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Abstract

Medical datasets and especially biobanks, often contain
extensive tabular data with rich clinical information in ad-
dition to images. In practice, clinicians typically have less
data, both in terms of diversity and scale, but still wish to
deploy deep learning solutions. Combined with increasing
medical dataset sizes and expensive annotation costs, the
necessity for unsupervised methods that can pretrain multi-
modally and predict unimodally has risen.

To address these needs, we propose the first self-
supervised contrastive learning framework that takes ad-
vantage of images and tabular data to train unimodal en-
coders. Our solution combines SimCLR and SCARF, two
leading contrastive learning strategies, and is simple and
effective. In our experiments, we demonstrate the strength
of our framework by predicting risks of myocardial infarc-
tion and coronary artery disease (CAD) using cardiac MR
images and 120 clinical features from 40,000 UK Biobank
subjects. Furthermore, we show the generalizability of our
approach to natural images using the DVM car advertise-
ment dataset.

We take advantage of the high interpretability of tabu-
lar data and through attribution and ablation experiments
find that morphometric tabular features, describing size
and shape, have outsized importance during the contrastive
learning process and improve the quality of the learned
embeddings. Finally, we introduce a novel form of super-
vised contrastive learning, label as a feature (LaaF), by ap-
pending the ground truth label as a tabular feature during
multimodal pretraining, outperforming all supervised con-
trastive baselines.1

1. Introduction
Modern medical datasets are increasingly multimodal,

often incorporating both imaging and tabular data. Images

1https : / / github . com / paulhager / MMCL - Tabular -
Imaging

can be acquired by computed tomography, ultrasound, or
magnetic resonance scanners, while tabular data commonly
originates from laboratory tests, medical history and patient
lifestyle questionnaires. Clinicians have the responsibility
to combine and interpret this tabular and imaging data to
diagnose, treat, and monitor patients. For example, cardiol-
ogists may ask about a patients’ family history and record
their weight, cholesterol levels, and blood pressure to better
inform diagnoses when examining images of their heart.

Beyond diagnostics, multimodal data is also crucial to
advance the understanding of diseases motivating the cre-
ation of biobanks. Going far beyond the scale of typical
datasets in hospitals, biobanks pool vast amount of informa-
tion from large populations. Multimodal biobanks include
the German National Cohort [21] with 200,000 subjects,
Lifelines [52] with 167,000 subjects, and the UK Biobank
[54] with 500,000 subjects. The UK Biobank includes thou-
sands of data fields from patient questionnaires, laboratory
tests, and medical examinations, in addition to imaging and
genotyping information. Biobanks have already proven use-
ful in the training of machine learning models to predict
many diseases such as anaemia [39], early brain aging [32]
and cardiovascular disease [1, 51].

There is a substantial interest in deploying algorithms
that have been developed using these large-scale population
studies in clinical practice. However, acquiring the same
quality of data, both in terms of diversity of modalities and
number of features, is not feasible in a busy clinical work-
flow [20]. Furthermore, low disease frequencies make su-
pervised solutions hard to train. Consequently, there is a
clear need for unsupervised strategies that can learn from
biobank scale datasets and be applied in the clinic where
considerably less data, in size and dimension, is available.

Our contribution To address these needs, we propose the
first contrastive framework that utilizes imaging and tabular
data, shown in figure 1. Our framework is based on Sim-
CLR [13] and SCARF [6], two leading contrastive learning
solutions, and is simple and effective. We demonstrate the
utility of our pretraining strategy on the challenging task of
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Figure 1. We combine imaging and tabular data in a contrastive learning framework. We observe that morphometric features, describing
shape and size, are of outsized importance in multimodal contrastive training and their inclusion boosts downstream task performance.
By simply adding the label as a tabular feature we introduce a novel form of supervised contrastive learning that outperforms all other
supervised contrastive strategies.

predicting cardiac health from MR images. Beyond medical
imaging, we show that our framework can also be applied
when combining natural images and tabular data using the
DVM car advertisement dataset [29].

Experimentally, we observe that our tool leverages mor-
phometric features during contrastive learning. Morphome-
tric features describe the size and shape of an object and
therefore correlate with extractable imaging features. We
quantitatively demonstrate the importance of these features
in the contrastive learning process using attribution meth-
ods, such as integrated gradients [55], and ablation experi-
ments.

