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Abstract

Network structure learning aims to optimize network ar-
chitectures and make them more efficient without compro-
mising performance. In this paper, we first study the as-
trocytes, a new mechanism to regulate connections in the
classic M-P neuron. Then, with the astrocytes, we propose
an AstroNet that can adaptively optimize neuron connec-
tions and therefore achieves structure learning to achieve
higher accuracy and efficiency. AstroNet is based on our
built Astrocyte-Neuron model, with a temporal regulation
mechanism and a global connection mechanism, which is
inspired by the bidirectional communication property of as-
trocytes. With the model, the proposed AstroNet uses a neu-
ral network (NN) for performing tasks, and an astrocyte net-
work (AN) to continuously optimize the connections of NN,
i.e., assigning weight to the neuron units in the NN adap-
tively. Experiments on the classification task demonstrate
that our AstroNet can efficiently optimize the network struc-
ture while achieving state-of-the-art (SOTA) accuracy.

1. Introduction

Neural networks have made remarkable success in visual
tasks by leveraging a large number of learnable parameters.
Deployment of such big models, however, may lead to over-
fitting and unnecessarily increase the computational of the
network [15]. Neural network structure learning is a new
learning paradigm to train neural networks by leveraging
structured signals in addition to feature inputs.

Existing works can be generally divided into Learning
Sparse Networks (LSN) and Neural Architecture Search
(NAS). LSN methods obtain sub-networks from a fixed ar-
chitecture by minimizing the sum of the loss term, and the
penalty term [51, 63]. Though efficiency, this strategy gen-
erally sacrifices accuracy [2,32,44], especially for networks
with more capacity [27]. NAS methods sample and com-
bine different units in a defined search space to form an ar-
chitecture, then evaluate the architecture to determine the
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Figure 1. Illustration of the M-P model and our Astrocyte-Neuron
model. (a) A basic unit of the M-P model. The connection be-
tween neurons propagates in one direction. (b) A basic unit of the
Astrocyte-Neuron model. The connection between astrocyte and
neuron is propagating bidirectionally. (c) Our Astrocyte-Neuron
model. The astrocyte communicates with neurons bidirectionally
as key supportive elements in neuronal function. (Best viewed in
color on the screen)

optimal output [5, 29, 37]. This strategy requires huge time
and computing resources. Though recent NAS works at-
tempt to improve efficiency, their computational costs are
still expensive [30, 53, 62, 65].

Inspired by the learning activity in mammalian brains,
we propose an AstroNet to effectively optimize network
structure while preserving accuracy. Considering the basic
units in artificial neural networks are neurons, the strength
of connections between neurons can potentially reflect neu-
ron activity [14, 17]. We, therefore, re-assigning connec-
tions (weight) for a given network by regulating the neuron
connections adaptively to achieve structure learning. Differ-
ent from NAS has a huge search space that may introduce
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human bias [12], we obtain sub-networks from a fixed ar-
chitecture to reduce the search space, while not relying on
the sparse regularization from LSN.

To enable the adaptive connection regulation ability of
neurons, we introduce astrocytes [13] to the M-P model
[33]. The previous M-P model (Fig. 1a) connect neurons
using neurotransmitters in one direction, i.e., from multiple
pre-neurons to the post-neuron. According to the new tri-
partite synapse concept [11], astrocytes communicate with
neurons bidirectionally and are recognized as key support-
ive elements in neuronal function (Fig. 1b). Specifically,
astrocytes are stimulated by neuron-released neurotransmit-
ters. Then, astrocytes generate gliotransmitters to regu-
late neuron connections [13]. In particular, astrocytes have
a similar ability to integrate information as neurons [36],
which allows us to model astrocytes as neurons. There-
fore, we extend the M-P model to the Astrocyte-Neuron
model for regulating neuron communications, i.e., connec-
tions (Fig. 1c).

We explore the bidirectional communication property of
astrocytes, and then formulate the Astrocyte-Neuron model
by defining a temporal regulation mechanism and a global
connection mechanism. Specifically, the astrocyte tempo-
rally regulates the connections with pre-neurons, based on
the received weights from all pre-neurons. When the regula-
tion tends to be stable (the re-assigned weights are approxi-
mate to the received weights), the astrocyte then propagates
the updated weight to the post-neuron. With the model,
we construct our AstroNet that can regulate network archi-
tectures to achieve connection optimization, i.e., structure
learning. Our AstroNet consists of a one-direction prop-
agating neural network (NN), and a bidirectional astrocyte
network (AN). The NN constitutes the network for perform-
ing tasks, and the AN follows the Astrocyte-Neuron model
to regulate the connections/weights of the NN adaptively.

