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Abstract

We propose a method for in-hand 3D scanning of an un-
known object with a monocular camera. Our method re-
lies on a neural implicit surface representation that cap-
tures both the geometry and the appearance of the object,
however, by contrast with most NeRF-based methods, we do
not assume that the camera-object relative poses are known.
Instead, we simultaneously optimize both the object shape
and the pose trajectory. As direct optimization over all
shape and pose parameters is prone to fail without coarse-
level initialization, we propose an incremental approach
that starts by splitting the sequence into carefully selected
overlapping segments within which the optimization is likely
to succeed. We reconstruct the object shape and track its
poses independently within each segment, then merge all
the segments before performing a global optimization. We
show that our method is able to reconstruct the shape and
color of both textured and challenging texture-less objects,
outperforms classical methods that rely only on appearance
features, and that its performance is close to recent methods
that assume known camera poses.

1. Introduction

Reconstructing 3D models of unknown objects from
multi-view images is a computer vision problem which has
received considerable attention [8]. With a single camera,
a user can capture multiple views of an object by manually
moving the camera around a static object [22, 26, 43] or by
turning the object in front of the camera [27, 31, 35, 36].
The latter approach is often referred to as in-hand object
scanning and is convenient for reconstructing objects from
cameras mounted on an AR/VR headset such as Microsoft
HoloLens or Meta Quest. Moreover, this approach can re-
construct the full object surface, including the bottom part
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Figure 1. Given an RGB sequence of a hand manipulating an un-
known object, our method reconstructs the 3D shape and color of
the object, even if the object surface is non-Lambertian or poorly
textured. We first split the input sequence into multiple overlap-
ping segments (two in this figure) in which the object can be re-
liably reconstructed and tracked. We then use the tracked object-
camera relative poses to initialize a global optimization that pro-
duces the final object model and refined pose trajectory.

which cannot be scanned in the static-object setup.
Recent 3D reconstruction methods rely on neural rep-

resentations [19, 21–23, 42, 43]. By contrast with earlier re-
construction methods [9], the recent methods can provide an
accurate dense 3D reconstruction even in non-Lambertian
conditions and without any prior knowledge of the object
shape. However, most of these methods assume that the
camera poses are provided, typically by Structure-from-
Motion (SfM) methods such as COLMAP [29]. Apply-
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ing SfM methods to in-hand object scanning is problem-
atic as these methods require a sufficient number of distinct
visual features and can thus handle well only textured ob-
jects. NeRF-based methods such as [13, 15, 16, 34], which
simultaneously estimate the radiance field of the object
and the camera poses without requiring initialization from
COLMAP, are restricted to forward-facing camera captures.
As we experimentally demonstrate, these methods fail to
converge if the images cover a larger range of viewpoints,
which is typical for in-hand scanning.

We propose a method for in-hand object scanning from
an RGB image sequence with unknown camera-object rel-
ative poses. We rely on a neural representation that cap-
tures both the geometry and the appearance of the object
and therefore enables reconstructing even poorly textured
objects, as shown in Fig. 1. By contrast with most NeRF-
based methods, we do not assume that the camera poses are
available and instead simultaneously optimize both the ob-
ject model and the camera trajectory. As global optimiza-
tion over all input frames is prone to fail, we propose an
incremental optimization approach. We start by splitting
the sequence into carefully selected overlapping segments
within which the optimization is likely to succeed. We then
optimize our objective for incremental object reconstruction
and pose tracking within each segment independently. The
segments are then combined by aligning poses estimated at
the overlapping frames, and we finally optimize the objec-
tive globally over all frames of the input sequence to achieve
complete object reconstruction.

Note that we do not make any assumptions on the type
of hand-object grasps and also consider scenarios where
the grasping is dynamic, i.e., contact points continuously
change, which corresponds to natural hand-object interac-
tions. This is in contrast with the recent work [11] that con-
siders only static grasps. In fact, we refrain from consid-
ering hand poses in our method as they cannot be reliably
estimated under occlusion in case of dynamic grasps, which
could lead to incorrect object reconstruction.

We experimentally demonstrate that the proposed
method is able to reconstruct the shape and color of both
textured and challenging texture-less objects. We evaluate
the method on datasets HO-3D [7], RGBD-Obj [32] and
on the newly captured sequences with challenging texture-
less objects. We show that the proposed method achieves
higher-quality reconstruction than COLMAP [29], which
fails to estimate the object poses in the case of poorly tex-
tured objects and is in par with a strong baseline method
which uses ground-truth object poses. Our method also
outperforms a very recent single-image based object recon-
struction method [44], even though this method is trained
on sequences of the same object. We also demonstrate the
real-world applicability of our method by in-hand scanning
an object with ARIA glasses [18] (see supplement).

2. Related Work

This section reviews previous methods for in-hand scan-
ning and general object reconstruction from color images,
and compares them with the method proposed in this paper.

2.1. In-Hand Object Scanning

Using an RGB-D sensor, several in-hand scanning sys-
tems [27,33,35–37] rely on tracking and are able to recover
the shape of small objects manipulated by hands. Later, [31]
showed how to use the motion of the hand and its contact
points with the object to add constraints useful to deal with
texture-less and highly symmetric objects, while restricting
the contact points to stay fixed during the scanning. Unfor-
tunately, the requirement for an RGB-D sensor limits appli-
cations of these techniques.