Finally, we introduce a new supervised contrastive learn-
ing method called label as a feature (LaaF). By appending
the target label as a tabular feature, our method outperforms
previously published strategies that incorporate labels into
the contrastive framework. Our method is also highly flexi-
ble and can be combined with the aforementioned strategies
to further improve performance.

2. Related Work

Self-supervised learning with images aims to extract
useful features from unlabeled data. Historically, this was
attempted by solving hand-crafted pretext tasks such as jig-
saw puzzles [44, 58, 59, 72], colorization [36, 63, 71], image
inpainting [45], and context prediction [7, 12, 19]. The ma-
jor difficulties with using these methods is that they tend to
overfit on the specifics of their pretext task, limiting their
utility for downstream tasks.

Contrastive learning has emerged as a popular and per-
formant successor to pretext tasks. Contrastive learning
trains encoders by generating augmented views of a sam-
ple and maximizing their projected embedding similarity
while minimizing the similarity between the projected em-
beddings of other samples [24]. It has been popularized
recently by implementations such as SimCLR [13], MOCO
[25], BYOL, [23] and others [9, 10, 14, 16, 70]. We use the
contrastive framework of SimCLR as the basis for our work.

23925



Deep learning with tabular data has recently begun
to yield results that are competitive with classical machine
learning methods [4, 8, 28], though for many applications
they still underperform simpler algorithms [8, 53]. Self-
supervised learning is being explored in the tabular domain
with frameworks such as VIME [66] and contrastive meth-
ods such as SubTab [61] and SCARF [6]. We base our tab-
ular augmentations on those used in SCARF.

Multimodal contrastive learning with images is be-
coming more important as the number of multimodal
datasets increases and multimodal training strategies be-
come more effective. Approaches such as CLIP [49], which
combines images and text, are general-purpose vision mod-
els that are able to solve new tasks in a zero-shot manner.
Some of these models use internet-size datasets and are de-
scribed as foundational models, such as UniCL [65], Flo-
rence [68], ALIGN [31], and Wu Dao 2.0 [18]. Outside of
the image-language domain, there has also been progress on
multimodal contrastive learning using two different imag-
ing modalities [47, 58], audio and video [37], video and
text [64, 73], and imaging and genetic data [57]. While lit-
erature on generative self-supervised tabular and imaging
models [3] [34] exists, it is limited in scope, using only two
or four clinical features. To the best of our knowledge, there
is no implementation of a contrastive self-supervised frame-
work that incorporates both images and tabular data, which
we aim to address with this work.

Supervised learning within contrastive frameworks
has been shown to outperform the binary cross entropy loss
in some cases and create more robust embeddings [33]. Su-
pervised contrastive learning [33] maximizes the similarity
of the projected embeddings of all views in a batch from the
same class. This also addresses the problem of false neg-
atives in contrastive learning, which is that the contrastive
loss minimizes projected embedding similarity between dif-
ferent samples even if they are part of the same class ac-
cording to a downstream task (i.e. false negatives). By uti-
lizing the available labels, supervised contrastive learning
is able to circumvent this problem and outperforms other
methods that heuristically identify and eliminate false nega-
tives [15,30]. We propose a solution for supervised learning
in our multimodal contrastive framework that takes advan-
tage of the unique strengths of tabular data by appending
the label as a tabular feature.

3. Methods

3.1. Contrastive Framework for Tabular and
Imaging Data

We base our multimodal framework on SimCLR [13].
Let our dataset be x and a unique sample be j. Each batch
contains pairs of imaging xji and tabular xjt samples which
are augmented. Each augmented imaging sample xji in the

batch is passed through an imaging encoder fθI to generate
the embedding x̃ji . Each augmented tabular sample xjt in
the batch is passed through a tabular encoder fθT to gen-
erate the embedding x̃jt . The embeddings are propagated
through separate projection heads fϕI

and fϕT
and brought

into a shared latent space as projections zji and zjt which
are then L2 normalized onto a unit hypersphere. The pro-
jections are pulled and pushed in the shared latent space
according to the “CLIP” loss [49], which maximizes the
cosine similarity of projections from the same sample and
minimizes the similarity of projections from different sam-
ples. In contrast to the original InfoNCE [43] loss and fol-
lowing CLIP, we only contrast projections between modali-
ties, never within one modality.

