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Abstract

Modern displays and contents support more than 8bits
image and video. However, bit-starving situations such
as compression codecs make low bit-depth (LBD) images
(<8bits), occurring banding and blurry artifacts. Previous
bit depth expansion (BDE) methods still produce unsatis-
factory high bit-depth (HBD) images. To this end, we pro-
pose an implicit neural function with a bit query to recover
de-quantized images from arbitrarily quantized inputs. We
develop a phasor estimator to exploit the information of the
nearest pixels. Our method shows superior performance
against prior BDE methods on natural and animation im-
ages. We also demonstrate our model on YouTube UGC
datasets for de-banding. Our source code is available at
https://github.com/WooKyoungHan/ABCD

1. Introduction

The bit depth in digital contents means a number of bi-
nary digits representing pixel values. As humans recognize
a wide range of color and luminance, modern display de-
vices and cameras support more than the 8-bit depth of im-
age and video [21, 28]. Regardless of these efforts, the im-
age and video codecs enforce HBD images to be quantized
into LBD images due to bit starvation. Thus, most contents
are under 8 bits leading to false contours and blurry arti-
facts. Bit depth expansion, a.k.a. de-quantization, aims to
recover missing bits caused by such quantizations.

Conventional methods such as [6,10,19,24,36–38] have
been proposed for the de-quantization problem. How-
ever, these methods suffer from blurry artifacts resulting
in distortions of details or false contours in extreme BDE.
Recently, learning-based approaches, a.k.a. deep neural
network, have shown remarkable performances in BDE
[4, 9, 18, 26, 32, 40, 43]. Most learning-based approaches
[4, 9, 32, 40, 43] reconstruct HBD images in an end-to-end
manner. Recent methods [18, 26] recover residual compo-
nents corresponding to missing bits from LBD images. In
particular, the method called D16 [26], with the best per-
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Figure 1. Overview of arbitrary bit-depth expansion (dequan-
tization) using ABCD. Our ABCD estimates dominant phasors of
images and calculates the bit-query of LBD. Then, an MLP takes
the estimated phasor information and bit-wise query (s) to predict
the bit-wise coefficient (Ĉ) of HBD images.

formance so far, conducts a binary classification per each
bit plane. However, D16 requires multiple deep neural net-
works models for every bit-planes.

Recently, an implicit neural representation (INR) which
maps coordinates into signal values [25,29], shows promis-
ing performances in various tasks [5, 11, 15, 22, 25, 29].
The implicit neural networks have a spectral bias prob-
lem toward low frequencies, which makes INR hard to
represent high-frequency components [27]. Fortunately,
several solutions are developed to relax the spectral bias
[15, 23, 30, 33, 41]. However, there is no INR approach for
bit depth expansion problems.

In this paper, we propose a novel model, the Arbitrary
Bit-wise Coefficient model for De-quantization (ABCD), to
recover missing bits from the randomly quantized LBD im-
age to any HBD image. The proposed model addresses the
spectral bias of INR and improves de-quantization quality
through the use of an encoder to estimate the dominant pha-
sors in the ground truth. As shown in Fig. 1, our encoder es-
timates the dominant phasors to mitigate the spectral bias of
INR. Then, the model utilizes an INR to achieve arbitrary-
bit reconstructions in the amplitude domain. Finally, a bit
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Input D16 [26] ABCD(Ours)

Figure 2. Visual demonstration 3-bit to 8-bit de-quantization: input, deep network approach (D16 [26]), and our method. The neural
network method [26] reduces severe false contours of input, but false contours still remain. Our ABCD removes such artifacts, clearly.

decoding step converts bit coefficients into HBD images by
multiplying the bit-basis. The proposed model represents
a significant advancement over previous de-quantization
techniques with providing high flexibility and accuracy as it
effectively recovers missing bits from randomly quantized
inputs.

In summary, our main contributions are as follows:

• We propose a bit depth expansion algorithm using an
implicit neural representation with a bit query in arbi-
trarily quantized bit levels and demonstrate our method
achieves state-of-the-art performance.

• We show that the proposed phasor estimator predicts
the dominant phasors of the ground truth coefficient’
in the Fourier domain.