More recently, with the development of deep learning,
several methods have shown that it is possible to infer the
object shape from a single image [10, 14, 44] after train-
ing on images of hands manipulating an object with anno-
tations of the object pose and shape. Given the fact that the
geometry is estimated from a single image, the results are
impressive. However, the reconstruction quality is still lim-
ited, especially because these methods do not see the back
of the object and cannot provide a good prediction of the
appearance of the object for all possible viewpoints. In this
paper, we propose an approach for in-hand object scanning
which estimates the shape and color of a completely un-
known object from a sequence of RGB images, without any
pre-training on annotated images.

2.2. Reconstruction from Color Images

Recovering the 3D geometry of a static scene and the
camera poses from multiple RGB images has a long his-
tory in computer vision [5, 6, 9, 30]. Structure-from-Motion
(SfM) methods are now very robust and accurate, however
they are limited to scenes with textures, which is not the
case for many common objects.

In the past few years, with the emergence of neural im-
plicit representations as effective means of modeling 3D
geometry and appearance, many methods [20–22, 42, 43]
reconstruct a 3D scene by optimizing a neural implicit
representation from multi-view images by minimising the
discrepancy between the observed and rendered images.
These methods achieve impressive reconstructions on many
scenes, but they still need near perfect camera poses, which
are typically estimated by Structure-from-Motion methods.

Several NeRF-based methods have attempted to retrieve
the camera poses while reconstructing the scene. Methods
such as NeRF-- [34], SCNeRF [13] and BARF [16] show
that camera poses can be estimated even when initialized
with identity matrix or random poses while simultaneously
estimating the radiance field. However, these methods are
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shown to converge only on forward facing scenes and re-
quire coarse initialization of poses for 360◦ captures as in
in-hand object scanning. More recently, SAMURAI [2])
used manual rough quadrant annotations for coarse-level
pose initialization and showed that object shape and mate-
rial can be recovered along with the accurate camera poses.

In this work we propose to estimate the camera-object
relative pose in from RGB image sequence and reconstruct
the object shape without any prior information of the object
or its poses. Unlike previous methods, we rely on the tem-
poral information and incrementally reconstruct the object
shape and estimate its pose.

3. Proposed Method
In this section, we first describe the considered setup and

how we represent the object with a neural representation.
Then, we derive an objective function for estimating the ob-
ject reconstruction and the camera pose trajectory, and ex-
plain how we optimize this function.

3.1. In-Hand Object Scanning Setup

Input and Output. Our input is a sequence of RGB im-
ages showing an unknown rigid object being manipulated
by one or two hands in the field of view of the camera.
The output is a color 3D model of the manipulated object.
The input sequence is captured by an egocentric camera or
a camera mounted on a tripod. In both cases, the relative
pose between the camera and the object is unknown. In or-
der to achieve full reconstruction of the object, the image
sequence is assumed to show the object from all sides.

Available Information About Objects and Hands. The
segmentation masks of the object and hands are assumed
available for all input images. In our experiments, we obtain
the masks by of-the-shelf networks – by Detic [45], which
can segment unknown objects in a single RGB image, or
by DistinctNet [1] which can segment an unknown moving
object from a pair of images with static background. We
additionally use segmentation masks from SeqFormer [38]
to ignore pixels of hands that manipulate the object.

Phong Reflection Model and Distant Lights. The object
to reconstruct is assumed to be solid (i.e., non-translucent),
and we model the reflectance properties of the object sur-
face with the Phong reflection model [12] and assume that
the light sources are far from the object and the camera. Un-
der the Phong model, the observed color at a surface point
depends on the viewing direction, the surface normal di-
rection, and the light direction. If the light sources are far,
the incoming light direction can be approximated to remain
unchanged, which allows us to use the standard neural ra-
diance field [20] to model the object appearance. This as-
sumption is reasonable as rotation is the primary transfor-
mation of the object during in-hand manipulation–on the

HO-3D dataset, which contains sequences of a hand ma-
nipulating objects, the maximum standard deviation of the
object’s 3D location is only 7.9cm.

3.2. Object Representation

Implicit Neural Fields. As in UNISURF [22], we represent
the object geometry by an occupancy field and the object
appearance by a color field, with each realized by a neu-
ral network. The occupancy field is defined as a mapping:
oθ(x) : R3 → [0, 1], where θ represents the parameters
of the network and x is a 3D point in the object coordi-
nate system. The object surface is represented by 3D points
S = {x | oθ(x) = 0.5}, and the surface mesh can be recov-
ered by the Marching Cubes algorithm [17].

The color field is a mapping: cθ(x;d,n,h) : R3 ×R3 ×
R3 × Rn → R3 that represents the color at a surface point
x ∈ S and is conditioned on the viewing direction d (i.e.,
the direction from the camera center to the point x), the nor-
mal vector n at x, and the geometry feature h at x which
has n dimensions and is extracted from the occupancy field
network. The color for a particular pixel/ray r is defined as
Ĉi(r) = cθ(xs), where xs is the closest point on the object
surface along ray r (the object is assumed non-translucent).
To simplify the notation, we include in θ both the param-
eters of the occupancy field and of the color field as these
two networks are optimized together.

Rendering. As in [22], the rendered color at a pixel in a
frame i is obtained by integrating colors along the ray r
originating from the camera center and passing through the
pixel. The continuous integration is approximated as:

Ĉi(r) =
M∑
k=1

γ(xk)cθ(xk;dk,hk,nk) (1)

with γ(xk) = oθ(xk)
∏
l<k

(
1− oθ(xl)

)
, (2)

where {xk} are M samples along the ray r. The alpha-
blending coefficient γ(xk), is defined as in [22], is 1 if point
xk is on the visible surface of the object and 0 otherwise.