i and t can be used interchangeably and so, without loss
of generality, the projection of an image is defined as

zji = fϕI
(fθI (xji)) (1)

Considering all subjects N in a batch, the loss for the imag-
ing modality is

ℓi,t = −
∑
j∈N

log
exp(cos(zji , zjt)/τ)∑

k∈N ,k ̸=j

exp(cos(zji , zkt
)/τ)

. (2)

ℓt,i is calculated analagously and the total loss is thus

L = λℓi,t + (1− λ)ℓt,i. (3)

The images in the batch are augmented based on the stan-
dard contrastive augmentations specified in [13]: horizontal
flips, rotations, color jitter, and resized crop. We do not use
Gaussian blurring on the cardiac dataset in order to preserve
fine-grained features in the MR images [5]. To effectively
augment the tabular data, a fraction of a subject’s features
are randomly selected to be “corrupted” (i.e. augmented),
following [6]. Each corrupted feature’s value is sampled
with replacement from all values for that feature seen in the
dataset. Full implementation details are in the supplemen-
tary materials.

3.2. Explainability using Integrated Gradients

To improve our understanding of the dynamics of the
multimodal training, we analyze the importance of the in-
dividual tabular features in generating the embeddings. Us-
ing test samples, we take the pretrained tabular encoder of
our multimodal model and calculate the integrated gradi-
ents [55] of each dimension of the embeddings. This in-
tegrates the gradients of the encoder along the straightline
path from a baseline sample, in our case a zero vector, to the
test sample in question. This yields the importance value of
each tabular feature in generating the downstream predic-
tion for that sample. We then take the absolute value and
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calculate the mean importance of each feature across all em-
bedding dimensions. Categorical features have their means
summed over all choices. We use these results to categorize
features and better understand how training in a multimodal
setting influences unimodal performance.

3.3. Contrastive Learning with Labels

Incorporating labels into the contrastive learning process
is typically done by modifying the loss function [15,33]. We
propose to take advantage of the unique structure of tabular
data and directly append the downstream class label as a
tabular feature. We explore the benefits of combining our
method with existing strategies for incorporating labels into
the training process, such as supervised contrastive learning
and false negative elimination.

4. Experiments and Results
4.1. Datasets

As a first dataset, we used cardiac MR images and clini-
cal information from the UK Biobank population study. Our
aim was to predict past and future risk of myocardial in-
farction and coronary artery disease (CAD). We used short
axis cardiac MR images, which provide a cross-sectional
view of the left and right ventricle of the heart. The im-
ages used are two-channel 2D images whose channels are
the middle baso-apical slice of the short axis cardiac MRI
image at end-systolic and end-diastolic phases. The short
axis images were chosen as left ventricular function and
morphometry are impacted by both CAD [69] and cardiac
infarction [56]. Conversely, the left ventricle is a high-risk
area in which early warning signs of cardiac dysfunction
may be visible [2, 50, 60]. The images were zero-padded to
210x210 pixels and min-max normalized to a range of 0 to
1. After augmentations (see supplementary materials), final
image size was 128x128 pixels.

A subset of demographic, lifestyle and physiological fea-
tures out of 5,000 data fields included in the UK Biobank
dataset were selected for the tabular data. These features
were chosen based on published correlations with cardiac
outcomes. They include information about the subjects’
diet [67], physical activity [42], weight [48], alcohol con-
sumption [46], smoking status [35], and anxiety [11]. Only
features with at least 80% coverage were included. The full
list of features can be found in the supplementary materials.
The continuous tabular data fields were standardized using
z-score normalization with a mean value of 0 and standard
deviation of 1 while categorical data was one-hot encoded.
The total size of the dataset was 40,874 unique subjects,
split into 29,428 training, 7,358 validation, and 4,088 test-
ing pairs of imaging and tabular data.

The first prediction target is myocardial infarction as
defined by the International Classification of Diseases

(ICD10) code. ICD10 codes are maintained by the World
Health Organization, used to record diagnoses during hos-
pital admissions, and made available through the UK
Biobank. The second prediction target is CAD, also de-
fined by ICD10 code. The ICD codes used for each class
are listed in the supplementary materials. We combine past
and future diagnoses since infarctions and CAD can go un-
diagnosed for many years and may only be recorded once
a patient has to be treated for a severe cardiac event, mak-
ing it difficult to establish when the disease began [41, 62].
As both diseases are low frequency in the dataset (3% for
infarction and 6% for CAD), finetune train splits were bal-
anced using all positive subjects and a static set of randomly
chosen negative subjects. The test and validation sets were
left untouched.

