comparison with
Appearance-based Approaches

In Tab. 4, the performance of the proposed method is
compared against that of both the SoTA skeleton-based and
appearance-based approaches that use RGB and/or optical
flow images as inputs. Here, for a fair comparison with
SoTA skeleton-based approaches [17, 34, 49], only HRNet
skeletons are used as input. HRNet exhibits a detection per-
formance similar to that of conventional skeleton detection
methods employed in these approaches.

The RWF-2000 dataset captures two actions (violence
and non-violence) using surveillance cameras in a simi-
lar environment. In the Mimetics experiment, the DNNs
are trained with the Kinetics-400 dataset, while the appear-
ances of a person or a background are different from the
Kinetics-400 in the evaluation videos. Hence, the skeleton-
based approaches outperform the appearance-based ap-
proaches when the RWF-2000 and Mimetics datasets are
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employed. The opposite occurs when the UCF101 and
HMDB51 datasets are employed. Conclusively, the perfor-
mance of each of the two approaches depends on the pair of
datasets employed. This result, that the appearance-based
approaches are highly biased to background or person ap-
pearances, is also mentioned in previous studies [14,34,55].

The proposed method outperforms the SoTA methods
by a certain margin, except for UCF101 and HMDB51
datasets. In particular, the proposed method outperforms
that of SPIL [49], which handles the sequential skeleton
data as a point cloud on four violence recognition datasets.

4.6. Ablation Studies

Effect of the GPB. An ablation study of the GPB, which
aggregates keypoint features using prior knowledge of the
keypoint belongings, instances, or frames, is shown in
Tab. 2. Three models are compared; the model where the
GPB is not applied at the two stages (instance-level and
frame-level), the model where the GPB is applied only at
the first stage, and the proposed model. Instead of not using
the GPB, we concatenate the feature vector from GMPool
and each input vector. It can be observed that the first GPB,
which aggregates the features into the instance level, signif-
icantly improves the accuracy and speed. The second GPB
mainly improves the runtime.
Effect of Object Keypoints. Tab. 3 shows the results ob-
tained using object categories and eight object contour key-
points as an additional input with the Kinetics-400 dataset.
It can be observed that compared to the accuracy of the
skeleton-only input (41.2%), the accuracy of the proposed
model is improved when using object categories and four
bounding box points (48.6%) as an additional input. Fur-
thermore, the accuracy is further improved by introducing
eight object contour points (49.2%) instead of bounding box
points, and both the category and object contour points are
informative of the action recognition task.
Ablation Study of the Overall Framework. An ablation
study is performed to verify the GPB and MLP Block con-
tributions in Tab. 6. Also, Tab. 6 includes the results of
the model replacing our first MLP Block with the GCN-
based MS-G3D module [33]. The simplest baseline (top-
left cell) extracts point-wise features and aggregates them
using MLPs and GMPool, respectively, similar to Point-
Net [37]. This baseline performs poorly; the GPB yields
significant enhancement in accuracy (30.3% vs. 44.5%).
Moreover, our method outperforms the version employing
the MS-G3D module, which models the temporal informa-
tion among keypoints (45.7% vs. 48.5%).

4.7. Domain Shift by Introducing Object

An accuracy comparison with and without using object
keypoint information is summarized in Tab. 5. Here, the
models are trained using a synthetically-created Mixamo

dataset and evaluated using a real Kinetics dataset to repro-
duce a challenging, cross-dataset domain shift. In addition,
the proposed method is compared with an appearance-based
method [7] and the SoTA unsupervised and weakly super-
vised domain adaptation methods [8, 15].

It can be observed that the accuracy is improved by intro-
ducing the proposed object keypoints (27.6% vs. 28.4%),
and the variety of actions is expanded without overfitting
(the second target-action limitation mentioned in Sec. 1).
Furthermore, since the proposed method outperforms the
appearance-based approaches without any domain adapta-
tion or supervision of the target dataset (Kinetics-400), it is
suitable for practical cases when the scene appearance dif-
fers between the training and inference phases.

4.8. Spatio-Temporal Action Localization

The weakly supervised spatio-temporal action localiza-
tion accuracy is summarized in Tab. 7. Since no previous
study addressed the task of using only skeletons as an input,
the proposed method is compared against appearance-based
approaches [3,12,19] and the evaluation protocol [3] is fol-
lowed, although the UCF101 is an advantageous dataset for
the appearance-based approaches shown in Tab. 4.

The proposed method without batch-mixing augmen-
tation outperforms SoTA weakly supervised action local-
ization methods with the AP@0.5 metric. Furthermore,
the proposed method outperforms these methods with both
AP@0.2 and AP@0.5 metrics by introducing batch-mixing
augmentation. Therefore, as mentioned in the third multi-
action limitation in Sec. 1, the proposed method localizes
the actions of each person in each frame. The qualitative re-
sults of the action localization are shown in Fig. 1 (bottom).

5. Conclusion

In this paper, a novel framework with a DNN architec-
ture, Structured Keypoint Pooling, was proposed to address
the limitations of conventional skeleton-based action recog-
nition methods. Time-series keypoints consisting of human
skeletons and nonhuman object contours were treated as
an input 3D point cloud of the Structured Keypoint Pool-
ing, which sparsely aggregates keypoint features into a cas-
caded manner based on prior knowledge of the data struc-
ture to which the keypoints belong. A Pooling-Switching
Trick, which switches the aggregation target in the phases,
and novel data augmentation, which mixes multiple point
clouds, were also proposed. We comprehensively verified
the effectiveness against the limitations using several action
recognition and localization datasets. The experimental re-
sults demonstrated that the proposed method outperforms
SoTA methods regarding both skeleton-based action recog-
nition and spatio-temporal action localization tasks.
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