• We validate our pre-trained model not only on five
image datasets as de-quantization but also on the
YouTube-UGC dataset as de-banding.

2. Related Work
Bit depth expansion There are straightforward ways for
BDE, such as zero padding (ZP) method and the bit repli-
cation (BR) [36], which sets ‘0’ or most significant bits
(MSBs) for missing bits. Even though these algorithms
are hardware friendly, each reconstructed signal depends
only on its value without considering surrounding pixels.
In contrast, interpolation methods [6, 37], content-adaptive
(CA) BDE, and contour region reconstruction (CRR) effec-
tively remove false contour artifacts. However, they blur
the details. Intensity potential for adaptive de-quantization
(IPAD) method [19] proposed an iterative algorithm which
uses the intensity potential field calculated with the con-
nected component label. IPAD achieved higher PSNR than
the algorithms above. However, IPAD still suffers from
false contour artifacts in large BDE.

Meanwhile, the BDE is highly related to de-banding.
The banding artifacts are staircase-like color phenomena of

images, especially in video contents. Previous works [31,
34] resolved de-banding with adaptive filter-based methods.
Because the artifact is mainly derived from compression
with quantization, we apply our de-quantization method to
remove the banding artifact.
Learning-based Bit Recovery The proposed neural net-
work algorithms [4, 18, 32, 40] predict favorable HBD im-
ages with higher performance than the aforementioned ex-
pert rule systems [19, 37]. The BE-CALF [18] performs
BDE by recovering residuals of LBD images. However, it
only supports dedicated bit LBD images as inputs. Even
though the BitNet [4] supports 3 to 6-bit inputs with a sin-
gle model, the performance is not as good as BE-CALF. Un-
like previous works, the D4 and D16 networks [26] employ
the bit-wise classification per each missing bit-plane. How-
ever, multiple models are required for predicting each bit-
plane (e.g., 4 to 8-bit BDE requires four independent mod-
els). Furthermore, Fig. 2 shows that the learning-based ap-
proach [26] is not able to remove false contours completely.
Unlikely the prior works, we designed the network receiv-
ing randomly quantized LBD images with single training.

Implicit Neural Representation (INR) Recently, various
tasks [11, 22, 29] apply a multi-layer perceptron (MLP) as
implicit neural representation. Although the INR param-
eterizes coordinates to continuous signals with memory-
efficient frameworks, INR has two issues: per-scene op-
timization and spectral bias. To overcome a problem of
per-scene optimization, prior works [5, 15] concatenate la-
tent features from inputs with coordinates. The spectral
bias [27] induces the network to learn mainly low frequen-
cies. Recently, in the super-resolution task, the local tex-
ture estimator (LTE) [15] overcomes such spectral bias by
learning high-resolution images’ dominant frequency and
phases. Nevertheless, there is no INR for de-quantization to
our best knowledge. Therefore, we suggest INR as a func-
tion of given LBD data and amplitude coordinates calcu-
lated with input and output bit-depth. Moreover, we develop
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Figure 3. Bit-depth expansion with our proposed Arbitrary Bit-wise Coefficient De-quantizator (ABCD). ABCD-based arbitrary-bit
depth expansion consists of an encoder (Eφ), a decoder (fθ), a phasor detector (a blue-shaded region), and a coefficient estimator (a pink-
shaded region). Inputs of ABCD are as follows: LBD images (Iq), input bit (q), and target bit (N ). ABCD transforms the features into
phasor representations and concatenates with bit-query (s) to predict coefficient Ĉ. At test time, ABCD multiplies s with Ĉ and adds LBD
image Iq to retrieve HBD image IN .

a phasor estimator so that the network avoids spectral bias.