3.3. Reconstruction Objective

In UNISURF [22], the network parameters θ are esti-
mated by solving the following optimization problem:

θ∗ = argmin
θ

∑
i

∑
r∈Ri

Li
c(r) , (3)

Li
c(r) = ||Ĉi(r)− Ci(r)|| , (4)

where Li
c(r) is the photometric loss measuring the differ-

ence between the rendered color Ĉi(r) and the observed
color Ci(r) at a pixel intersected by the ray r in the frame i,
and Ri is the set of rays sampled in the frame i.
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Figure 2. Splitting a sequence into easy-to-track segments. The
segment boundaries are defined at frames with locally maximal
or minimal area of the object mask (the start and the end of each
segment is shifted by a few frames from the extremum to make
the segments overlap). Note that we can track backwards in time,
from a local maximum to a local minimum.

In our case, we additionally optimize the camera poses:

θ∗, {T ∗
i } = argmin

θ,{Ti}

∑
i

( ∑
r∈Hi

Li
c(r) +

∑
r∈Mi

Li
s(r)

)
, (5)

where Ti is the camera pose of frame i expressed by a rigid
transformation from the camera coordinate system to the
object coordinate system. Hi is the set of object rays in
frame i, and Mi is the set of object and background rays in
frame i. We only use rays passing through the object and
background pixels and ignore the hand pixels. The term
Li

s(r) is a segmentation loss for ray r ∈ Mi:

Li
s(r) = BCE

(
max

k
{oθ(xk)}, Si(r)

)
, (6)

where BCE(·) is the binary cross-entropy loss, and Si(r)
is the object mask value for ray r in the frame i (the mask
is obtained as described in Sec. 3.1). The value of Si(r)
is 1 if the pixel corresponding to ray r lies in the provided
object mask, and 0 otherwise. The term maxk {oθ(xk)} is
the maximum occupancy along the ray r according to the
estimated occupancy field oθ(.), and is expected to be 1 if r
intersects the object and 0 otherwise.

3.4. Optimization

Directly optimizing Eq. (5) is prone to fail. As we show
in Sec. 5, a random (or a fixed) initialization of poses fol-
lowed by an optimization procedure similar to the one used
in BARF [16] leads to degenerate solutions. Instead, we
propose an incremental optimization approach which starts
by splitting the sequence into carefully selected overlapping
segments, within which the optimization is more likely to
succeed (Sec. 3.4.1). We optimize the objective in each
segment by incremental frame-by-frame reconstruction and
tracking, with the objective being extended by additional
loss terms to stabilize the tracking (Sec. 3.4.2). Then, we
merge the segments by aligning poses estimated at the over-
lapping frames (Sec. 3.4.3), and finally optimize the objec-
tive globally over all frames of the sequence (Sec. 3.4.3).

3.4.1 Input Sequence Segmentation

We observed in our early experiments that frame-to-frame
tracking is prone to fail when previously observed parts of
the object start disappearing and new parts start appearing.
This is not surprising as there is no 3D knowledge about the
new parts yet, and the current reconstruction of the object is
disappearing and cannot be used to track these new parts.

We therefore propose to split the sequence into segments
so that tracking on each segment is unlikely to drift much.
How can we detect when new parts are appearing? We ob-
serve that this can be done based on the apparent area1 of
the object: Under the assumption that the distance of the
object to the camera and the occlusions by the hand do not
change much, large parts of the object disappear when the
apparent area goes through a minimum (see Figure 2). We
therefore split the input sequence into multiple segments,
with their boundaries defined at frames where the appar-
ent area reaches local maxima and minima, and process
each segment from the local maximum to the local mini-
mum (e.g., segments 1 and 3 in Figure 2 are processed from
left to right and segment 2 is processed from right to left).
The local extrema are computed from the smoothed curve
of the apparent object area using a sliding window with the
length of 12 frames. The start and the end of each segment
is shifted by a few frames from the extremum to introduce
overlaps with the neighboring segments (the overlaps are
used in Sec. 3.4.3 to merge the estimated per-segment pose
trajectories). With this approach, tracking within a segment
starts with a point of view where the object reprojection area
is large in the image, which facilitates bootstrapping of the
tracking together with our shape regularization loss.

3.4.2 Per-Segment Optimization

Within each segment, we iteratively optimize the following
objective on a progressively larger portion of the segment
allowing us to incrementally reconstruct the object and track
its pose. The T frames in a segment are denoted by the set
{S}Ti=1. Over the course of the optimization, the index t of
the currently considered frame progresses from the first to
the last frame of the segment, and for each step we solve:

θ∗, {T ∗
i }ti=1 = argmin

θ,{Ti}t
i=1

t∑
i=1

∑
r∈Hi

Li
c(r) + ... (7)

t∑
i=1

∑
r∈Mi

(
Li

s(r) + Li
f(r) + Li

r(r)
)

+

t−1∑
i=1

∑
r∈Mi

Li
d(r) .