The second dataset is the Data Visual Marketing (DVM)
dataset that was created from 335,562 used car advertise-
ments [29]. The DVM dataset contains 1,451,784 images
of cars from various angles (45 degree increments) as well
as their sales and technical data. For our task we chose to
predict the car model from images and the accompanying
advertisement data. The images were all 300x300 pixels
and after augmentations (see supplementary materials) final
image size was 128x128. All fields that provided semantic
information about the cars in question were included, such
as width, length, height, wheelbase, price, advertisement
year, miles driven, number of seats, number of doors, orig-
inal price, engine size, body type, gearbox type, and fuel
type. Unique target identifying information like brand and
model year were excluded. The width, length, height and
wheelbase values were randomly jittered by 50 millimeters
so as not to be uniquely identifying. We pair this tabular
data with a single random image from each advertisement,
yielding a dataset of 70,565 train pairs, 17,642 validation
pairs, and 88,207 test pairs. Car models with less than 100
samples were removed, resulting in 286 target classes.

To handle missing tabular data, we used an iterative mul-
tivariate imputer which models missing features as a func-
tion of existing features over multiple imputation rounds.
This was done after normalization, to ensure that the means
and standard deviations were calculated only from recorded
values. The missing features were initialized with the mean
and then entire columns were imputed in order from least
amount of missing features, to most amount of missing fea-
tures. A regressor was fit with all other features as input
and the currently examined column as dependent variable.
This process was repeated a maximum of n times or until
max(abs(Xt−Xt−1))

max(abs(X)) < ϵ, where Xt is the feature vector be-
ing imputed at time point t and ϵ is a provided tolerance,
typically 1e−3. Categorical data was then rounded to the
nearest integer i.e. category.
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Table 1. Performance of our framework on the tasks of myocardial infarction, coronary artery disease (CAD) and DVM car model
prediction from images. Our multimodal pretrained model outperforms all other models on every task. The best performing model for
every input type is displayed in bold font. Our method is highlighted gray.

Model
AUC (%)

Frozen / Infarction
AUC (%)

Trainable / Infarction
AUC (%)

Frozen / CAD
AUC (%)

Trainable / CAD
Top-1 Accuracy (%)

Frozen / DVM
Top-1 Accuracy (%)

Trainable / DVM

Supervised ResNet50 72.37±1.80 72.37±1.80 68.84±2.54 68.84±2.54 87.97±2.20 87.97±2.20

SimCLR 73.69±0.36 73.62±0.70 69.86±0.21 71.46±0.71 65.48±0.48 88.76±0.81

BYOL 69.18±0.43 70.69±2.09 66.91±0.19 70.66±0.22 59.73±0.28 89.18±0.90

SimSiam 71.72±0.18 72.31±0.26 67.79±0.12 70.13±0.35 22.11±2.83 87.43±0.88

BarlowTwins 66.06±1.11 71.35±1.23 62.90±0.23 69.63±0.58 52.57±0.08 85.47±0.82

Multimodal Imaging 76.35±0.19 75.37±0.43 74.45±0.09 73.08±0.75 91.43±0.13 93.00±0.18

4.2. Experimental Setup

All imaging encoders are ResNet50s [26] that generate
embeddings of size 2048. Our multimodal model uses a tab-
ular encoder which is a multilayer perceptron (MLP) with
one hidden layer of size 2048 that generates embeddings of
size 2048. All weights are randomly initialized. Our imag-
ing projector is an MLP with one hidden layer of size 2048
and our tabular projector generates projections directly from
the embeddings with a fully connected layer. Projection size
is 128 following [13]. After pretraining, the projection head
is removed and a fully connected layer to the output class
nodes is added.