3. Problem Formulation
In this section, we analyze images with modular arith-

metic properties and formulate implicit neural representa-
tion as a function of amplitude. Let IN and Iq be an HBD
image and an LBD image, respectively, with bit-plane zero
padding when q < N . Then, the quantization equation from
IN to Iq is defined as below:

Iq =

⌊
IN

2N−q

⌋
2N−q, (1)

where ⌊·⌋ is a floor function mapped to the greatest integer.
Iq contains q MSBs of IN. Then, The HBD image is a sum
of the LBD image Iq and the residual image R as below:

IN = Iq +R. (2)

Decomposition of Quantized Signal Our approach esti-
mates the residual image R with a function of both encoded
latent variables and a bit-wise query. Here, we define bit-
wise basis and its coefficients which normalize quantization
residuals. The binary set {0, 1} together with exclusive-or
(XOR) operation ⊕ and multiplication · compose a binary
field denoted by F2. It is known that binary vector space
{0, 1}N over F2 have orthonormal basis as one-hot encod-
ing denoted as en where n = 0, . . . , N − 1 and n is integer
[1]. We interpret an arbitrary N -bit number as an element
of the N -dimensional binary vector space ({0, 1}N ,⊕, ·).
To realize such a binary vector in a real number, we present
an arbitrary positive number a as a power series of 2 with
elements (bi) from a binary vector:

a =

∞∑
i=−∞

bi2
i, (3)

where bi ∈ {0, 1} and i ∈ Z. When we split above series
in Eq. (3) into two terms with respect to any integer L,

a =

∞∑
i=L+1

bi2
i +

L∑
j=−∞

bj2
j =

∞∑
i=L+1

bi2
i + C · 2L+1, (4)

where C ∈ [0, 1]. Note that digital images consist of posi-
tive integers such as “uint8”. We present Eq.(2) with Eq.(4)
into a digital image form as below:

IN =

N−1∑
i=N−q

2i ·Bi︸ ︷︷ ︸
Iq

+2N−q ·C,︸ ︷︷ ︸
R

(5)

where Bi ∈ {0, 1}H×W×3 denotes a binary image at i-th
least significant bit-plane. Thus, the residual image R is
a multiplication between 2N−q and the real number image
C ∈ [0, 1)H×W×3. The orthonormal basis eq of the binary
vector space is equivalent to 2N−q in the arithmetic form.
From now on, we call C bit-wise coefficient of the bit-wise
query (s := 2N−q) which is equivalent to eq .
Arbitrary Bitwise Coefficients Our method, ABCD, aims
to predict coefficient C to reconstruct residual images by
using the implicit neural representation (INR) as a function
of latent vector and its quantizing bit-query. The INR pa-
rameterizes a continuous signal with an MLP fed by coor-
dinates [5, 23, 29]. We design INR (fθ) using amplitudes
as an input coordinate so that it represents bit-wise coeffi-
cients C as continuous signals along the amplitude axis as
follows:

C(x, s) ≃ fθ(Iq[N (x)], s), (6)

where x is a 2D coordinate in the image domain and N (x)
is a set of nearest pixels around the center pixel, x. A de-
coder fθ maps coefficient image Ĉ from domain composed
with latent vector and bit-wise query; fθ(z, s) : (Z,S) 7→
C, where z ∈ Z is a latent tensor from an encoder Eφ, S
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is set of basis ei and C is a space of predicted coefficient
values from fθ.
Phasor Estimator Inspired from [15, 33], we insert phasor
estimator by modifying local texture estimator [15] to relax
spectral bias. We demonstrate the difference between our
ABCD and local texture estimator in Sec. 6. The overall
system is constructed as follows:

Ĉ(x, Iq, s;Θ) = fθ(hψ(zx), s), (7)

where z = Eφ(Iq), hψ(·) denotes the phasor estimator of
ABCD and Θ = {θ, φ, ψ} is a set of trainable parame-
ters. Our phasor estimator (hψ(·)) consists of two elements:
(1) an amplitude estimator (ha(·) : RC 7→ R2K) and (2) a
phase estimator (hp(·) : RC 7→ R2K). Thus, given a coordi-
nate x ∈ R2, the estimating function hψ(·) : (RC) 7→ R2K

is defined as

hψ(zx) =

[
A1

x

A2
x

]
⊙
[
cos(πΦ1

x)
sin(πΦ2

x)

]
, (8)

where
[
A1

x

A2
x

]
= ha(zx),

[
Φ1

x

Φ2
x

]
= hp(zx), (9)

A1,2
x ∈ RK is an amplitude vector at x, Φ1,2

x ∈ RK de-
notes a phase vector at x, and ⊙ represents element-wise
multiplication. We interpret that by observing pixels inside
a receptive field (RF), ABCD with the encoder (hψ◦Eφ) es-
timates dominant phasors accurately. Here, the size of RF
is decided by the encoder (Eφ). We visually demonstrate
estimated phasors in Fig. 6.