The terms Li
c and Li

s are the color and mask losses de-
fined in Eq. (5), Li

f is a loss based on optical flow that

1As mentioned earlier, we obtain a mask of the object by segmenting
the image, so we can easily compute its apparent area.
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provides constraints on the poses, Li
r is a shape regulariza-

tion term that prevents degenerate object shapes, and Li
d is

a synthetic-depth loss that stabilizes the tracking. Hi is the
set of rays going through pixels on the object in frame i,
and Mi the set of rays going through pixels on the object or
the background in frame i. More details on the loss terms
Li

f ,Li
r and Li

d are provided later in this section.
The network parameters θ are initialized by their esti-

mate from the previous iteration t − 1. The camera pose
Tt for t > 1 is initialized using the second-order motion
model applied to the previous poses {Ti}t−1

i=0 . The first cam-
era pose T0 is initialized to a fixed distance from the origin
of the object coordinate system and orientated such that the
image plane faces the origin. At each iteration, we sample
a fixed percentage of rays from the new frame (set to 15%
empirically) and the rest from the previous frames.

Optical Flow Loss. This term provides additional con-
straints on the camera poses and is defined as:

Li
f(r) =

∑
k

γ(xk)
(
πi(xk)− πi-1(xk)− OFi(πi-1(xk))

)2
, (8)

where {xk}i are 3D points along ray r, πi(x) is the 2D re-
projection of the point x in the frame i, OFi is the optical
flow between frame i−1 and frame i, and γ(·) is as defined
in Eq. (2) and evaluates to one for points on the object sur-
face and zero elsewhere. Fig. 3 shows the effect of optical
flow loss on the trajectory after several optimization steps.
We use [40] to compute the optical flow.

Figure 3. Effect of the optical flow loss Lf. Pose estimates (red)
are more stable when the loss Lf is applied (right). The ground-
truth poses are shown in blue.

Shape Regularization Loss. During early iterations (i.e.,
when t is small), the occupancy field is under-constrained
and needs to be regularized to avoid degenerate object
shapes. We introduce a regularization that encourages re-
construction near the origin of the object coordinate system:

Li
r(r) =

∑
k

oθ(xk) exp (α · ∥xk∥2) , (9)

where α is a hyperparameter. At t = 0, minimizing Li
r

results in an object surface that is parallel to the image
plane (see supplement for explanation). Encouraging a pla-
nar proxy as an approximation of the object shape helps to
stabilize the early stage of the optimization. Fig. 4 shows
examples achieved with and without the regularization.

Figure 4. Effect of the shape regularization loss Lr. Left to right:
The ground-truth object mesh, implicit surface reconstructed with-
out the regularization term at t = 1, and implicit surface recon-
structed with the regularization term at t = 1.

Synthetic-Depth Loss. We also introduce a loss based on
synthetic depth maps rendered by the object shape estimate.
The motivation for this term is to regularize the evolution of
the shape estimate and prevent its drift. It is defined as:

Li
d(r) =

(∑
k

γ(xk)depi(xk)− d̂i(r)
)2

, (10)

where depi(xk) is the depth of the point xk along the ray
r, γ(·) is as defined in Eq. 2 and d̂i is the depth map ren-
dered using the previous estimates of the object model and
the camera pose for frame i. Note that Li

d is only applied on
rays from frames [1, t − 1] at optimization step t of Eq. (7)
whose synthetic depths are pre-computed. Figure 5 illus-
trates the contribution of this term.

Figure 5. Effect of the synthetic-depth loss Ld. Large pose
changes (highlighted by black boxes) can deform previously re-
constructed parts of the object if the depth loss Ld is not used (left).

3.4.3 Global Optimization

The camera trajectories and object reconstruction for each
segment are recovered up to a rigid motion and a scaling
factor. To express the overlapping segments in a common
coordinate frame, we align the pose estimates at the over-
lapping frames with the following procedure. Let T k

i =
[ϕi, ti] be the rotation and translation of the camera for the
frame i in the segment k with Ns frames. We obtain a nor-
malized pose by taking T̂ k

i =
[
ϕi; ti/

1
Ns

∑
j ∥tj∥

]
. We

then retrieve the rigid motion Tk1→k2 (rotation and transla-
tion) that aligns two overlapping segments k1 and k2:

Tk1→k2
= argmin

T

∑
i

∥T · T̂ k1
i − T̂ k2

N (i)∥F , (11)

where ∥ · ∥F denotes the Frobenius norm, N (i) is the frame
index in segment k2 corresponding to frame i in segment k1,
and the summation is over the set of all overlapping frames.
In practice, we observed that as less as a single overlapping
frame is sufficient for connecting the segments.
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(a) From random poses (b) From the same pose (c) From our pose est.

Figure 6. Reconstruction from different initial poses. Only ini-
tialization from coarse pose estimates yield a meaningful solution.

Figure 7. Incremental reconstruction and pose tracking is
prone to fail beyond the segment boundary. On this represen-
tative example, the incremental reconstruction and pose tracking
procedure works well as long as the front face is visible. When
the front face starts to disappear and new parts start to appear (last
column), reconstruction degrades and pose tracking drifts.

We use the aligned poses of two neighboring segments as
pose initialization and optimize the objective function from
Eq. (5). The network parameters θ are initialized to recon-
struct a sphere. The neighboring segments are combined
iteratively until we obtain complete reconstruction from the
full sequence. Fig. 6 shows the reconstruction with differ-
ent pose initializations – even for a textured object, coarse
initialization is necessary for convergence. In Fig. 7, we
show a situation where the incremental reconstruction and
pose tracking continues beyond the segment boundary – the
solution degrades when new surface parts appear.