To evaluate the effectiveness of our model, we compare
it to a fully supervised ResNet50 as well as multiple con-
trastive solutions such as SimCLR [13], BYOL [22], Sim-
Siam [17], and BarlowTwins [70]. We use linear probing of
frozen networks to evaluate the quality of the learned rep-
resentations [13, 15, 33]. We also benchmark each network
while leaving all weights trainable during finetuning, as this
typically improves upon the frozen counterpart and would
be used in practice. For the cardiac classification tasks we
use area under the receiver operating characteristic curve
(AUC) as our metric because the dataset is severely unbal-
anced for our targets. With only 3-6% positive labels, a
model that always predicts the negative class would achieve
an accuracy of 94-97%. For the DVM cars dataset we re-
port top-1 accuracy as we have 280+ classes. Results are
reported as a mean and standard deviation calculated over
five different seeds set during finetuning. Both cardiac tasks
were evaluated from a single pretrained model. Full exper-
imental details including the setup of the baseline models
can be found in the supplementary materials.

4.3. Multimodal Pretraining Improves Unimodal
Prediction

Our main results showing the strength of our multimodal
pretraining framework are found in table 1. All results
shown use only images as input, as this is the clinically
relevant task. Results using tabular inputs are shown in

the supplementary materials. Our multimodal pretrained
model substantially outperformed all other models on all
three tasks and both finetuning strategies. SimCLR gener-
ally outperformed all other contrastive strategies, highlight-
ing our decision to base our multimodal strategy on it.

On the cardiac tasks, the multimodal model achieved its
best results when freezing the encoder. We hypothesize that
this is due to overfitting on the imaging modality during
finetuning. We suspect when provided with an imaging-
only signal during finetuning that the encoder discarded fea-
tures that were learned from tabular data.

When predicting the car model from images of the DVM
dataset, our multimodal model outperformed other pretrain-
ing strategies by even larger margins during frozen linear
probing. This shows that for a homogeneous dataset like
the DVM cars, having an additional differentiating signal
such as tabular data can better align the learned features to
the downstream target classes.

4.4. Multimodal Pretraining is Beneficial in Low-
Data Regimes

When investigating rare medical conditions with very
low label frequencies, models must be performant when few
positive samples are available. In order to test the perfor-
mance of the learned encoders in this low-data regime, we
sampled the finetuning training dataset to 10% and 1% of
its original size, with each subset being wholly contained
within each superset. Because of the low frequencies of the
positive class, this resulted in balanced training set sizes of
200 (10%) and 20 (1%) for myocardial infarction and 400
(10%) and 40 (1%) for CAD. The test and validation set was
kept identical to the full data regime. A graphical represen-
tation of the results is shown in figure 2. We find that that
in low-data regimes our multimodal framework generally
outperforms the imaging-only contrastive method by larger
margins than with full data. This indicates improved repre-
sentations that require less finetuning samples to achieve the
same performance and higher utility when rare diseases are
the target. We again see that our multimodal frozen encoder
consistently outperforms our trainable encoder. We bench-
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Figure 2. Performance of the imaging models with different number of finetuning training samples. Shaded regions indicate 95% confi-
dence intervals. Pretraining with both images and tabular data excels at all data quantities and is well suited for rare disease identification
when only tens or hundreds of labels are available.

Table 2. Frozen finetune performance of multimodal models pretrained with all features, morphometric features only, and no morphometric
features. Even though the total importance of morphometric features was less than that of non-morphometric features on the cardiac task,
their exclusion worsened or had equal impact on downstream performance. Best score is in bold font, second best underlined.

Experiment
Tabular
Features

Importance
Percentage (%)

AUC (%)
Infarction

AUC (%)
CAD

Tabular
Features

Importance
Percentage (%)

Top-1 Accuracy (%)
DVM

MM Imaging Baseline 117 100.0 76.35±0.19 74.45±0.09 16 100.0 91.43±0.13

Morphometric Features 24 47.0 75.22±0.30 73.71±0.09 5 56.4 92.33±0.05

Non-Morphometric Features 93 53.0 75.46±0.19 72.18±0.25 11 43.6 89.14±0.24

mark against SimCLR as it was the strongest contrastive
pretraining strategy. Comparisons against all pretraining
strategies can be found in the supplementary materials.

4.5. Morphometric Features Improve Embedding
Quality

To explore why training in a multimodal fashion im-
proves the unimodal encoders, we analyzed the contribu-
tions of the tabular features to the improved embeddings. A
unique strength of tabular data is that each of its input nodes
corresponds to a single feature. We divided the features
into two categories, morphometric and non-morphometric.
Morphometric features are related to size and shape and
have direct correlates in the images, such as ventricular
volume, weight or car length. Using integrated gradients,
we calculated the importance of each feature across the test
samples.