The AstroNet can be utilized with multiple backbones
(NN), e.g., ResNet18, ResNet34, DenseNet-BC, VggNet,
and MLP, and we demonstrate our efficiency and accuracy
in the classification task with three public datasets. Com-
pared to LSN methods, our AstroNet improves the accu-
racy by 0.17% ∼ 2.81%. While for NAS methods, the rel-
ative improvements are 0.22% ∼ 2.79% in accuracy, and
3 ∼ 70+ times in efficiency.

Our main contributions are:

• We introduce astrocyte as a new neural unit to the M-P
model to solve the structure learning efficiently with-
out compromising network performance.

• By exploring the bidirectional connection of astro-
cytes, we build the Astrocyte-Neuron model with a
temporal regulation mechanism and a global connec-
tion mechanism.

• With the Astrocyte-Neuron model, we conduct our As-
troNet, which requires few computational resources

and exhibits excellent accuracy improvement.

2. Related Work

Learning sparse networks methods perform feature selec-
tion on fixed networks. One trend is the element-wise spar-
sity that uses ℓ1 norm. The strategy easily results in an ac-
curacy drop in deep networks [27, 28, 51]. Another trend is
structured sparsity which includes group sparsity and gate
constraint. Wen et al. [51] apply group LASSO to the fil-
ters, channels and residual blocks as a sparsity regulariza-
tion, which makes the parameters in some groups all zero.
Zhu et al. [63] observe that even with strong sparsity regu-
larization applied to group LASSO, there still exists a cor-
relation between filters. Other branches are combinations
with other regularizers [1, 61], and better group sparse reg-
ularizers [25, 45]. Louizos et al. [32] use a collection of
non-negative stochastic gates to approximate the ℓ0 norm.
However, the penalty terms are complex for networks with
more capacity and may lead to an accuracy drop, especially
sensitivity to hyper-parameters [27]. In addition, Ramanu-
jan et al. [38] find a sub-network on the initialized network
by training a mask as a connection selector. However, it
performs worse on smaller networks.

Neural architecture search methods contain network pa-
rameters optimization and architecture optimization.

The network parameters optimization includes indepen-
dent optimization and sharing optimization. Independent
optimization learns each network separately [39]. Sharing
optimization [3] accelerates training by sharing all the pa-
rameters for different architectures within one Super-Net.

The architecture optimization is to search the network
architectures, which include: 1) search space defines which
architectures can be represented. Global search spaces
are to search in a whole space [4]. Motivated by hand-
crafted architectures consisting of repeated motifs, cell-
based search spaces are proposed [10,62]; 2) search strategy
includes RL-based, EA-based and gradient-based methods.
RL-based methods [64,65] use the recurrent network as the
architecture controller, and the performances of the gener-
ated architectures are utilized as the rewards for training the
controller. EA-based methods [39, 55] search architectures
with evolutionary algorithms. The validation accuracy of
each individual is utilized as the fitness to evolve the next
generation. Gradient-based methods [9, 56] regard network
architecture as a group of learnable parameters; 3) estima-
tion strategy uses the intermediate training accuracy to rep-
resent the true accuracy to improve efficiency [26, 58] or
focus on the ranking of architectures [57].

Although a lot of work has attempted to improve the effi-
ciency, such as reducing the size of the search space [60,62],
decreasing search time cost [52,59], adopting early stopping
in the evaluation phase [34, 39], the time to find a proper

20259



Gliotransmitters: GT Neurotransmitters: NT NT optimized by GT

AstrocyteNeuron

θNi θA

� = 1

� = 2

� = �

⋯

AstrocyteNeuron

⋯

θ 
 

 

 A

NT1

NT2

NT3

NTi

θNi

NT

(a) (b)

Figure 2. The temporal regulation mechanism and global connec-
tion mechanism between neurons and the astrocyte. (a) The neu-
rotransmitter produced by the ith neuron is optimized t times by
the bidirectional propagation between it and astrocytes. (b) The
optimization of the ith neuron connection is related to neurotrans-
mitters {NTi}N1 from all neurons.

architecture is still measured in days with the stacking of
GPUs.