4. Implementation Details

The occupancy and color field networks are imple-
mented by 8-layer MLP’s with ReLU activations and a hid-
den dimension of F . Fourier features [20] at kx octaves are
used to encode the 3D coordinates, and at kd octaves to en-
code the view direction. During the per-segment optimiza-
tion, similar to [41], instead of directly optimizing the 6D
pose parameters, the pose is parameterized with a CNN that
takes the RGB image as input and outputs the 6DoF pose.
Weights of the CNN are initialized with weights pre-trained
on ImageNet [4]. The CNN provides a neural basis for the
pose parameters and acts as a regularizer. Without the CNN
parameterization, the per-segment optimization procedure
described in the section Sec. 3.4.2 typically fails.

During the per-segment optimization (Sec. 3.4.2), we set

F =128, kx =4, kd =2 and run 6k gradient descent itera-
tions at each tracking step. Further, at each step, we add 5
frames to increase the optimization speed.

For the global optimization (Sec. 3.4.3), we use F =256,
kx =8, kd =4 and run 25k gradient descent iterations for
a pair of segments. We use smooth masking of frequency
bands as described in BARF [16] for better convergence
and optimize the 6D pose variables directly instead of using
CNN parameterization in this stage. The frames are sub-
sampled such that their maximum number is 150.

We compute the local maxima and minima from the ob-
ject area curve as explained in Sec. 3.4.1 by first performing
a Gaussian filtering of per frame object areas.

5. Experiments
We evaluate our method quantitatively and qualitatively

on the HO-3D dataset [7], which contains sequences of ob-
jects from the YCB dataset [39] being manipulated by one
hand. We also show qualitative results on the RGB im-
ages from the RGBD-Obj dataset [32] and on sequences
that we captured for this project and that show two chal-
lenging texture-less YCB objects: the clamp and the cube.
The latter two datasets feature two hands but do not provide
object pose annotations. We evaluate the accuracy of the
reconstructed shape and color, and of the estimated poses.
3D Reconstruction Metric. As in [24], we first align the
estimated object mesh with the ground-truth mesh by ICP
and then calculate the RMSE Hausdorff distance from the
estimated mesh to the ground truth mesh. As our meshes are
only estimated up to a scaling factor, we allow the meshes
to scale during the ICP alignment.
Object Texture Metrics. The recovered object texture is
compared with the ground truth using the PSNR, LPIPS
and SSIM metrics. Specifically, we render the recovered
object appearance from the ground truth poses for images
that were not used in the optimization and compare the ren-
derings with the images. Since the pose has to be accurate
to obtain reliable metrics, we first perform photometric op-
timization on the trained model to obtain accurate poses and
then render the images as in BARF [16].
Pose Trajectory Metric. As the 3D model and poses are re-
covered up to a 3D similarity transformation, we first align
the estimated poses with the ground truth by estimating the
transformation between the two. We then calculate the ab-
solute trajectory error (ATE) [3,13,25] and plot the percent-
age of frames for which the error is less than a threshold.
We use the area under curve of the ATE plot as the metric.

5.1. Evaluation on HO-3D

HO-3D contains 27 multi-view sequences (68 single-
view sequences) of hand-object interactions with 10 YCB
objects [39] annotated with 3D poses. We consider the same
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Figure 8. Reconstructed models and pose trajectories on HO-3D for COLMAP [28] (top row), our method (middle row), and the
UNISURF [22] baseline that uses ground-truth poses (bottom row). We restrict the keypoint matches in COLMAP to only object pixels
using the segmentation masks obtained from a pre-trained network (Sec. 3.1). COLMAP recovers only incomplete pose trajectories in
absence of texture, which leads to incomplete or failed reconstructions. Our method relies on both geometric and texture features and
produces reliable pose estimates, which results in similar reconstructions as produced by the strong baseline relying on ground-truth poses.

multi-view sequences as in [24] for the 3D reconstruction.
As the ground-truth 3D poses are provided in this dataset,
we also evaluate the accuracy of our estimated poses along
with the reconstruction and texture accuracy.

Baselines. We compare with COLMAP [29], the single-
image object reconstruction method by Ye et al. [44], the
RGB-D reconstruction method by Patten et al. [24], and
UNISURF [22]. The last two methods rely on the ground-
truth camera poses, whereas the other methods (including
ours) do not. In the case of [24], we compare only the 3D
reconstruction accuracy with this method as the pose and
object texture evaluations are not reported. We obtain re-
sults from COLMAP using the sequential keypoint match-
ing technique, and set the mesh trim parameter to 10. The
largest connected component in the reconstructed mesh is
then selected as the final result. We observed that COLMAP
fails to obtain complete reconstruction for most objects due
to insufficient keypoint matches and results in multiple non-
overlapping partial reconstructions, which cannot be com-
bined. The method by Ye et al. [44] uses a single input
image but is pre-trained on sequences of the same object.
Note that our method is not pre-trained and thus the recon-
structed object is completely unknown to the method.

Results. Table 1 compares the one-way RMSE Haus-
dorff distance of our method with COLMAP, the single-
frame method of [44], and the RGBD method of [24]. We
calculate the average metric over the sequence for [44].

Our method consistently achieves higher performance than
COLMAP on all objects and higher performance over [44]
on average. Our method is competitive with the RGBD-
based method and the strong baseline for most objects.
COLMAP fails to obtain keypoint matches on banana and
scissors. The lower accuracy of our method on pitcher and
banana is due to the lack of both geometric and texture fea-
tures. COLMAP achieves accurate pose trajectories only
for the cracker box and sugar box as they contain rich im-
age features on all the surfaces. The lower accuracy of
COLMAP on other objects is due to poor texture (Figure 8).

