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Abstract

This paper introduces a generalized few-shot segmenta-
tion framework with a straightforward training process and
an easy-to-optimize inference phase. In particular, we pro-
pose a simple yet effective model based on the well-known
InfoMax principle, where the Mutual Information (MI) be-
tween the learned feature representations and their corre-
sponding predictions is maximized. In addition, the terms
derived from our MI-based formulation are coupled with
a knowledge distillation term to retain the knowledge on
base classes. With a simple training process, our inference
model can be applied on top of any segmentation network
trained on base classes. The proposed inference yields sub-
stantial improvements on the popular few-shot segmenta-
tion benchmarks, PASCAL-5i and COCO-20i. Particularly,
for novel classes, the improvement gains range from 7%
to 26% (PASCAL-5i) and from 3% to 12% (COCO-20i) in
the 1-shot and 5-shot scenarios, respectively. Furthermore,
we propose a more challenging setting, where performance
gaps are further exacerbated. Our code is publicly avail-
able at https://github.com/sinahmr/DIaM .

1. Introduction
With the advent of deep learning methods, the automatic

interpretation and semantic understanding of image content
have drastically improved in recent years. These models are
nowadays at the core of a broad span of visual recognition
tasks and have enormous potential in strategic domains for
our society, such as autonomous driving, healthcare, or se-
curity. Particularly, semantic segmentation, whose goal is
to assign pixel-level categories, lies as one of the mainstays
in visual interpretation. Nevertheless, the remarkable per-
formance achieved by deep learning segmentation models
is typically limited by the amount of available training data.
Indeed, standard segmentation approaches are often trained
on a fixed set of predefined semantic categories, commonly
requiring hundreds of examples per class. This limits their
scalability to novel classes, as obtaining annotations for new
categories is a cumbersome and labor-intensive process.
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Few-shot semantic segmentation (FSS) has recently
emerged as an appealing alternative to overcome this lim-
itation [1,30,33]. Under this learning paradigm, models are
trained with an abundant labeled dataset on base classes,
and only a few instances of novel classes are seen during the
adaptation stage. However, [29] identified two important
limitations that hamper the application of these methods in
real-life scenarios. First, existing literature on FSS assumes
that the support samples contain the categories present in
the query images, which may incur costly manual selection
processes. Second, even though significant achievements
have been made, all these methods focus on leveraging sup-
ports as much as possible to extract effective target infor-
mation, but neglect to preserve the performance on known
categories. Furthermore, while in many practical applica-
tions the number of novel classes is not limited, most FSS
approaches are designed to work on a binary basis, which is
suboptimal in the case of multiple novel categories.

Inspired by these limitations, a novel Generalized Few-
Shot Semantic Segmentation (GFSS) setting has been re-
cently introduced in [29]. In particular, GFSS relaxes the
strong assumption that the support and query categories
are the same. This means that, under this new learning
paradigm, providing support images that contain the same
target categories as the query images is not required. Fur-
thermore, the evaluation in this setting involves not only
novel classes but also base categories, which provides a
more realistic scenario.

Although the setting in [29] overcomes the limitations of
few-shot semantic segmentation, we argue that a gap still
remains between current experimental protocols and real-
world applications. Hereafter, we highlight limiting points
of the current literature and further discuss them in Sec. 3.2.

Unrealistic prior knowledge. We found that existing
works explicitly rely on prior knowledge of the novel
classes (supposed to be seen at test-time only) during the
training phase. This, for instance, allows to filter out im-
ages containing novel objects [14, 29] from the training set.
Recent empirical evidence [28] found out that such assump-
tions indeed boost the results in a significant manner.
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Modularity. Another limitation is the tight entanglement
between the training and testing phases of current ap-
proaches, which often limits their ability to handle arbi-
trary tasks at test time. Specifically, existing meta-learning-
based approaches are designed to handle binary segmen-
tation [14], and need to be consequently modified to han-
dle multiple classes. While we technically address that
by using multiple forward passes (one per class) followed
by some heuristic aggregation of segmentation maps, this
scales poorly and lacks principle.