Given a series of J images with the different levels of
quantizations between 3 and 8, the learning problem is de-
fined as follows:

Θ̂ = argmin
Θ

∑
j∈J

∑
q∈[3,8]

∥C(IjN )− Ĉ(Ijq, s;Θ)∥2. (10)

Bit decoding To retrieve de-quantized image values as in
Eq.(5), bitwise coefficients (C) is multiplied with basis
value s and added with corresponding input value Iq from
bitplane zero-padding. The whole process of decoding is
written as follows:

ÎN (x) = Ĉ(x, Iq, s; Θ̂)× s︸ ︷︷ ︸
R

+Iq(x) (11)

4. Method
4.1. Network Detail

Our ABCD-based arbitrary BDE network includes an
encoder (Eφ), a phasor detector (blue shaded area in Fig. 3),
a decoder (fθ), and a bit-wise coefficient estimator (pink
shaded area in Fig. 3). This section describes a backbone
structure (including encoder and decoder) and architectural
details of ABCD.

Encoder (Eφ) and Decoder (fθ) We use EDSR [17], RDN
[42], and SwinIR [16] as an encoder (Eφ). The EDSR [17]
is composed of 38 ResBlocks with 128 channels. The RDN
[42] is composed of 8 RDB blocks. Since the BDE task
requires equivalent sizes between input and output, we ap-
ply encoders without upsampling layers. The decoder (fθ)
is composed with 5-layer MLP and ReLU activation func-
tion [5, 15]. The dimension of the first layer is 257, and the
hidden dimensions are 256.
ABCD Our ABCD contains a phasor estimator and a bit-
wise coefficient estimator. Inspired by the LTE [14, 15], we
hypothesize that our ABCD learns the phasor distribution
from Fourier representations. The phasor estimator con-
tains amplitude estimator (ha), phase estimator (hp) and si-
nusoidal activations. These estimators consist of 3×3 con-
volution layers having 256 output channels. Bit-wise co-
efficient estimator calculates bit-query s following Eq.(5),
and concatenates it with the output of the phasor estima-
tor (Eq.(8)). The concatenated vector contains 257 chan-
nels which are identical to an input dimension of MLP. We
clip the output of network with normalized tanh activation
(0 ≤ · ≤ 1) to prevent overshoot and undershoot effect.
Our network reconstructs HBD images by multiplying co-
efficients Ĉ with bit-query s as in Eq. (11).

4.2. Training Strategy

We construct a minibatch with uniformly sampled quan-
tization levels from 3-bit to 8-bit. Note that our network
shows robustness for unseen levels (2-bit or 10-bit). Let q
be a quantization level randomly sampled from 3 to 8 inte-
ger. With Eq.(1), we quantize the HBD image to q-bit and
add bit-wise zero padding before feeding into a network.
We calculate the bit-wise coordinate s = 2N−q|N=16 and
divide R by s. We randomly sample pixels from ground
truth(GT) (C).

5. Experiment
5.1. Training

Dataset As in [26], we use 2000 16-bit images, each 1000
from the Sintel dataset and the MIT-Adobe FiveK dataset
[3] for training. For evaluation, we report peak signal-to-
noise ratio (PSNR) and structural similarity (SSIM) on the
MIT-Adobe FiveK [3], Sintel datasets [7], benchmarks for
TESTIMAGES 1200 [2], Kodak [8], and ESPL v2 [13].
Implementation detail We use 64 × 64 patches for inputs
of our network and optimize it by Adam [12]. We use 1000
epochs with a batch size 16. When we train ABCD with
CNN-based encoders, such as EDSR [17] or RDN [42], the
learning rate is initialized to 1e-4 and decayed by factor
of 0.5 at [200, 400, 600, 800]. For a transformer encoder
(SwinIR) [16], the learning rate is initialized as 1e-5 and
decayed by factor of 0.5 at [500, 800, 900, 950].
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Figure 4. Qualitative comparison in 3-bit → 8-bit BDE. SwinIR [20] is used as an encoder for ABCD.