Table 2 shows the area under curve (AUC) of the ab-
solute trajectory error (ATE) plot with the maximum ATE
threshold of 10 cm. Our method outperforms COLMAP,
which cannot recover the complete trajectory for many ob-
jects. Both our method and COLMAP fail to obtain mean-
ingful reconstruction for scissors due to its thin structure.

In Table 3, we provide the PSNR, SSIM and LPIPS met-
rics for our proposed method and the strong baseline that
uses the ground-truth poses. Our method achieves similar
accuracy as the baseline method on all objects, despite the
fact that our method estimates the poses instead of using the
ground-truth ones. Results of our method, the UNISURF
baseline and COLMAP are shown in Figure 8.

5.2. Evaluation on RGBD-Obj and New Sequences

Qualitative results from an RGBD-Obj [32] sequence
showing the mustard bottle and from two new sequences

17085



Object Ye et al.
[44]

COLMAP
[28]

Ours UNISU.
[22]

RGBD
[24]

3: cracker box 10.21 4.08 2.91 3.40 3.54
4: sugar box 6.19 6.66 3.01 3.49 3.34
6: mustard 2.61 4.43 4.44 4.34 3.28
10: potted meat 3.43 10.21 1.95 1.54 3.26
21: bleach 4.18 14.11 5.63 3.41 2.43
35: power drill 15.15 11.06 5.48 5.33 3.77
19: pitcher base 8.87 43.38 9.21 4.63 4.73
11: banana 3.47 - 4.60 3.98 2.44

Average 6.76 13.41 4.65 3.76 3.34

Table 1. RMSE Hausdorff distance (mm) from the estimated
to the ground-truth 3D model. UNISURF [22] and RGBD [24]
are strong baselines as they use ground-truth poses, and the lat-
ter also depth images. Our object reconstructions are close to the
baselines, even though we do not use the ground-truth poses, and
systematically better than COLMAP, which slipped on the banana.

Object 3 4 6 10 21 35 19 25 11 Avg

COLMAP 7.4 7.4 3.5 0.1 1.5 2.8 4.1 2.4 0.0 2.9
Ours 7.6 6.8 5.2 6.8 4.7 6.4 4.6 2.2 0.6 4.5

Table 2. Area under the curve of the absolute trajectory error.
COLMAP succeeds on textured objects like the first two but strug-
gles to recover the complete trajectory for less textured objects.

Object PSNR↑ / SSIM↑ / LPIPS↓
Ours UNISURF [22]

3: cracker box 29.77 / 0.73 / 0.31 29.79 / 0.74 / 0.33
4: sugar box 30.77 / 0.82 / 0.31 30.73 / 0.76 / 0.33
6: mustard 30.73 / 0.74 / 0.39 30.72 / 0.74 / 0.37
10: potted meat 31.07 / 0.77 / 0.35 31.28 / 0.78 / 0.35
21: bleach 30.82 / 0.74 / 0.36 29.87 / 0.67 / 0.42
35: power drill 31.82 / 0.78 / 0.26 31.81 / 0.76 / 0.28
19: pitcher base 32.13 / 0.83 / 0.26 32.28 / 0.83 / 0.25
25: mug 31.18 / 0.74 / 0.39 31.69 / 0.76 / 0.37

Average 31.01 / 0.77 / 0.32 31.02 / 0.75 / 0.34

Table 3. Evaluation of the estimated object texture. The pro-
posed method achieves comparable quality of the recovered object
texture as UNISURF which uses ground-truth poses.

Seq. Name w/o Ld w/o Lf w/o Lr All Terms

MDF14 4.9 4.8 1.1 5.8
SM2 1.0 2.9 0.5 8.1

Table 4. Ablation study with AUC of the ATE metric. All loss
terms are required for obtaining accurate trajectories.

with the extra large clamp and Rubik’s cube from YCB,
which we captured for this project, are shown in Figure 9.
Our method is able to produce 3D models also for the latter
two objects, which are poorly textured and classical feature-
based methods such as [29] fail to reconstruct them.

5.3. Ablation Study

The benefit of individual loss terms proposed in Sec. 3.4
is demonstrated qualitatively in Figures 3–5 and quantita-

(a) Results on RGBD-Obj [32]

(b) Results on our new sequences

Figure 9. Results on RGBD-Obj [32] and two new sequences.
The left column shows a sample image from the input sequence
showing an unknown object manipulated by hands. The right col-
umn shows two views at the reconstructed color 3D model.

tively in Table 4, where AUC of the ATE plot is shown
for the largest segment for 2 sequences from the HO-3D
dataset. We do not consider complete reconstruction in
Table 4 as tracking fails completely for some segments
without some of the loss terms. The optical flow loss en-
forces provides additional constraints on the predicted cam-
era poses, the shape regularization loss stabilizes the op-
timization especially in its early stage, and the synthetic
depth loss preserves previously reconstructed surface parts.
Without the synthetic depth loss, the object can be sig-
nificantly deformed especially when the camera performs
larger motions in newly considered frames.

Figure 7 shows the importance of splitting the input se-
quence into segments. Figure 6 demonstrates the benefit of
initializing the optimization of Eq. (5) with poses estimated
from segments over initializing with random or zero poses.

6. Conclusion
We introduced a method that is able to reconstruct an

unknown object manipulated by hands from color images.
The main challenge resides in preventing drift during the
simultaneous tracking and reconstruction. We believe our
strategy of splitting the sequence based on the apparent area
of the object and our regularization terms to be general and
useful ideas, and hope they will inspire other researchers.