To generate the cardiac embeddings, the seven most im-
portant features were all morphometric, even though they
only represent one fifth of all features. Furthermore, all 24
morphometric features were found in the top half of the im-
portance rankings. These results are shown in figure 3 and
supplementary materials.

We hypothesize that the model focuses on morphomet-
ric tabular features because these have direct correlates in
the images. Extracting these features in both modalities in-

Figure 3. Top 20 most impactful features for calculating em-
beddings determined using integrated gradient feature attribution
method. The morphometric features are colored orange and com-
prise 15 of the 20 most impactful features.

creases the projected embedding similarity and minimizes
the contrastive loss, as shown in the supplementary materi-
als.

This is corroborated by the Guided GradCam results,
shown in figure 5, where it is seen that the imaging model
primarily focused on the left ventricle. Incidentally, the
three most important features according to the integrated
gradients are left ventricle mass (LVM), left ventricle end
systolic volume (LVESV), and left ventricle end diastolic
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Figure 4. Impact of features for calculating DVM embeddings
determined using integrated gradient feature attribution method.
The morphometric features are colored orange and comprise the
four most impactful features.

Figure 5. Guided Grad-CAM results for predicting CAD on test
images. The most important features are centered around the left
ventricle, matching the most important tabular features.

volume (LVEDV). To analyze the impact of these tabu-
lar features on downstream performance, we trained once
with only morphometric features and once with only non-
morphometric features. We observed that the morphomet-
ric features have an outsized impact on generating the em-
beddings. Table 2 shows that even though they only con-
tribute 46.99% of the total importance and constitute 24
out of 117 features, their exclusion on CAD prediction de-
grades performance, and is equal to the exclusion of non-
morphometric features on infarction prediction. In general,
this shows that the multimodal pretraining process is fairly
robust to feature selection, especially when the total feature
set is so large and there exist collinearities within the data.

Similar results are seen on the DVM dataset where the
top 4 most important features are all morphometric features,
despite there only being 5 morphometric features in total,
as seen in figure 4. Table 2 shows the effect of removing
these features, which led to a substantial drop in accuracy.
When training with only morphometric features the accu-
racy increased highlighting their importance on tasks that
are shape driven, like car model identification.

4.6. Appending the Label as a Tabular Feature
Boosts Supervised Contrastive Strategies

We introduce a novel form of supervised contrastive
learning by including the ground truth label as a tabular
feature (LaaF). We benchmark the effectiveness of this ap-
proach by comparing it to both supervised contrastive learn-
ing with full label information as well as false negative
elimination with full label information. The results pre-
sented in table 3 show that LaaF outperforms or rivals both
strategies.

On the cardiac binary classification tasks there is a sharp
class imbalance. 97% of the subjects are negative for my-
ocardial infarction, leading false negative elimination to re-
move large portions of each batch before calculating the
contrastive loss. This leads to worse representations as
batch sizes are drastically reduced during training. As con-
trastive learning, and especially SimCLR, is known to be
sensitive to batch sizes [13] this degrades downstream per-
formance. Supervised contrastive learning performed even
worse as it did not converge during pretraining. Again, due
to the class imbalance, the supervised contrastive loss func-
tion results in a degenerate solution as approximately 97%
of the batch is projected to a single embedding. Analogous
behaviour was seen on the CAD prediction task, where 94%
of the samples are in the negative class.

On the cardiac task, LaaF performs better than false neg-
ative elimination and supervised contrastive learning, but
does not offer substantial gains over the imaging baseline.
We attribute this to the fact that the cardiac setting has 120
included features, which lessens the importance of any one
feature. Additionally, imbalanced binary classification is a
difficult task for supervised contrative learning as explained
above. Increasing the importance of the ground truth la-
bel in the pretraining process and adapting supervised con-
trastive learning to the binary case is left to future work.

On the DVM task, where we have 286 classes, the
trend follows established literature. False negative elimina-
tion improves upon the baseline and supervised contrastive
learning improves upon false negative elimination [15]. Our
method by itself, without modifying the loss function, sur-
passes false negative elimination and approaches supervised
contrastive learning. As expected, labels have a higher im-
pact when more classes are present as shown in [15].