5.2. Evaluation

Qualitative result We use 8-bit ground truth images
since the standard displays support up to 8-bit. Fig. 4 shows
a qualitative comparison to other BDE methods, IPAD [19],
BitNet [4], and D16 [26]. We found that D16 [26] suffers
from false contour and BitNet [4] blurs details. The first
and second rows demonstrate that our ABCD has the ad-
vantage of reconstructing details blurred by quantization.
Also, overall comparisons show that our ABCD is effective
in removing false contour artifacts. Furthermore, in Fig. 5,
we demonstrate that our ABCD restores the extreme bit-
planes. Note that 2-bit inputs in Fig. 5 are unused sample
for training.

Quantitative result We compare the performance of our
method against existing methods; IPAD [19], which is a
non-learnable method, BitNet [4], BE-CALF [18], and D16
[26]. The input in Tab. 1 refers to q-quantized images with

zero-padding at missing bitplanes. The number of train-
able parameters is written below. The pre-trained BitNet
supports 3-bit or 4-bit to 8-bit and 3 to 6-bit to 16-bit ex-
pansion. The BE-CALF [18] provides a pre-trained model
for 4-bit or 8-bit to 16-bit expansion; however, the training
code is not available. We directly copy the numeric result
from the original papers. In Tab. 1 the test dataset is com-
posed of randomly selected 50 images in the Sintel dataset
and the last 1000 (filenames a4001 to 5000) images of the
MIT-Adobe dataset enhanced by expert E. Our ABCD out-
performs all methods with any encoder. The maximum gain
of PSNR is 1.52dB on Sintel for 4→16 BDE.

We report results on benchmarks at the bottom of Tab. 1.
The TESTIMAGES dataset [2] contains 40 images with 16-
bit depth. The Kodak [8] dataset contains 24 natural im-
ages with 8-bit depth. The ESPL v2 [13] contains 25 an-
imated images with 8-bit depth. In both natural and ani-
mation images, our ABCD shows better performances than
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Test Sintel MIT-Adobe FiveK
Method 4 → 8 4 → 12 4 → 16 6 → 12 6 → 16 8 → 16 3 → 16 4 → 16 5 → 16 6 → 16

Input 29.16 28.79 28.77 40.90 40.81 52.86 22.90 28.86 34.86 40.88
0.8864 0.8844 0.8843 0.9858 0.9857 0.9990 0.7381 0.8769 0.9556 0.9871

IPAD [19] 35.86 35.78 35.76 47.66 47.62 58.62 29.86 35.74 41.18 46.43
0.9457 0.9452 0.9451 0.9903 0.9902 0.9989 0.8624 0.9378 0.9743 0.9903

BitNet [4] 39.34 39.49 39.49 49.72 49.68 57.55 33.46 39.21 44.02 48.46
(0.94M) 0.9701 0.9719 0.9719 0.9954 0.9954 0.9989 0.9128 0.9632 0.9853 0.9943

BE-CALF [18] 39.91 39.98 39.98 51.14 51.14 59.51 - - - -
(5.18M) 0.9737 0.9752 0.9752 0.9940 0.9940 0.9993 - - - -

D16 [26] 41.19 41.51 41.51 53.47 53.48 63.51 34.11 39.95 44.94 49.72
(≤15.46M) 0.9794 0.9810 0.9810 0.9980 0.9979 0.9998 0.9279 0.9693 0.9876 0.9953

RDN-ABCD 42.31 42.84 42.84 54.07 54.10 63.75 35.14 40.94 45.68 50.08
(11.52M) 0.9831 0.9847 0.9847 0.9984 0.9984 0.9998 0.9392 0.9746 0.9893 0.9957

EDSR-ABCD 42.47 43.02 43.02 54.15 54.18 63.78 35.25 41.04 45.74 50.11
(12.22M) 0.9837 0.9852 0.9852 0.9984 0.9984 0.9998 0.9401 0.9748 0.9893 0.9957

SwinIR-ABCD 42.51 43.03 43.03 54.08 54.12 63.74 35.44 41.18 45.80 50.13
(12.10M) 0.9844 0.9855 0.9855 0.9984 0.9984 0.9998 0.9412 0.9751 0.9895 0.9957