17086



References
[1] Wout Boerdijk, Martin Sundermeyer, Maximilian Durner,

and Rudolph Triebel. What’s This?” - Learning to Segment
Unknown Objects from Manipulation Sequences. In Inter-
national Conference on Robotics and Automation, 2021. 3

[2] Mark Boss, Andreas Engelhardt, Abhishek Kar, Yuanzhen
Li, Deqing Sun, Jonathan T. Barron, Hendrik P. A. Lensch,
and Varun Jampani. SAMURAI: Shape And Material From
Unconstrained Real-world Arbitrary Image Collections. In
Advances in Neural Information Processing Systems, 2022.
3

[3] Javier Civera, Andrew J. Davison, and J. M. Martinez Mon-
tiel. Inverse Depth Parametrization for Monocular SLAM.
In International Conference on Computer Vision, 2008. 6

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei. ImageNet: A Large-Scale Hierarchical Image
Database. In Conference on Computer Vision and Pattern
Recognition, 2009. 6

[5] Olivier D. Faugeras. Three-Dimensional Computer Vision:
A Geometric Viewpoint. MIT Press, 1993. 2

[6] Yasutaka Furukawa and Jean Ponce. Accurate, Dense, and
Robust Multiview Stereopsis. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32(8), 2009. 2

[7] Shreyas Hampali, Mahdi Rad, Markus Oberweger, and Vin-
cent Lepetit. HOnnotate: A Method for 3D Annotation of
Hand and Object Poses. In Conference on Computer Vision
and Pattern Recognition, 2020. 2, 6

[8] Xian-Feng Han, Hamid Laga, and Mohammed Bennamoun.
Image-Based 3D Object Reconstruction: State-Of-The-Art
and Trends in the Deep Learning Era. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 43(5), 2019. 1

[9] Richard I. Hartley and Andrew Zisserman. Multiple Views
Geometry in Computer Vision. Cambridge University Press,
2000. 1, 2

[10] Yana Hasson, Gül Varol, Dimitrios Tzionas, Igor Kale-
vatykh, Michael J. Black, Ivan Laptev, and Cordelia Schmid.
Learning Joint Reconstruction of Hands and Manipulated
Objects. In Conference on Computer Vision and Pattern
Recognition, 2019. 2

[11] Di Huang, Xiaopeng Ji, Xingyi He, Jiaming Sun, Tong He,
Qing Shuai, Wanli Ouyang, and Xiaowei Zhou. Reconstruct-
ing hand-held objects from monocular video. In SIGGRAPH
Asia Conference Proceedings, 2022. 2

[12] John F. Hughes, Andries Van Dam, Morgan Mcguire,
David F. Sklar, James D. Foley, Steven Feiner, and Kurt Ake-
ley. Computer Graphics: Principles and Practice. Addison-
Wesley, 2013. 3

[13] Yoonwoo Jeong, Seokjun Ahn, Christopher Choy, Anima
Anandkumar, Minsu Cho, and Jaesik Park. Self-Calibrating
Neural Radiance Fields. In International Conference on
Computer Vision, 2021. 2, 6

[14] Korrawe Karunratanakul, Jinlong Yang, Yan Zhang,
Michael J. Black, Krikamol Muandet, and Siyu Tang. Grasp-
ing Field: Learning Implicit Representations for Human
Grasps. In International Conference on 3D Vision, 2020.
2

[15] Zhengfei Kuang, Kyle Olszewski, Menglei Chai, Zeng
Huang, Panos Achlioptas, and Sergey Tulyakov. NeROIC:
Neural Rendering of Objects from Online Image Collections.
IEEE Transactions on Robotics and Automation, 41(4), July
2022. 2

[16] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Si-
mon Lucey. BARF: Bundle-Adjusting Neural Radiance
Fields. In International Conference on Computer Vision,
2021. 2, 4, 6

[17] William E. Lorensen and Harvey E. Cline. Marching Cubes:
A High-Resolution 3D Surface Construction Algorithm. In
ACM SIGGRAPH, 1987. 3

[18] Zhaoyang Lv, Edward Miller, Jeff Meissner, Luis Pesqueira,
Chris Sweeney, Jing Dong, Lingni Ma, Pratik Patel, Pierre
Moulon, Kiran Somasundaram, Omkar Parkhi, Yuyang Zou,
Nikhil Raina, Steve Saarinen, Yusuf M Mansour, Po-Kang
Huang, Zijian Wang, Anton Troynikov, Raul Mur Artal,
Daniel DeTone, Daniel Barnes, Elizabeth Argall, Andrey
Lobanovskiy, David Jaeyun Kim, Philippe Bouttefroy, Ju-
lian Straub, Jakob Julian Engel, Prince Gupta, Mingfei Yan,
Renzo De Nardi, and Richard Newcombe. Aria pilot dataset.
https://about.facebook.com/realitylabs/
projectaria/datasets, 2022. 2

[19] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy Net-
works: Learning 3D Reconstruction in Function Space. In
Conference on Computer Vision and Pattern Recognition,
2019. 1

[20] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing Scenes as Neural Radiance Fields for View
Synthesis. In European Conference on Computer Vision,
2020. 2, 3, 6

[21] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable Volumetric Rendering:
Learning Implicit 3D Representations Without 3D Supervi-
sion. In Conference on Computer Vision and Pattern Recog-
nition, 2020. 1, 2