Contributions. Motivated by these limitations, we aim to
address a more practical setting and develop a fully modular
inference procedure. Our inference abstracts away the train-
ing stage, making no assumption about the type of training
or the format of tasks met at test time. Specifically:

• We present a new GFSS framework, DIaM (Distilled
Information Maximization). Our method is inspired
by the well-known InfoMax principle, which maxi-
mizes the Mutual Information between the learned fea-
ture representations and their corresponding predic-
tions. To reduce performance degradation on the base
categories, without requiring explicit supervision, we
introduce a Kullback-Leibler term that enforces con-
sistency between the old and new model’s base class
predictions.

• Although disadvantaged by rectifications to improve
the practicality of previous experimental protocols, we
still demonstrate that DIaM outperforms current SOTA
on existing GFSS benchmarks, particularly excelling
in the segmentation of novel classes.

• Based on our observations, we go beyond standard
benchmarks and present a more challenging scenario,
where the number of base and novel classes is the
same. In this setting, the gap between our method and
the current GFSS SOTA widens, highlighting the poor
ability of modern GFSS SOTA to handle numerous
novel classes and the need for more modular/scalable
methods.

2. Related work
Few-shot segmentation. Few-shot semantic segmenta-
tion (FSS) has received notable attention in recent years,
greatly inspired by the success of the few-shot learning
paradigm [9, 24]. Early FSS frameworks consisted in a
dual-branch architecture, where one branch generated the
class prototypes from support samples and the other one
segmented the query images by exploiting the learned pro-
totypes [7, 23, 25]. Following the success of these pio-
neer approaches, an important body of literature explored
how to better leverage category information from support

samples to better guide the segmentation of query images
[15, 21, 30, 33–35]. For example, this can be achieved by
collecting more abundant information from support images,
which is used to construct multiple prototypes per class,
each activating different regions of the query image [15,34].
Alternative solutions to learn better category representa-
tions include: establishing correspondences between sup-
port and query images with Graph CNNs [32], imprint-
ing the weights for novel classes [27], or leveraging visual
transformers to improve the category information transfer
between support and query samples [20, 22, 37]. Last, in-
spired by recent works in few-shot classification that favor a
transductive setting, foregoing episodic training (aka meta-
learning) [2, 5, 19, 39], RePRI [1] proposed a simple trans-
ductive solution.

Generalized few-shot segmentation. To overcome some
of the limitations of FSS, [29] recently extended this set-
ting, which was coined as generalized few-shot semantic
segmentation (GFSS). In particular, GFSS approaches are
given a single support set containing some images for every
novel class, and they should be able to predict all potential
base and novel classes in all query images. This way, in con-
trast to standard FSS methods, models have no knowledge
of novel classes present in a query image. To tackle this
problem, CAPL [29] proposed a framework with two mod-
ules to dynamically adapt both base and novel prototypes.
Nevertheless, the presented results are biased toward base
classes and the solution requires that base classes are la-
beled in the support samples. Furthermore, the recent BAM
model [14], which was initially proposed for FSS, is also
evaluated in the GFSS setting. This model consists of two
steps. First, a base-learner is trained on base classes fol-
lowing the standard supervised learning paradigm, where
the cross entropy loss is employed on the base training set.
Then, a second meta-learning step is introduced, where the
base-learner and a new meta-learner are optimized using
episodic training. In the inference phase, the output of the
meta-learner is fused with base-learner’s output to give pre-
dictions on base classes and a single novel class. The fact
that the meta-learner is only able to discern background-
foreground categories makes this method’s direct applica-
tion not suitable to multi-class GFSS.