Benchmark TESTIMAGES 1200 KODAK ESPL v2
Method 4 → 8 4 → 12 4 → 16 6 → 12 6 → 16 8 → 16 3 → 8 4 → 8 3 → 8 4 → 8

Input 29.21 28.85 28.83 40.95 40.86 52.92 22.77 29.06 23.20 29.28
0.8764 0.8741 0.8739 0.9856 0.9855 0.9990 0.7671 0.8998 0.6616 0.8261

IPAD [19] 36.29 36.20 36.18 47.20 47.15 57.84 29.20 34.90 29.86 35.75
0.9450 0.9444 0.9443 0.9901 0.9899 0.9988 0.8515 0.9345 0.8379 0.9207

BitNet [4] 38.75 38.81 38.80 49.52 49.48 53.60 32.68 38.48 32.58 38.23
(0.94M) 0.9571 0.9589 0.9589 0.9944 0.9944 0.9970 0.9172 0.9659 0.9001 0.9399

BE-CALF [18] 38.45 38.50 38.50 49.85 49.84 58.11 - 38.92 - 38.43
(5.18M) 0.9632 0.9648 0.9649 0.9945 0.9945 0.9992 - 0.9681 - 0.9479

D16 [26] 40.39 40.42 40.41 52.12 52.12 61.68 33.67 39.52 33.47 39.53
(≤14.27M) 0.9725 0.9735 0.9735 0.9967 0.9967 0.9996 0.9337 0.9723 0.9001 0.9528

RDN-ABCD 40.81 41.36 41.38 52.56 52.59 61.72 34.38 40.11 34.21 40.20
(11.52M) 0.9745 0.9760 0.9761 0.9971 0.9971 0.9996 0.9415 0.9748 0.9093 0.9583

EDSR-ABCD 41.12 41.65 41.65 52.76 52.78 61.78 34.50 40.23 34.36 40.24
(12.22M) 0.9755 0.9770 0.9771 0.9972 0.9972 0.9996 0.9426 0.9753 0.9106 0.9580

SwinIR-ABCD 41.29 41.76 41.77 52.82 52.83 61.78 34.62 40.31 34.55 40.35
(12.10M) 0.9769 0.9779 0.9779 0.9974 0.9974 0.9997 0.9443 0.9762 0.9125 0.9584

Table 1. Quantitative comparisons (PSNR (dB)& SSIM) for arbitrary bit-depth expansion on the test set of Sintel [7] & MIT-Adobe
FiveK [3](top) and benchmark set including TESTIMAGES 1200 [2], Kodak [8], ESPL v2 [13] (bottom). Red and blue colors indicate the
best and the second-best performance, respectively. (-) indicates not reported. (q → N) refers q-bit input to N-bit output BDE.

2-bit Input IPAD [19] BitNet [4] ABCD (Ours) GT

Figure 5. Qualitative comparison for 2-bit → 8-bit BDE. D16 [26] does not provide 2-bit recovery pre-trained model. SwinIR [20] is used
as an encoder for ABCD.

other methods. Our ground truth of training is 16-bit depth
images, so 8 and 12-bit target expansion are out-of-range
for ABCD. However, thanks to the INR that maps bit-wise
coordinates to its coefficient, ABCD achieves the highest
PSNR.

5.3. Ablation Study

Network components In Tab. 2, we conducted ablation
studies for individual components of ABCD. ABCD con-
tains a phasor estimator in the encoder and bit-wise coor-
dinate concatenation in the decoder. Furthermore, our out-
put is the bit-wise coefficient (Ĉ) instead of pixel values
(ÎHBD or R̂). To support this, we train EDSR [17]-based
ABCD without each component and mechanism. (-P): En-

coder without phasor estimator (replaced by ResBlocks), (-
S): Decoder without bit-wise query (s), (+B): Mechanism
that estimates residual image (R̂), and (+L): Addition of
long skip connection of LBD images (ILBD) so that the
network predicts the natural image (ÎHBD).