3. Proposed Method
In this section, we first introduce our Astrocyte-Neuron

model in Sec. 3.1. Then, we elaborate on our AstroNet ar-
chitecture (Sec. 3.2) and the training scheme (Sec. 3.3).

3.1. Astrocyte-Neuron Model

Considering a traditional M-P model [33], without as-
trocyte, the connection between pre-neurons and the post-
neurons is modeled as:

y = ϕ

(
N∑
i

xiwi

)
, (1)

where N is the number of neurons, xi is the input of ith

pre-neuron, wi is the connecting weight from the ith pre-
neuron to the post-neuron, y denotes the output signal of
the post-neuron, and ϕ(·) is the activation function. With
the concept of astrocytes in Fig. 1c, we have

y = ϕ

(
h

(
N∑
i

xif(wi)

))
, (2)

where f(·) denotes the regulative function of astrocytes. As
the astrocytes can be treated as a kind of neuron [36], we
use the h(·) as the activation function of astrocytes. We fur-
ther formulate the Astrocyte-Neuron model in two aspects
by exploring the bidirectional communication property of
astrocytes [11, 35].

First, the bidirectional connection leads to a temporal
regulation mechanism. We take one unit ‘Ni − A’ from
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Figure 3. The architecture of our AstroNet. The NN is used to
perform the task, and the AN iteratively optimizes the connections
of the NN to optimize the structure of the NN adaptively.

Fig. 1c to get Fig. 2a as an example. The neuron Ni releases
neurotransmitters to stimulate the astrocyte, and then the
astrocyte provides gliotransmitters as feedback. The glio-
transmitters regulate Ni to re-release neurotransmitters that
can also re-stimulate the astrocyte. Therefore, the weight
wi (neurotransmitters) is regulated by the gliotransmitters
iteratively. We have

f(wt
i) = f(wt−1

i f(wt−1
i )) = f t−1(wt−1

i ) , (3)

where f t−1(·) is specifically a temporal regulation function,
t ∈ [1, T ] is the iteration time, wt

i is the connecting weights
of ith pre-neuron at time t.

Second, according to the tripartite synapse concept
[11, 36], the astrocyte integrals weights {wi}N1 from pre-
neurons {Ni}N1 to release gliotransmitters. Therefore, we
can build our Astrocyte-Neuron model with the global con-
nections, i.e., wt

i =
∑N

1 g(wt
j). Taking Eq. (2) and Eq. (3),

we have our Astrocyte-Neuron model:

y = ϕ

(
h

(
N∑
i

xif
t−1(wt−1

i )

))

= ϕ

(
h

(
N∑
i

xif
t−1

(
N∑
1

g(wt−1
j )

)))
,

(4)

where g(·) is the global connection function. Fig. 2a and
Fig. 2b illustrates the temporal regulation mechanism and
global connection mechanism between neurons and astro-
cytes. In summary, the astrocyte integrates neurotransmit-
ters {wt−1

i }N1 released by pre-neurons and outputs glio-
transmitters that regulate the connections of these pre-
neurons. Then, pre-neurons update their neurotransmitters
to {wt

i}N1 and stimulate the astrocyte again. When the dif-
ferences between neurotransmitters from time t− 1 to t are
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(a) Input (b) t = 1 (c) t = 2 (d) t = 3 (e) t = 4 (f) t = 5 (g) t = 6 (h) t = 7

Figure 4. We display the NN’s (ResNet18 on CIFAR10) attention, optimized by our AN, on the input image (a) with the iteration number
varying from 1 to 7 (b)-(h). The attention map adaptively focuses on the target region.

slight (the regulation provided by astrocytes is light), the
neurotransmitters at the time t are finally regulated by the
astrocyte and then fed to the post-neuron. With the explored
Astrocyte-Neuron model, we then conduct our AstroNet to
optimize the connections of neurons.

3.2. AstroNet

Our AstroNet consists of a one-direction propagating
neural network (NN) and a bidirectional propagating astro-
cyte network (AN). As shown in Fig. 3, NN constitutes the
network for performing tasks, and AN regulates the con-
nections in NN based on our Astrocyte-Neuron model, i.e.,
assigns weight to the structural units in the NN, such as fil-
ters in convolutional layers (CLs) and neurons in fully con-
nected layers (FCLs). We first formulate our AstroNet, and
then give details on designing the two mechanisms in AN
that regulate the NN’s connections.