3. Background
3.1. Preliminaries

Notations. Let us note H and W the height and width of
the original images, and Ω = [0, H−1]× [0,W −1] the set
of all pixels coordinates. In all generality, we define a seg-
mentation model f that takes images x ∈ R|Ω|×3 as inputs,
and produces segmentation maps f(x) = p ∈ [0, 1]|Ω|×K ,
where K denotes the number of classes to predict.
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Standard few-shot segmentation. In few-shot segmen-
tation, two sets of classes are considered: the base classes,
Cb, containing classes over which the model is trained; and
the novel classes, Cn, strictly disjoint from base classes,
such that Cb ∩ Cn = ∅. At test time, the model is evalu-
ated through a series of tasks. In each task, the model is
given access to a support set S = {xi,yi}|S|i=1, containing
a few images (shots), along with their corresponding binary
segmentation masks yi ∈ [0, 1]|Ω|, for some novel class
randomly sampled from Cn. Using this limited supervision,
the model is then evaluated based on its ability to segment
objects from this novel category in an unlabeled image, re-
ferred to as the query image, which will be referred to as the
(|S|+ 1)th image. In this context, K = 2 and the model is
expected to produce a binary mask p ∈ [0, 1]|Ω|×2.
Generalized few-shot segmentation. The generalized
setting extends the standard setting to account for the
fact that real-world applications often require being able
to recognize both base and novel classes in new images.
As a result, for each task, we now require the model
to produce a segmentation over the 1 + |Cb| + |Cn| (in-
cluding the background) potential classes, such that p ∈
[0, 1]|Ω|×(1+|Cb|+|Cn|). So, for a given pixel j we have

p(j) =

 bg︷︸︸︷
p0 ,

base classes︷ ︸︸ ︷
p1, . . . , p|Cb|,

novel classes︷ ︸︸ ︷
p|Cb|+1, . . . , p|Cb|+|Cn|

⊤

,

(1)

in which we omit pixel index j from the right-hand side for
simplicity, and bg stands for the background.

3.2. Toward a fully practical setting

As motivated in Sec. 1, we aim at evaluating methods in
a maximally practical setting. Therefore, we start by recti-
fying design choices made in previous works [14, 29] that
we find impractical and that could impact the results in a
significant manner. We further posit additional desiderata
to improve the practicality of developed methods and widen
their adoption.

Addressing the presence of novel classes during train-
ing. We found that previous works [14, 29] explicitly re-
moved images containing novel classes during the training
phase. This implicitly requires information that should not
be available at that stage, namely the prior knowledge of the
novel classes, as well as the potential presence of a given
novel object in a particular image. Instead, in our setting,
we keep those images during training (as they naturally oc-
cur), and the potential objects from novel classes are la-
beled as background at that stage. Needless to say, this
may negatively impact the performance of the model at test
time, given the class ambiguity introduced while forcing the

network to predict potential novel classes as background.
However, we believe that this is a more natural way to de-
sign the problem.

Relaxing test-time labeling requirements. We found
that previous works [29] required potential objects from
base classes to be explicitly labeled in the images of the
support set S. We argue that this can require a significant
additional load of work in real-world settings. Consider the
simple example of COCO-20i’s dataset, with a total of 80
classes. Instead of only annotating objects from 20 novel
classes, as was the case in the standard FSS setting, anno-
tators would now have to search for 60 potential additional
classes in each image from the support, thus leading to a
substantial increase in human/financial efforts. We find that
this requirement is not necessary, and high performances
on base classes can be retained by other means. Therefore,
we drop this requirement, and only require annotations for
novel classes at test-time, whereas the rest (including poten-
tial objects from base classes) are labeled as background.

Modularity of inference. Although not a strict require-
ment, we advocate developing modular inferences that, un-
like current approaches [14, 29], can apply to any model,
without relying on customized architectures or training pro-
cedures. The rationale is two-fold. First, as foundation
models are and will continue to push state-of-the-art on
most vision tasks, we forecast that the ability to lever-
age off-the-shelf models seamlessly will become crucial in
reaching high performances. Second, it drastically low-
ers the entry barrier to few-shot learning for practitioners
who, in most cases, already possess trained models for their
specific application, and whose limited computational re-
sources may prevent re-training models for every method
they would like to try. Access to inference-only methods
which can readily equip preexisting models with few-shot
ability could be a key ingredient for the widespread adop-
tion of few-shot methods.

4. Our method
In light of the requirements and desiderata posed in

Sec. 3.2, we shift our attention from training to inference.
In particular, unlike previous generalized FSS methods, we
use a standard supervised training procedure that is not
informed by any knowledge, even implicit, of the novel
classes. We further develop an optimization-based infer-
ence procedure that can be directly deployed at test time.
Each of these steps is detailed below.

4.1. Training

For convenience, we partition the segmentation model
into a feature extractor fϕ and a linear classifier fθb

, trained
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in a standard supervised fashion to segment base classes Cb

during training. At this stage, the classifier can only predict
1 + |Cb| classes, i.e., the background and the base classes.