The middle part (-P& -S) of Tab. 2 shows that the pha-
sor estimator and bit-wise query enhance the performance
of ABCD, especially in relatively low bit-depth input. The
phasor estimator improved performance in a high range.
Without the bit-wise query, it makes the output bit-depth
to be dedicated (16-bit) and causes performance drops in
the network. The ablations of mechanisms ABCD(+B) and
ABCD(+L) degrade the performances of the network. For
extracting the residual image (R̂), arbitrary residual images
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Input Bit → Output Bit
3 → 16 4 → 16 5 → 16 6 → 16 7 → 16 8 → 16

ABCD 34.57 41.65 47.67 52.78 57.24 61.78
ABCD(-P) 34.27 41.25 47.36 52.60 57.16 61.70
ABCD(-S) 34.55 41.58 47.66 52.77 57.24 61.76
ABCD(+B) 25.27 31.54 37.70 43.81 49.87 55.92
ABCD(+L) 34.26 41.11 46.87 51.75 56.08 60.52

Table 2. Quantitative ablation study of ABCD on TESTIM-
AGES 1200 [2] (PSNR(dB)). Definitions of -P, -S, +B, +L are
shown in Sec. 5.3. EDSR [17] is used as an encoder.

Input Bit → Output Bit
2 → 16 4 → 16 6 → 16 8 → 16 10 → 16

3-8 (Proposed) 26.55 41.65 52.78 61.78 70.98
Only-2 26.31 34.15 45.56 57.50 69.50
Only-4 20.55 41.16 46.44 57.53 69.40
Only-6 20.34 34.44 52.76 58.80 69.74

Only-8&10 diverged

Table 3. Ablation study of ABCD for a dedicated bit-depth ex-
pansion. Evaluated on TESTIMAGES 1200 (PSNR(dB)). Only-k
refers to training the model with k-bit quantized images.

have a different range of amplitude which make the network
hard to learn.
Fixed-bit training We evaluate the effect of training ABCD
for fixed bit depth expansion. The result is shown in Tab. 3.
Note that the training range of our ABCD is 3 to 8 bit.
So, 2-bit and 10-bit inputs are out-of-distribution. We ob-
served that bit depth expansion for fixed-bit training has
poor performance in out-of-distribution bits as well as in-
distribution bit-level. Furthermore, high-bit inputs (8 or 10)
diverge.

5.4. Phasor Estimation

We demonstrate that our phasor estimator extracts dom-
inant phasors from quantized inputs. For sanity check, we
sort the phasor of ground truth (C) in descending order in
the absolute value of amplitude and select K phasors. With
the formula below, we calculate estimated phases, from
Eq. (8):

∠Φ̂x = tan−1

(
A1

x cos
(
πΦ1

x

)
+A2

x sin
(
πΦ2

x

)
A1

x sin
(
πΦ1

x

)
+A2

x cos
(
πΦ2

x

)) (12)

We compared the distribution of phasors between GT and
the predicted in low-frequency and high-frequency textures
of quantized inputs. In Fig. 6, red boxes in the first column
are the receptive field (RF) of ABCD, and the second col-
umn refers the ground truth of Ĉ. The diagram in Fig. 6
represents an accumulated number for each angle. Note
that the Fourier transform of images is conjugate symmet-
ric. We find that our phasor estimator learns the distribu-
tion of the dominant phasors of both high-frequency and
low-frequency textures. For example, in the third row of
Fig. 6, the density of dominant phasors is accumulated near
π (rad), and our ABCD follows those phasors.

Image ‘C’ in Eq. (11) ABCD GT
Figure 6. Comparison of the dominant phasor distribution of the
ABCD and GT. SwinIR [16] is used as an encoder.

Im
ag

e
B

B
A

N
D

Original Video ABCD-Improved
Figure 7. Blind banding artifact detector (BBAND) reconstruc-
tion of our ABCD. The natural images (top) and BBAND images
(bottom).

method
resolution 360p 480p 720p 1080p Total

Original Video 0.5525 0.4500 0.4018 0.3606 0.4316
EDSR-ABCD 0.4760 0.4180 0.3476 0.3144 0.3809

Improvement +13.85% +7.11% +13.49% +12.81% +11.75%

Table 4. Quantitative enhancement of BBAND(↓) metric with
ABCD for YouTube-UGC [39] dataset.