Let X = [x1, x2, · · · , xN ]T be the data. The traditional
neural network is modeled as,

y = ϕ(XW ) , (5)

where W = [w1, w2, · · · , wN ]T are weights of structural
units in the NN, y denotes the output signal of a NN, and
ϕ(·) is the activation function. Based on our Astrocyte-
Neuron model in Eq. (4), AN integrates the weights of NN
at the latest timestamp W t−1, then outputs probabilities P t

to regulate the connections of neurons by updating weights
of NN W t−1 to W t. Hence, Eq. (5) is rewritten into,

y = H(XW t)

W t = W t−1 ⊙ P t

P t = F(G(W t−1),WA) ,

(6)

where H(·) denotes the function of AstroNet that is a com-
bination of the activation function of the astrocyte and post-

neuron, ⊙ denotes the element-wise product, WA and P
denote the weights and output of AN, respectively. Note, t
is the iteration timestamp, F(·, ·) and G(·) are the temporal
regulation function and the global connection function.

The temporal regulation mechanism. Based on bidirec-
tional propagation, astrocytes satisfy a temporal regulation
mechanism through the interaction between neurotransmit-
ters and gliotransmitters. Based on Eq. (3) and Eq. (6), the
temporal regulation mechanism in AstroNet is expressed as

W 1 = W ⊙ P 1, W 2 = W 1 ⊙ P 2

· · · , W t = W t−1 ⊙ P t .
(7)

Fig. 4 shows the transfer of attention regions on the input
image with NN (ResNet18) under AN’s regulation by iter-
ations. The visualization follows the Grad-CAM [41]. By
iterations, the valuable information that the NN focuses on
is further enhanced. Meanwhile, the interfering information
is also weakened, i.e., the NN pays more attention to the
target region on the input image rather than the surrounding
environment. For example, the 4th row in Fig. 4 labeled
as ‘horse’, contains a rider and a horse. In the first itera-
tion, the NN pays more attention to the rider. Then, the AN
gradually guides the NN to shift its attention to the horse
instead of the rider. Note that, by iterations, the astrocytes
will gradually dwindle the influence on pre-neurons until
completing the optimization of the communication. Hence,
the maximum iteration time T can be estimated by mini-
mizing the difference between the output of AN PT , i.e.,
min ||eT − eT−1||, where eT = ||PT − PT−1|| (Sec. 4.1).

The global connection mechanism. The AN integral
weights of NN when updating their weights. Based on
Eq. (6) and Eq. (4), the updating of the iteration is expressed
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(a) Input (b) 25% (c) 50% (d) 75% (e) 100%

Figure 5. We display the NN’s (ResNet18 on CIFAR10) attention
on the input image (a) with different percentages of NN connec-
tions that are involved varying from 25% to 100% (b)-(e).

as follows:

P 1 = F(Gavg(W ),WA), P 2 = F(Gmax(W
1),WA)

· · · , P t = F(Gmax(W
t−1),WA) ,

(8)
where Gavg(W ) and Gmax(W ) is the feature matrix of W
with the average and maximum connection intensity of the
NN (see Sec. 4.1), respectively. The purpose of the Gmax(·)
operation is to make AN focus on learning the connection
that has the greatest impact on NN.

To illustrate the benefit of using the global connection
mechanism, we randomly select 25%, 50%, 75% and 100%
of connections in NN to establish bidirectional propagation
with AN, and the rest connections remain in one-direction
propagation. We take ResNet18 [19] as the NN on CI-
FAR10 dataset and visualize the results in Fig. 5. With more
NN connections participating in bidirectional propagation
with AN, the attention of the NN covers the target regions
on the input images gradually.

However, using AN to integrate large amounts of
weights in the NN is still time-consuming. For example, a
152-layer ResNet [19] has more than 60 million parameters.
To this end, we need to compress the weights while preserv-
ing the connection information. We first squeeze the local
receptive field into a channel descriptor. This is achieved
by using the global average pooling or represented as the
maximum connection of the neuron to generate channel-
wise statistics [20]. Then, we use a simple single FCL to
fuse multiple local receptive fields to obtain the inter-layer
global receptive field (see Fig. 3). Finally, AN integrates
global receptive fields from different layers, aiming to cap-
ture the correlations among all neurons fully. More details
can be found in our supplementary material for different
AN structures, such as UNet [40], fully convolutional net-
work [31], and convolutional neural network [16].