Importantly, adding the label as a tabular feature can
also be combined with false negative elimination and su-
pervised contrastive learning. This highlights the flexibility
of our method as it can be used with any supervised con-
trastive strategy. With LaaF, we improve upon both losses
and achieve our best scores on the DVM car model predic-
tion task. The effect was similarly pronounced in the low
data regime as shown in the supplementary materials.
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Table 3. Frozen evaluation when incorporating labels into the contrastive pretraining process. Our Label as a Feature (Laaf) strategy
consistently outperforms supervised contrastive learning (SupCon) and false negative elimination (FN Elimination), either alone or in
combination. Best score is in bold font, second best underlined. Our methods are highlighted gray. A dash indicates failure to converge.

Contrastive Label Used Model
AUC (%)
Infarction

AUC (%)
CAD

Top-1 Accuracy (%)
DVM

✓ Multimodal Imaging Baseline 76.35±0.19 74.45±0.09 91.43±0.13

✓ Supervised ResNet50 72.37±1.80 68.84±2.54 87.97±2.20

✓ ✓ Label as a Feature (LaaF) 76.60±0.42 73.76±0.31 93.56±0.08

✓ ✓ FN Elimination 75.38±0.06 72.45±0.09 92.39±0.18

✓ ✓ FN Elimination + LaaF 75.30±0.05 72.39±0.08 94.07±0.05

✓ ✓ SupCon ––– ––– 93.82±0.11

✓ ✓ SupCon + LaaF ––– ––– 94.40±0.04

5. Discussion and Conclusion

In this work we presented the first contrastive framework
that combines tabular and imaging data. Our contribution is
motivated by rich clinical datasets available in biobanks that
contain vast amounts of information on participants’ med-
ical history, lifestyle, and physiological measures in com-
bination with medical images. However, it is unfeasible to
gather such detailed tabular data in a clinical setting due
to time and budget constraints. Our solution pretrains on
large datasets of tabular and imaging data to boost perfor-
mance during inference using only images as input. We
demonstrated the utility of our tool on the challenging task
of cardiac health prediction from MR images, beating all
contrastive baselines and the fully supervised baseline. Our
method also translates to the natural image domain where
we showed its strength on the task of car model prediction
from advertisement data.

Through attribution and ablation experiments we showed
that morphometric tabular features have outsized impor-
tance for the multimodal learning process. We hypothe-
size that these features, which are related to size and shape,
have direct correlates in the image and thus help minimize
the multimodal self-supervised loss. This suggests that ex-
tracting morphometric features from the images or collect-
ing them from another source, to include them as tabular
features, improves the learned representations. Finally, we
presented a simple and effective new supervised contrastive
learning method when using tabular data. Simply append-
ing the target label as a tabular feature outperformed loss
modifying strategies such as contrastive learning with false
negative elimination and approached supervised contrastive
learning. This strategy can also be combined with any su-
pervised contrastive loss modification to achieve state-of-
the-art results, surpassing all other strategies.

Limitations In our study we examined the benefit of our
framework only for classification tasks. Future work should
aim to test the behavior of the framework with further tasks
such as segmentation and regression. We hypothesize that
segmentation could benefit from the framework if morpho-
metric features such as the sizes of the to-be-segmented re-
gions are included in the tabular data and regression if mor-
phometric features are regressed.

A further shortcoming of this work is that we only in-
cluded white subjects from the UK Biobank population
dataset because other ethnicities were drastically underrep-
resented in the study, making up only 5% of the total pop-
ulation. Significant racial disparities in coronary infarction
and CAD risk have been repeatedly found [27, 38, 40] and
could lead to spurious correlations being learned. Future
work could use balanced datasets or explore propagated bi-
ases learned with unbalanced datasets, to identify and coun-
teract any learned biases.

Conclusion In conclusion, for the first time, our work
presents an effective and simple strategy to take advantage
of tabular and imaging data in self-supervised contrastive
learning. Our method is particularly relevant in a clinical
setting where we wish to take advantage of extensive, mul-
timodal biobanks during pretraining and predict unimodal
in practice. We believe tabular data is an understudied and
underappreciated source of data for deep learning, which is
easy to collect and ubiquitous, as any numerical or categori-
cal feature can be represented. It is also highly interpretable
due to the fact that each feature directly represents a se-
mantic concept. We hope that this inspires future works to
unlock this untapped potential.
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