5.5. Debanding

We validate the effectiveness of our ABCD for deband-
ing in unseen dataset. Inspired by the relations between
false contour artifacts and quantization, we hypothesize that
our pre-trained ABCD can resolve banding effects. We cal-
culate the blind banding artifact detector (BBAND) score
[35] between original and enhanced frames by ABCD. As
we have no information about how many bits are required
for ABCD to resolve banding effects, we assume that severe
artifacts demand large bit depth expansion. We enhance
original images with 3→8 BDE results (Ĉ3→8). The quan-
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D16 [26] EDSR-ABCD SwinIR-ABCD GT

Figure 8. False contour artifacts and analysis in bitplanes for
3-bit→8-bit bit depth expansion. Comparison with D16 [26],
EDSR-ABCD and SwinIR-ABCD.

titative result in Tab. 4 shows our ABCD improves BBAND
score in YouTube-UGC dataset [39]. The qualitative results
are in Fig. 7.

6. Discussion
Phasor Estimator The dependency on the input image
sets the phases of LTE [15] and ABCD apart from each
other. While LTE infers phases from their scale factor
(ĉ := (2/rx, 2/ry)), ABCD estimates phases from images.
Since LTE is a super-resolution network, it requires local
coordinates (δ := xquery −xnearest) to learn frequencies. Un-
like LTE, outputs of ABCD always have the same resolution
with the input images. This implies that local coordinates δ
are 0⃗. Thus, the formulation is given as follows:

Aj ⊙
[
cos(π(���Fj · δ + hp(ĉ))
sin(π(���Fj · δ + hp(ĉ))

]
δ=0⃗︸ ︷︷ ︸

LTE [15]

→
[
A1

x

A2
x

]
⊙

[
cos(πΦ1

x)
sin(πΦ2

x)

]
︸ ︷︷ ︸

ABCD

.

Artifacts from Encoder In Fig. 8, CNN-based BDE meth-
ods have false contour artifacts in restoring a high range
of bit-depth. This artifact appears when networks restore
high pixel values nearby low-valued pixels. Red arrows in-
dicate such artifacts. Since contour artifacts do not appear
on the GT as well as the 3-bit input, it implies that arti-
facts are caused by the network. We decompose each of
the predictions in bit-planes to see behaviors in bit-planes.
We overcome these artifacts by using the attention model,
SwinIR [16].
FLOPs and Memory In Tab. 5 and Fig. 9, we report the
number or training parameters, floating point operations
(FLOPs), the memory consumption and the average com-
putation time. We test 4 to 8 bit-depth expansion in TES-
TIMAGES1200 [2] datasets. D16 [26] requires such param-
eters because of per-bit processing. For a fair comparison,
all methods run on Google Colab. Although the BitNet [4]
and BE-CALF [18] have smaller sizes and FLOPs than
ours, their results are about 3dB lower than ours. We ap-
ply EDSR-baseline [17] and SwinIR-lightweight [16] from

Figure 9. FLOPs and PSNR Comparison with other methods in
TESTIMAGES1200 [2] for 4→16 bit-depth expansion. FLOPs
are calculated with image size 1200× 1200.

#Eval Method # Params. Mem. (GB) Time (s)/Query

1.44M
(12002px)

BitNet [4] 0.77M - 6.93
D16 [26] 14.31M 4.88 14.778

SwinIR-ABCD (ours) 12.10M 15.32 11.238
EDSR-ABCD (ours) 12.22M 11.21 7.147
RDN-ABCD (ours) 11.50M 10.84 8.099

Table 5. Memory consumption (MB) & computation time (s)
comparison for an 4→16 BDE task.

their official code and confirm that our framework over-
comes the trade-off between computational complexities
and performances.

7. Conclusion

We proposed an implicit neural network approach as a
function of a bit-wise query for BDE. The residual image
calculated from bit-wise coefficients recovers the arbitrary
depth of missing bit planes with single training. Further-
more, we show that the proposed method removes severe ar-
tifacts such as false contour, and blurry artifacts, effectively.
Our phasor estimator shows similar phasor diagrams with
that of the original image leading to accurate predictions
of bit-wise coefficient. The results of test and benchmark
datasets demonstrate that our network outperforms state-of-
the-art models up to 1.52dB.
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