3.3. Training Scheme

Inspired by the bilevel learning scheme [22], we first op-
timize the AN with the output of NN and then use the opti-
mal AN to guide NN optimization.

3.3.1 Find the Optimal AN

By optimizing AN, we can get its optimal output: P̃ , then
the optimal sub-network is found in the neural network N
through P̃ : Ñ = NP̃ , P̃ = k × P + σ, where k is the
scaling factor and σ is the offset.

Inspired by [49], that optimize network weights and the
network architecture by alternating gradient descent steps
on the training set for weights and on the validation set for
architectural parameters. We adopt an alternate optimiza-
tion strategy for AN and NN in AstroNet to find the optimal
AN. We optimize the task network NN on the training set
and AN on the validation set. Note for a fair comparison, we
split the original training set into a small training and valida-
tion set. The latter aims to make the optimized NN connec-
tions have good predictive ability for unseen data through
bidirectional propagation between AN and NN. Further-
more, to simulate the temporal regulation mechanism of as-
trocytes and neurons, an optimization round of AN consists
of multiple iterations. The optimization method is sum-
marised in Algorithm 1, where T denotes the iteration time
of bidirectional propagation.

Algorithm 1: Find the optimal AN.

Input: Training set DTraining , validation set
DV alidation, Ground-truth label yg

Output: The output of AstroNet: ỹ
Params: NN’s params: W and AN’s params: WA

Setting: L corresponds to a loss function.
1 for r = 0 to R:
2 if r%2 == 0:
3 ỹ = H(DTraining(W ⊙ P ))
4 Optimize Lnn(ỹ, yg) → Update W
5 elif r%2! = 0:
6 for t = 0 to T :
7 if t < T :
8 P t+1 = F(G(W t),WA)

9 ỹ = H(DV alidation(W t ⊙ P t+1))

10 Optimize Lan(ỹ, yg) → Update WA

11 else:
12 Break

Optimizing the NN stage. The learning objective of NN
on the training set is the performance evaluation function
E(·, ·) (e.g., cross-entropy) of AstroNet, which is expressed
as,

Lnn = E(H(x,W ⊙ P ), yg) , (9)
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Optimizing the AN stage. The objective of AN (i.e., k and
σ) on the validation set is the same as the one for NN, except
for a constraint term that reduces the difference between
e∗. This constraint term regularises our AN to gradually
optimize NN steadily.

Lan = E(H(x,W ⊙ P t), yg) + λ||et − et−1||2 ,
et = ||P t

h − P t−1
h ||2 ,

P t
h = U(pt), P t−1

h = U(pt−1) ,

(10)

where || · ||2 is the ℓ2 norm, λ is the weight parameter, and
U(·) denotes the normalization function.

3.3.2 Use the Optimal AN to Guide NN Optimization

After obtaining the optimal AN, we fix the parameters of
the AN and train the NN on the ‘training + validation’ set
(the original training set). To this end, the optimal AN has
the ability to guide the optimization of the NN connections
toward generalization and compactness.

For NN training, our target is still the prediction perfor-
mance of AstroNet. Therefore, the training objective of
this stage is consistent with Eq. (9). After NN training,
we remove the connection whose probability is less than
the pruned threshold δ, and obtain the final sub-network
weights Wf from the NN.

Wf =

{
wi = 0, if wi ≤ δ

wi, otherwise .
(11)

4. Experiments
We compare our AstroNet in the classification task on

three datasets, ImageNet-1k [6], CIFAR [24], and MNIST
[7] with state-of-the-art (SOTA) NAS and LSN methods.
We also provide comparisons on the segmentation task to
further demonstrate the efficiency of our AstroNet.

4.1. Experimental Setup

Implementation Details. Our AstroNet is implemented
in PyTorch [23] and is trained via Adam optimizer with a
batch size of 128 and a learning rate of 1e-3. The λ = 1e-3
in Eq. (10). For the random initialization, we use Kaim-
ing normal distribution [18] for CLs and fill FCLs with
values drawn from the normal distribution (mean = 0,
std2 = 0.01). Our code and models will be made available
to facilitate reproducible research.
Baselines. The NAS baselines include: 1) random search
methods, RS and ReNAS [57]; 2) EA methods, REA [39],
NPENAS [50] and Shapley-NAS [54]; 3) Reinforcement
learning, REINFORCE [52] and ENAS [37]; 4) Differ-
entiable methods, GDAS [9], SETN [8] and SDARTS-
RS+PT [47]. For LSN, we adopte the ℓ0 [32] and edge-

(a) (b)
Figure 6. (a) Variation of test accuracy with iterations. (b) Varia-
tion of the difference between AN outputs with iterations.