4.2. Inference

At test-time, given |Cn| novel classes to recognize, we
freeze the feature extractor fϕ and augment the pre-trained
classifier θb ∈ R(1+|Cb|)×d with novel prototypes θn ∈
R|Cn|×d. We consider the concatenation θ = [θb;θn] ∈
R(1+|Cb|+|Cn|)×d to form our final classifier, and optimize θ
for this specific task. Note that d is the size of the feature
space. We base our optimization objective on the seminal
concept of mutual information [26]. Specifically, we use the
InfoMax framework [18] as a starting point for our formu-
lation. InfoMax advocates maximizing the mutual informa-
tion between a network’s inputs and outputs as

max
θ

I(X;P ) = H(P )︸ ︷︷ ︸
marginal entropy

− H(P |X)︸ ︷︷ ︸
conditional entropy

, (2)

where X and P are the random variables respectively asso-
ciated with the pixel distribution and model’s predictions.
Instantiated in our context, InfoMax (2) incites the model
to produce confident predictions on each pixel (conditional
entropy), while encouraging an overall balanced marginal
distribution (marginal entropy), i.e., roughly speaking, an
equal number of pixels assigned to each class. Interestingly,
in the related context of classification, InfoMax can be in-
terpreted as an unsupervised clustering criterion [13].

In the following sections, we explain how we gradually
depart from the vanilla InfoMax principle and incorporate
problem-specific constraints and inductive biases to reach
our final formulation.

4.2.1 Enforcing high-confidence

We start by focusing our attention on the conditional
entropy term mentioned in Eq. (2) that enforces high-
confidence predictions for each pixel. To this end, we in-
troduce the cross-entropic operator:

H(pi;qi) =
−1

|Ω| Tr(pi log(q
⊤
i )). (3)

Taking into account support and query images, the vanilla
conditional entropy of P |X can be written as

H(P |X) =
1

|S|+ 1

|S|+1∑
i=1

H(pi;pi). (4)

Leveraging supervision Entropy H(p) can be interpreted
as a self-cross-entropy H(p;p), in which the model’s own
predictions are used as pseudo-labels for supervision. Be-
cause actual ground-truth labels for the support images are

provided, we can effectively replace those pseudo-labels
with the ground truth.

Aligning support labels and predictions. As motivated
in Sec. 3.2, we do not require objects from base classes to
be labeled in the support images. That produces a slight
misalignment between labels and the model’s predictions.
More specifically, a pixel j labeled as background, yi(j) =
[1, 0, . . . , 0], can now have two meanings: either it actually
is a background pixel or it belongs to a base class object. To
account for that misalignment between predictions p and
labels y, we project the model’s predictions as

πS(pi)(j) =

 |Cb|∑
k=0

pk,

|Cb| times︷ ︸︸ ︷
0, . . . , 0, p|Cb|+1, . . . , p|Cb|+|Cn|


⊤

.

(5)

We can now write our constrained conditional entropy, par-
titioning pixels into supervised and unsupervised. We found
it beneficial to adjust the relative weighting of the terms,
and therefore introduce α > 0 in the objective, such that
our conditional entropy term reads as

Lcond-ent = α

|S|∑
i=1

H(yi;πS(pi))︸ ︷︷ ︸
Lxent: Support supervised entropy

+ H(p|S|+1),︸ ︷︷ ︸
Query unsupervised entropy

(6)

where α controls the reliance on the labeled support set. We
will refer to the support supervised entropy term as Lxent.

4.2.2 Addressing class imbalance

The constraint of high-confidence predictions alone can be
easily satisfied by a model and does not constrain the prob-
lem enough to guarantee meaningful solutions. For in-
stance, a trivial classifier assigning all pixels from the query
image to the same class with maximum probability 1 would
fully satisfy the high-confidence constraint. Therefore, we
need to go beyond mere entropy minimization, which natu-
rally leads us to shift our attention to the marginal entropy
term from Eq. (2). As shown below, marginal entropy en-
sures a fair distribution of assignments over the different
classes, thereby preventing, e.g., the trivial solutions previ-
ously described. As in the previous section, let us start with
the vanilla formulation of the marginal entropy

H(P ) = −p̂ · log(p̂) = Cste −KL(p̂ || u), (7)

where · is the dot-product, KL(. || .) denotes the Kullback-
Leibler divergence, u = 1/(1 + |Cb| + |Cn|) · 1 is
the uniform distribution, and p̂ ∈ [0, 1]1+|Cb|+|Cn| is
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the model’s marginal distribution over classes (detailed
hereafter). In other words, H(P ) regularizes the overall
procedure by encouraging class-balanced predictions,
i.e., predicting roughly an even distribution of pixels for
each class. In the context of our problem, this vanilla
formulation exhibits important limitations.