[22] Michael Oechsle, Songyou Peng, and Andreas Geiger.
UNISURF: Unifying Neural Implicit Surfaces and Radiance
Fields for Multi-View Reconstruction. In International Con-
ference on Computer Vision, 2021. 1, 2, 3, 7, 8

[23] Jeong Joon Park, Peter Florence, Julian Straub, Richard A.
Newcombe, and Steven Lovegrove. DeepSDF: Learning
Continuous Signed Distance Functions for Shape Repre-
sentation. In Conference on Computer Vision and Pattern
Recognition, 2019. 1

[24] Timothy Patten, Kiru Park, Markus Leitner, Kevin Wolfram,
and Markus Vincze. Object Learning for 6D Pose Estima-
tion and Grasping from RGB-D Videos of In-Hand Manipu-
lation. In International Conference on Intelligent Robots and
Systems, 2021. 6, 7, 8

[25] David Prokhorov, Dmitry Zhukov, Olga Barinova, Konushin
Anton, and Anna Vorontsova. Measuring Robustness of Vi-
sual SLAM. In Machine Vision and Applications, 2019. 6

[26] Martin Runz, Kejie Li, Meng Tang, Lingni Ma, Chen Kong,
Tanner Schmidt, Ian Reid, Lourdes Agapito, Julian Straub,

17087



Steven Lovegrove, and Richard Newcombe. Frodo: from
Detections to 3D Objects. In Conference on Computer Vision
and Pattern Recognition, 2020. 1

[27] Szymon Rusinkiewicz, Olaf Hall-Holt, and Marc Levoy.
Real-Time 3D Model Acquisition. In ACM SIGGRAPH,
2002. 1, 2

[28] Johannes L. Schönberger and Jan-Michael Frahm. Structure-
from-Motion Revisited. In Conference on Computer Vision
and Pattern Recognition, 2016. 7, 8

[29] Johannes L. Schönberger, Enliang Zheng, Jan-Michael
Frahm, and Marc Pollefeys. Pixelwise View Selection for
Unstructured Multi-View Stereo. In European Conference
on Computer Vision, 2016. 1, 2, 7, 8

[30] Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo
Tourism: Exploring Photo Collections in 3D. In ACM SIG-
GRAPH, 2006. 2

[31] Dimitrios Tzionas and Juergen Gall. 3D Object Reconstruc-
tion from Hand-Object Interactions. In International Con-
ference on Computer Vision, 2015. 1, 2

[32] Fan Wang and Kris Hauser. In-Hand Object Scanning via
RGB-D Video Segmentation. In International Conference
on Robotics and Automation, 2019. 2, 6, 7, 8

[33] Pengyuan Wang, Fabian Manhardt, Luca Minciullo, Lorenzo
Garattoni, Sven Meie, Nassir Navab, and Benjamin Busam.
Demograsp: Few-shot learning for robotic grasping with hu-
man demonstration. 2021 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 5733–
5740, 2021. 2

[34] Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and Vic-
tor Adrian Prisacariu. NeRF--: Neural Radiance Fields With-
out Known Camera Parameters. In arXiv Preprint, 2021. 2

[35] Thibaut Weise, Bastian Leibe, and Luc Van Gool. Accurate
and Robust Registration for In-Hand Modeling. In Confer-
ence on Computer Vision and Pattern Recognition, 2008. 1,
2

[36] Thibaut Weise, Thomas Wismer, Bastian Leibe, and Luc
Van Gool. In-Hand Scanning with Online Loop Closure.
In 2009 IEEE 12th International Conference on Computer
Vision Workshops, ICCV Workshops, 2009. 1, 2

[37] Thibaut Weise, Thomas Wismer, Bastian Leibe, and Luc
Van Gool. Online Loop Closure for Real-Time Interactive
3D Scanning. Computer Vision and Image Understanding,
115(5), 2011. 2

[38] Junfeng Wu, Yi Jiang, Wenqing Zhang, Xiang Bai, and Song
Bai. SeqFormer: A Frustratingly Simple Model for Video
Instance Segmentation. In arXiv Preprint, 2021. 3

[39] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and
Dieter Fox. PoseCNN: A Convolutional Neural Network for
6D Object Pose Estimation in Cluttered Scenes. Science,
2018. 6

[40] Gengshan Yang and Deva Ramanan. Volumetric correspon-
dence networks for optical flow. In NeurIPS, 2019. 5

[41] Gengshan Yang, Deqing Sun, Varun Jampani, Daniel Vlasic,
Forrester Cole, Huiwen Chang, Deva Ramanan, William T.
Freeman, and Ce Liu. LASR: Learning Articulated Shape
Reconstruction from a Monocular Video. In Conference on
Computer Vision and Pattern Recognition, 2021. 6

[42] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Vol-
ume Rendering of Neural Implicit Surfaces. In Advances in
Neural Information Processing Systems, 2021. 1, 2

[43] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Basri Ronen, and Yaron Lipman. Multiview Neu-
ral Surface Reconstruction by Disentangling Geometry and
Appearance. In Advances in Neural Information Processing
Systems, 2020. 1, 2

[44] Yufei Ye, Abhinav Gupta, and Shubham Tulsiani. What’s
in Your Hands? 3D Reconstruction of Generic Objects in
Hands. In Conference on Computer Vision and Pattern
Recognition, 2022. 2, 7, 8

[45] Xingyi Zhou, Rohit Girdhar, Armand Joulin, Phillip
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