Table 1. Comparison of global connection function G(·) in itera-
tions on CIFAR10, where NN is set to ResNet18.

G(·) Acc (%) Params (M)
Global average pooling 94.32 7.6
Largest connection 94.31 7.8
Our (Mixture) 94.35 7.6

Table 2. The accuracy of our AstroNet with respect to the pruned
thresholds δ. The connections of the NN (ResNet18) in AstroNet
are trained on CIFAR10.

Threshold δ 0 1e-1 1e-2 1e-3 1e-4
Acc (%) 94.35 93.89 94.23 94.35 94.34
Params (M) 11.17 4.3 5.7 7.6 9.4

popup [38]. All NAS conduct experiments on NAS-Bench-
201 [10], which provides a cell-based search space includ-
ing 15625 different architectures. For LSN and our pro-
posed AstroNet, the selection of fixed network architecture
(or NN), follows [32, 43], which depends on the parameter
requirements. The fixed architectures include ResNet [19],
DenseNet-BC [21], MLP [48], and VGG-Conv6 [42].
Setups. First, we discuss the maximum iteration number
T . In our AstroNet, the AN regulates weights in NN iter-
atively to find the optimal NN connection and achieve the
best performance on the targeting task. To find a proper
iteration number, we minimize the difference between the
output of AN P t with respect to the iteration times, i.e.,
min ||et−et−1||. In other words, when the changes between
P t and P t−1 become slight and stable, we suppose the
AN finishing regulation and find the optimal sub-network
of NN. Take NN as ResNet18 and ResNet34 as examples,
Fig. 6a shows the test accuracy with respect to iterations and
Fig. 6b shows the difference ||et − et−1|| with respect to it-
erations. The results indicated that our AstroNet gradually
optimizes the network connections and achieves accurate
performance against the iteration times from 1 to 10. As
shown in Fig. 6, the differences become stable when t ≥ 6.
Therefore, we set T = 6 for all our experiments.

Second, we discuss the selection in Tab. 1 global con-
nection function G(·) (see Sec. 3.2). Compared to only
using Gavg(·) or Gmax(·), our settings achieve the best per-
formance. The results indicated that it is more reasonable
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Table 3. Comparison with LSN and NAS methods on CIFAR10 and CIFAR100. All baselines are trained on the ‘training + validation’ set
of CIFAR10. Following [10], the time cost (time budget) of all baselines is first set to 3.7h. In contrast, our methods can find the optimal
AN with a less time cost to achieve SOTA performance. Our (ReNet18) and Our (ReNet34) denote that the NN in AstroNet is set to ReNet18
and ReNet34, respectively. C-10 and C-100 denote results on CIFAR10 and CIFAR100. We highlight the best and the second-best numbers
in bold and underline, respectively.

Architecture Top-1 Acc% Params (M) Time Cost (GPU hour) Architecture Search method
CIFAR10 CIFAR100 CIFAR10 CIFAR100

ResNet18 [19]
ResNet34 [19]

92.80
93.56

72.22
72.86

11.17
21.28

11.22
21.33

-
- Manual

L0 [32] (ResNet34)
edge-popup [38] (ResNet34)

93.37
93.52

71.69
71.97

10.4
9.4

10.8
9.7

-
- LSN

RS
ReNAS [57]

93.70± 0.36
93.99± 0.25

71.04± 1.07
72.12± 0.79

4.1
4.5

4.3
4.9

3.7
3.7 Random Search

REA [39]
NPENAS [50]

93.92± 0.30
91.52± 0.16

71.84± 0.99
-

4.3
3.8

4.6
4.2

3.7
3.7 Evolution

REINFORCE [52]
ENAS [37]

93.85± 0.37
54.30± 0.00

71.71± 1.09
15.61± 0.00

4.6
4.8

4.2
5.1

3.7
3.7 Reinforcement learning

GDAS [9]
SETN [8]

93.51± 0.13
86.19± 4.63

70.61± 0.26
56.87± 7.77

3.7
3.5

3.9
3.8

3.7
3.7 Gradient

Our (ResNet18)
Our (ResNet34)

94.49± 0.07
94.68 ± 0.10

73.02± 0.27
74.50 ± 0.38

7.3
9.2

7.4
9.2

3.7
3.7 Astrocyte-Neuron

Our (ResNet18)
Our (ResNet34)

94.35± 0.14
94.51± 0.13

72.77± 0.39
74.26± 0.47

7.6
9.7

7.8
9.8

1.2 (C-10), 1.3 (C-100)
1.6 (C-10), 1.8 (C-100) Astrocyte-Neuron

Table 4. Comparison results of ours, LSN, and NAS that are fully
trained on CIFAR10. The fixed architecture of LSN and the NN of
our AstroNet is set to DenseNet-BC.