First, akin to the previous section, we have direct ac-
cess to supervision for the support pixels. Assuming that
the model fits those labels well, the distribution of predic-
tions will naturally converge to the proportions dictated by
the ground truth labels. Therefore, we do not include the
predictions from the support samples when computing the
marginal, as this would provide a redundant signal, and only
consider the marginal distribution over the query:

p̂ =
1

|Ω|
∑
j∈Ω

p|S|+1(j). (8)

Additionally, semantic segmentation is virtually never a
balanced problem. The number of instances, the distance
to the camera, or the angle of view are all factors that can
randomly vary between scenes, significantly affecting the
final share of pixels that each class occupies in a given
frame. Therefore, using the uniform distribution as a prior
to match can be sub-optimal, as shown in our ablation study
in Sec. 5.3. Beyond merely down-weighting to weaken this
regularization, alternatives in the literature include using α-
entropy [31] in place of the standard Shannon entropy from
Eq. (7), or replacing u with an estimated prior Π [1]. We de-
cided to go with the prior estimation procedure given in [1].
Specifically, we extend the marginal entropy to take into ac-
count a prior:

Lmarg-ent = H(P ;Π) = Cste −KL(p̂ || Π). (9)

This prior-guided marginal entropy loss reduces to the stan-
dard marginal entropy in the absence of prior, i.e., Π =
u. Following [1], Π is estimated from the model’s initial
marginal distribution and re-updated during optimization.

4.2.3 Preserving base knowledge

So far, our inference procedure has not made any distinc-
tion between base and novel classes, thus leaving aside
an important inductive bias of our problem: prototypes
from the base classifier, θb, were trained using orders of
magnitude more data than prototypes from novel classes,
whose only available supervision comes from the few
labeled samples from the support set. Additionally, our
setting prevents support images from providing any explicit
supervision for base classes, which only accentuates the
asymmetry between base and novel classes.

To account for these two contrasts, a simple solution
could be to freeze the base classifier θb, and only optimize
the novel classifier θn. However, we show in Sec. 5 that this
results in sub-optimal results. Instead, we propose a more
flexible self-distillation term that encourages the model’s
predictions on base classes to stay close to its old predic-
tions. Formally, we consider the base classifier’s weights
θ
(0)
b (right after training) and define the model’s old predic-

tions as

pold
i = f

θ
(0)
b

◦ fϕ(xi) ∈ [0, 1]|Ω|×(1+|Cb|). (10)

New-to-old mapping. In order to measure and minimize
any sort of distances between the old model’s predictions
pold
i defined over base classes and our current model’s pre-

dictions pi ∈ [0, 1]|Ω|×(1+|Cb|+|Cn|), defined over both base
and novel classes, we must map them to the same label
space. At this point, it is important to recall that a back-
ground prediction from the base model really means “any-
thing other than base classes”. That includes actual back-
ground, as well as potential novel classes that were labeled
as background during training. Therefore, to make p and
pold consistent, we project p as

πnew2old(p)(j) =

p0 + |Cn|∑
i=1

p|Cb|+i, p1, p2, . . . , p|Cb|

⊤

.

(11)

Now, inspired by recent literature in incremental learning
that distills knowledge using the predictions of old models
[3, 4, 6, 16], we can express our knowledge-distillation term
applied to the query image as

LKD = KL(πnew2old(p|S|+1) || pold
|S|+1), (12)

which enables us to write our final objective:

min
θ

LDIaM = Lcond-ent − Lmarg-ent + βLKD, (13)

where β controls the importance of retaining base classes
knowledge.