Architecture Acc (%) Params (M)
Time Cost

(GPU days)
DenseNet-BC [21] 96.54 25.6 -
ℓ0 [32] 96.41 11.3 -
edge-popup [38] 96.49 10.5 -
ReNAS [57] 97.04 3.8 4.5
REA [39] 96.66 3.4 7 (450 GPUs)
Our (DenseNet-BC) 97.26 10.4 0.1

first to learn the global features of each neuron and then
gradually regulate the important connection.

Third, we study the threshold δ in Eq. (11). If δ is set
to zero, the connections in the NN are not pruned. When
δ > 0, our method prunes low-probability connections (0 <
wi ≤ δ) in the trained NN. Tab. 2 reports the results of using
a different δ with ResNet18 on the CIFAR10 dataset. When
δ = 1e-3, our method achieves the best accuracy, and we
use this setting for all our experiments.

4.2. Results

Compare with Neural Architecture Search. We compare
with SOTA NAS methods on CIFAR10 and CIFAR100.
The search results on the testing set are shown in Tab. 3.
The experiment settings follow commonly used standards
[10, 57], i.e., the total time budget is set to 15000s (3.7h).

Experimental results show that the proposed AstroNet
achieves SOTA accuracy. Our optimization of AN needs
only ≈ 1h, which outperforms the NAS in efficiency. Com-

pare the top three NAS methods, ReNAS, REA, and REIN-
FORCE in Tab. 3, our AstroNet achieves a relative improve-
ment in accuracy by 0.52%, 0.59%, 0.66% on CIFAR10,
and 2.14%, 2.42%, 2.55% on CIFAR100, respectively.

Meanwhile, we increase the searching time for optimiz-
ing AN to be consistent with the one of NAS, which is
achieved by increasing the round for each learning rate and
setting the cutoff learning rate to 1e-6. In Tab. 3, our ac-
curacy is additionally improved by 0.14% ∼ 0.25%. It
demonstrates our AstroNet enables further refining sub-
networks and accuracy improvement, similar to NAS meth-
ods, on the NN with the time cost increases. Moreover,
an interesting observation is that by searching on the same
NN, AstroNet can find a larger network structure for com-
plex datasets, indicating that AstroNet can adaptively learn
structure. This is reasonable as the network needs more con-
nections to represent the complex features.

To further demonstrate the efficiency of our AstroNet,
we choose the top-two rank NAS methods (ReNAS and
REA) in Tab. 3. They are allowed to be fully trained to get
higher-accuracy network architectures, and omit the limita-
tion of time budget (3.7h). For a fair comparison, we also
search in a larger NN architecture, DenseNet-BC. Results
are shown in Tab. 4, where the efficiency of our method is
significantly better than NAS. Our method achieves the best
accuracy with a lower time cost, especially for a classical
network of a larger size, and has more possibilities to dis-
cover its optimal combination of connections.

We trained the best-found architectures (both AstroNet,
[47] and [54]) on CIFAR10 to evaluate their transferability
on ImageNet-1k. Tab. 5 reports that the transferability of
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Table 5. Comparison with NAS methods for trasferability. As-
troNet and NAS architectures are searched on CIFAR10 and then
evaluated on ImageNet-1k. Our (ResNet50) denotes that the NN
in AstroNet is set to ResNet50.

Architecture Acc (%)
Params

(M)
Time Cost

(GPU days)
ResNet50 [19] 75.3 25.6 -
SDARTS-RS+PT [47] 75.5 4.7 0.8
Shapley-NAS [54] 75.7 5.1 0.3
Ours (ResNet50) 76.5 7.6 0.05

Table 6. Comparison of using AN to optimize NN with differ-
ent sizes of parameters based on ResNet18 in CIFAR10. Taking
‘64-128-256-512’ as an example, it denotes the output of the four
residual blocks, respectively.