5. Experiments
5.1. Experimental setting

Datasets. To evaluate our method we use two well-known
few-shot segmentation benchmarks: PASCAL-5i [8,10,25]
and COCO-20i [17,25]. To use in our experiments in Tab. 2,
we define PASCAL-10i in the same way PASCAL-5i is
formed [25], but splitting the set of classes into two subsets
of size 10, instead of four subsets of size 5. More specifi-
cally, in PASCAL-10i, the subset i consists of classes with
indices {10i+ j} for j ∈ {1, 2, . . . , 10}. For COCO-20i
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we report the average performance of models over 10K
query images, while for PASCAL-5i and PASCAL-10i we
use all available query images. More specifications about
the datasets can be found in Appendix A.

Evaluation protocol. For evaluation purposes, we resort
to the standard mean intersection-over-union (mIoU) over
the classes. In our tables, Base and Novel refer to mIoU
over base and novel classes, respectively. Although mIoU
over all classes has been used by prior works [14, 29] as
the overall score, we believe it is a misleading metric in
GFSS. Classes in PASCAL-5i and COCO-20i are split in
a way that the number of base classes is thrice the number
of novel classes. This biases the metric toward the Base
score and undermines the very goal of few-shot learning,
which is learning the novel classes. Therefore, we propose
to use the standard average of Base and Novel scores as the
Mean score in the GFSS task. Following [14, 29], metrics
are averaged over 5 independent runs.

Implementation details. The architecture of the model is
based on PSPNet [38] using Resnet-50 [11] backbone. Dur-
ing training, a standard cross-entropy over the base classes
is minimized. Our training scheme follows the base-training
stage of [14], so, the batch size is 12 and SGD optimizer is
used with an initial learning rate 2.5 × 10−4, momentum
0.9, and weight decay 10−4. The number of epochs is 20
for COCO-20i and 100 for PASCAL-5i and PASCAL-10i.
Data augmentation is done in the same way as [30]. At
inference time, the feature extractor ϕ is kept frozen and
the classifier θ is optimized. For this phase, SGD opti-
mizer is used with learning rate 1.25 × 10−3 and the loss
function in Eq. (13) is optimized for 100 iterations. The
size of the feature space d is set to 512 in all experiments.
We have empirically found that Lxent in Eq. (6) and LKD of
Eq. (12) play more significant roles in the model’s perfor-
mance, and upweighted these terms by two orders of mag-
nitude (α = β = 100). Following [1], the value of Π is
estimated by the model at the beginning of the evaluation
and it is updated once at iteration 10.

Baselines. Following [29], we included relevant FSS
methods in our evaluation, including CANet [36], PANet
[33], PFENet [30], and SCL [35]. These methods were
adapted in [29] by modifying their respective inference code
to generate prototypes for both base and novel classes in
each query image. We also modified the inference code of
RePRI [1] to accommodate multiple classes during testing
and adapted MiB [4], an incremental learning method, to
the GFSS setting, as a distillation term similar to Eq. (12)
is integrated in their approach. Furthermore, we compare
our method to the GFSS method CAPL [29]. Last, al-
though BAM [14] reports results in the GFSS task, its

episodic learning nature hinders the scalability of this ap-
proach to settings where segmentation of multiple novel
classes is required. Indeed, at inference, it can only provide
background-foreground predictions, which is impractical in
our current validation. In order to include it in our experi-
ments, we have made some changes to this method, which
are detailed in Appendix G. Note that the reported results
in Tab. 1 do not take into account the background IoU in the
evaluation metrics, as this class is not an object of interest.
This is discussed in more detail in Appendix E.

5.2. Main results

Comparison to state-of-the-art GFSS. Table 1 reports
the results obtained by different approaches in the GFSS
setting. Here, we stress some of the underlying limitations
present in these methods. First, we refer to as ‘Practical set-
ting’ the scenario where models employ the whole dataset
during the training of base classes, i.e., have no access be-
forehand to information about novel categories (more in-
formation is available in Appendix F). Then, we resort to
‘Multi-class design’ to highlight which methods, by nature,
can handle multiple novel classes simultaneously.