Pattern Architecture
Acc
(%)

Params
(M)

Time Cost
(GPU hour)

Tiny-ResNet18 64-128-128-256 94.04 4.8 0.9
Orgn-ResNet18 64-128-256-512 94.35 7.6 1.2
Large-ResNet18 64-256-256-512 94.38 7.9 1.4

our AstroNet leads to a relative improvement in accuracy
by 1.0% and 0.8% on the ImageNet-1k, respectively.

For the varying parameters, 1) our method searches the
sub-network from a fixed NN, and the capacity of the sub-
network is related to the size of the chosen NN. To this end,
we show the results with different numbers of parameters
(Tiny, Organ, and Large) based on ResNet18 in Tab. 6. Our
AstroNet still achieves competitive performance on the tiny
network, and the capacity of the obtained sub-network is
also significantly reduced; 2) we focus on searching the op-
timal sub-network. The δ can be increased to decrease sub-
network parameters while preserving accuracy (see Tab. 2).
Compare with the Learning Sparse Networks. We
compared our AstroNet with SOTA baselines ℓ0 and edge-
popup with the fixed architecture of ResNet34 on CIFAR10
in Tab. 3, MLP on MNIST in Fig. 7, VGG-Conv6 on CI-
FAR10 and ResNet50 on ImageNet-1k in Tab. 7.

In Tab. 3, our AstroNet achieves the best accuracy.
Fig. 7a shows the comparison of (1-Acc) between ℓ0, edge-
popup, and AstroNet, by using MLP as the fixed archi-
tecture (NN) along with epochs on MNIST. Our accuracy
(98.78%) surpasses ℓ0 (98.60%) by 0.18%, and edge-popup
(97.32%) by 1.46%. Meanwhile, we report the pruning
rate for (% of Params) in Fig. 7b, our method can prune
≈ 75.4% of the NN’s parameters, which is higher than
66.8% for ℓ0 and 51.6% for edge-popup.

For ImageNet-1k, our AstroNet outperforms the baseline
and the GraSP by 1.2% and 2.48% in accuracy and reduces
the capacity of the model by 70.31%. The edge-popup finds
a sub-network on a fixed initialization architecture, and its
results depend on the abundance of connections in the ar-
chitecture [38]. Therefore, for a fair comparison, we com-
pare with edge-popup on a larger network VGG-Conv6 in

(a) (b)

Figure 7. Comparisons of accuracy and pruning rate concerning
the epochs for LSN baselines and ours with MLP as the fixed ar-
chitecture on the MNIST dataset. (a) Results of (1-Acc). (b) The
percentage of pruning parameters (% of Params).

Table 7. Comparison on CIFAR10 and ImageNet-1k datasets.
‘% of Params’ refers to the percentage of network parameters we
pruned of the total number of parameters. Our (ReNet50) and Our
(VGG-Conv6) denote that the NN in AstroNet is set to ReNet50 and
VGG-Conv6, respectively.

Method δ = 1e-3 Acc (%) % of Params Dataset
ResNet50 [19] - 75.3 25.6
GraSP [46] - 74.02 8.7 ImageNet-1k
Ours (ResNet50) 1e-3 76.5 7.6
VGG-Conv6 [42] - 87.10 -
edge-popup [38] - 88.25 47.37
ℓ0 [32] - 87.46 45.32 CIFAR10
Ours (VGG-Conv6) 1e-3 89.72± 0.11 31.80
Ours (VGG-Conv6) 1e-1 88.71± 0.14 53.45

CIFAR10. Specifically, we set the threshold to δ = 1e-3
to find the sub-network with 1.47% higher accuracy than
edge-popup. When we continue to increase the threshold to
δ = 1e-1, we achieve higher compression than edge-popup
and still have 0.46% better accuracy.
More. Please refer to our supplementary materials for
more details about our AstroNet, e.g., different values of λ
and the attention map with different G, experimental results
on the Vision Transformer (ViT) model, and downstream
task (segmentation).

5. Conclusions

In this paper, we propose an AstroNet to achieve struc-
ture learning by studying the astrocytes. By analyzing its
bidirectional connection property, we formulate a temporal
regulation mechanism and a global connection mechanism
that allows AstroNet to regulate neuron connections adap-
tively. Experiments on the classification task demonstrate
that our AstroNet can efficiently optimize the network struc-
ture while achieving state-of-the-art accuracy.
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