From these results, we can observe that models designed
specifically for the task of FSS are unable to perform sat-
isfactorily in both base and novel categories. Compared
to GFSS methods, our formulation brings substantial im-
provements under both the 1-shot and 5-shot scenarios, par-
ticularly on Novel metric. More specifically, compared to
CAPL, these differences are considerably large in the case
of novel classes, with around 17% and 31% improvement
on PASCAL-5i. We believe that this imbalanced behavior
might be due to the fact that CAPL relies on the base classes
to generate the prototypes for novel categories. Thus, the
model may give excessive importance to base classes, not
fully leveraging the support samples during the adaptation
stage. Furthermore, differences with respect to BAM are
also significant, with 7% and 26% improvement on novel
classes in the 1-shot and 5-shot settings on PASCAL-5i.
Note that BAM fuses the output on base classes to the novel
prediction and it does not form a holistic classifier over all
the classes [14]. Therefore, its prediction on base classes
remains intact after learning the novel class, and this leads
to high performance on Base metric. However, we believe
a rigid base prediction hampers the ability of the model to
grasp a universal view of the classes, and this comes at the
price of worse performance on novel classes, despite the
fact that learning them is the main objective of any few-shot
learning framework.

The same trend observed in the PASCAL-5i benchmark
is repeated for COCO-20i. More concretely, our method
achieves performance gains of around 10% and 17% on
Novel metric over CAPL, and 3% and 12% compared to
BAM under the 1-shot and 5-shot scenarios, respectively.
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PASCAL-5i
1-Shot 5-Shot

Method Practical setting Multi-class design Base Novel Mean Base Novel Mean

CANet* [36] CVPR’19 ✓ ✗ 8.73 2.42 5.58 9.05 1.52 5.29
PANet* [33] ICCV’19 ✓ ✗ 31.88 11.25 21.57 32.95 15.25 24.1
PFENet* [30] TPAMI’20 ✓ ✗ 8.32 2.67 5.50 8.83 1.89 5.36
MiB† [4] CVPR’20 ✓ ✓ 63.80 8.86 36.33 68.60 28.93 48.77
SCL* [35] CVPR’21 ✓ ✗ 8.88 2.44 5.66 9.11 1.83 5.47
RePRI† [1] CVPR’21 ✓ ✗ 20.76 10.50 15.63 34.06 20.98 27.52

CAPL† [29] CVPR’22 ✗ ✓ 64.80 17.46 41.13 65.43 24.43 44.93
BAM† [14] CVPR’22 ✗ ✗ 71.60 27.49 49.55 71.60 28.96 50.28
DIaM (Ours) ✓ ✓ 70.89 35.11 53.00 70.85 55.31 63.08

DIaM-UB (Ours) ✗ ✓ 71.13 52.61 61.87 71.12 66.12 68.62

COCO-20i

Base Novel Mean Base Novel Mean

RePRI† [1] CVPR’21 ✓ ✗ 5.62 4.74 5.18 8.85 8.84 8.85
CAPL† [29] CVPR’22 ✗ ✓ 43.21 7.21 25.21 43.71 11.00 27.36
BAM† [14] CVPR’22 ✗ ✗ 49.84 14.16 32.00 49.85 16.63 33.24
DIaM (Ours) ✓ ✓ 48.28 17.22 32.75 48.37 28.73 38.55

DIaM-UB (Ours) ✗ ✓ 48.55 29.48 39.02 48.63 40.43 44.53

Table 1. Quantitative evaluation on PASCAL-5i and COCO-20i compared to FSS and GFSS methods. DIaM represents our method
and DIaM-UB is an impractical extension of it, explained in Sec. 5.3. All the methods employ ResNet-50 as backbone. Results with a “*”
sign are obtained from [29], whereas results with a “†” sign are reproduced using the publicly available codes.

Impact of increasing the number of novel classes. A
more challenging scenario involves expanding the set of
novel classes. To this end, we compare our approach
to CAPL [29] and BAM [14] on the newly defined
PASCAL-10i, which contains 10 base and 10 novel classes.
Table 2 shows that the difference in Novel scores compared
to these methods is further exacerbated. In particular, DIaM
yields improvements on novel classes of nearly 15% and
30% under 1-shot and 5-shot settings, respectively, while
also outperforming both methods on base classes.

1-Shot 5-Shot

Method Base Novel Mean Base Novel Mean

CAPL [29] CVPR’22 53.78 15.01 34.40 57.02 20.40 38.71
BAM [14] CVPR’22 69.02 15.48 42.25 69.18 21.51 45.35
DIaM (Ours) 70.26 31.29 50.77 70.25 51.89 61.07

Table 2. Quantitative evaluation on PASCAL-10i. All the meth-
ods employ ResNet-50 as backbone.

5.3. Ablation studies

We ablate along three axes to better understand each de-
sign choice’s contribution. Results are summarized in the
form of convergence plots in Fig. 1. Specifically, we find
that (a) terms act symbiotically to provide the best perfor-
mance on both base and novel classes, (b) self-estimation
yields higher novel-class performance than the uniform

prior, and finally, (c) as stated in Sec. 4.2.3, introducing the
knowledge distillation term and optimizing the base clas-
sifier θb, as opposed to the simple solution of freezing it,
allows both faster convergence and better optima. Note that
since we form a holistic distribution over all classes, even if
we freeze θb, the probability of base classes will not remain
fixed. Those convergence plots demonstrate that models im-
prove rapidly at first and keep improving at a slower pace
as the adaptation continues (more details in Appendix B).

Based on Fig. 1, the self-estimation of Π leads to better
performance than using the uniform distribution. Therefore,
we wonder: how far could this term take us? The methods
mentioned as DIaM-UB in Tab. 1 demonstrate an extension
of our model in which the actual true Π is given. This shows
the upper bound of the performance of our model as the es-
timation of Π gets more accurate. Experiments show that
an accurate Π can lead to significant improvements in per-
formance. We emphasize that knowing the exact size of the
target objects might be unrealistic and that our goal is just
to demonstrate that with a proper mechanism to provide an
accurate estimate of the target class proportion, the obtained
results can be much improved.

5.4. Visual examples

Qualitative results of the proposed method are presented
in Fig. 2. More specifically, for a given query, the predic-
tions made by four different models, each containing a sub-
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Figure 1. Ablation studies on (a) DIaM’s loss, (b) the type of prior
Π in Eq. (9), and (c) the optimization of θb. Results are provided
for PASCAL-5i under the 5-shot setting.

set of our loss function are shown. This figure reveals an in-
teresting phenomenon: in the absence of the knowledge dis-
tillation term of Eq. (12), the model tends to predict some of
the base classes as the novel ones. For example, in the third
and fourth row, the base classes horse and bicycle are mis-
takenly segmented as the novel classes cow and car. These
misclassifications are revised when the knowledge distilla-
tion term is in use, which further proves its effectiveness.
More visual examples are provided in Appendix H.

6. Conclusion

Summary. We propose a new generalized few-shot seg-
mentation method, with a standard supervised training
scheme and a lightweight inference phase, which can be
applied on top of any learned feature extractor and classi-
fier. Our method is based on the InfoMax framework [18]
incorporating problem-specific biases, and it also employs
knowledge distillation [12] to prevent performance loss on
the classes learned during training. Compared to prior

query ground
truth

Lxent Lcond−ent Lcond−ent

- Lmarg−ent

LDIaM

Figure 2. Qualitative results of different terms of DIaM’s loss
function (on PASCAL-5i under the 5-shot setting). A single
support set, containing novel classes bus, cat, car, chair, and cow,
is used for predicting every query image. Query images can con-
tain any classes and every one of them is to be recognized.

works, our results show significant improvement in learn-
ing novel classes, while keeping the performance on base
classes high as well. We eliminated some limiting assump-
tions of prior methods, such as recognizing one novel class
at a time, benefiting from some information about novel
classes during training, and having to label base classes in
support images. Our proposed knowledge distillation con-
siderably helps retain base knowledge, and we believe im-
posing such a term is more realistic and practical than ex-
plicit supervision for base classes.

Limitations. Results of the DIaM-UP experiments show
that our marginal entropy term in Eq. (9) can play a sig-
nificant role and increase the performance considerably. In
particular, the ablation study demonstrates that even though
our simple choice of estimating the prior proportion Π us-
ing the model’s predictions introduces slight improvements,
access to a more precise prior has the potential to substan-
tially improve the results. Therefore, we believe that the
presented results can be further improved, and encourage
future research to explore more powerful mechanisms to
provide more accurate proportions of the object of interest.
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