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Abstract

High-fidelity radiance recovery plays a crucial role in
scene information reconstruction and understanding. Con-
ventional cameras suffer from limited sensitivity in dynamic
range, bit depth, and spectral response, etc. In this paper,
we propose to use event cameras with bio-inspired silicon
sensors, which are sensitive to radiance changes, to re-
cover precise radiance values. We reveal that, under active
lighting conditions, the transient frequency of event signals
triggering linearly reflects the radiance value. We propose
an innovative method to convert the high temporal reso-
lution of event signals into precise radiance values. The
precise radiance values yields several capabilities in image
analysis. We demonstrate the feasibility of recovering radi-
ance values solely from the transient event frequency (TEF)
through multiple experiments.

1. Introduction

Scene radiance recovery from pixel values of conven-
tional frame-based cameras is challenging due to the lim-
ited sensitivity of sensors and the non-linear process in
the image signal processor. Event cameras like Dynamic
Vision Sensor (DVS) [16] are designed with bio-inspired
mechanism that measure the scene radiance changes in an
asynchronous manner. Compared with conventional frame-
based cameras, event cameras have superior advantages [7],
such as very high temporal resolution (in the order of µs),
high dynamic range (HDR, up to 120dB), low latency, low
power consumption, etc. Due to the specific event triggering
mechanism, event cameras only record radiance changes
rather than the absolute radiance values. This makes it chal-
lenging to directly apply computer vision algorithms de-
signed for 2D images containing luminance values for most
of the surface points to the data captured by event cameras.
We propose an innovative method for high-fidelity radiance
recovery, which benefits various spectroscopic and stereo-
scopic vision fields, as shown in Fig. 1.
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Figure 1. The concept of transient event frequency and its capabil-
ities. When turning the light source on, an event camera captures
event signals in a very short time, the frequency of event trigger-
ing during this period encodes the scene radiance. The capabilities
of transient event frequency are experimentally verified by vari-
ous applications, including color image restoration, hyperspectral
imaging, depth sensing, and iso-depth contour reconstruction.

Since the event signals could be triggered from either
lighting condition changes or object motions, there are
many methods [14, 27, 29, 44] assuming a constant lighting
condition to focus on motion. To acquire more dense event
signals used for scene analysis, some researchers have pro-
posed to use active lighting that can reflect the information
about the entire scene from the event signals [20, 32]. Ac-
tive lighting can be a transient state by turning on the light,
which only takes less than 0.1 second. Under such a circum-
stance, the event signals are densely triggered for almost all
surface points in the scene, rather than sparsely along the
edges. Previous methods [6, 32] have shown that radiance
can be recovered by integrating a period of events. How-
ever, this approach may suffer from unreliability due to the
presence of ghost signals that persist even after the radiance
change has ceased [21], resulting in errors in the recovered
radiance values. This is caused by the latency and noise

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

20616



of event triggering, which make it difficult to determine the
precise termination timestamp for signal accumulation. As
a result, integrating events can be challenging when there
are extremely large radiance changes.

In this paper, a new approach for direct recovery of scene
radiance from event signals is proposed. We overcome the
instability and errors of event signals caused due to large lu-
minance changes in a split second by analyzing the transient
event frequency (TEF). Events are triggered in a constant
frequency during the period of illumination increase, which
linearly represents the radiance values of a point. As shown
in Fig. 1, our approach transfers the high temporal resolu-
tion of event signals into the precise radiance values, and
thus inherits the advantages of event cameras, which have
low latency, broader spectral and dynamic range response
than conventional cameras. Furthermore, we can directly
apply computer vision algorithms developed for 2D images
to event-radiance images reconstructed from event signals,
expanding the potential applications of event cameras.

To the best of our knowledge, this study is the first to
show that the high temporal resolution of event signals can
be converted to relative radiance values by analyzing the
triggering frequency under active lighting. Our contribu-
tions are summarized as follows:

1) We propose the concept of TEF during the split second
of turning light on. It precisely represents the relative
radiance values in a scene, which is much more stable
and accurate compared to the integration of events and
the pixel values from conventional cameras.

2) We reveal the linear relationship between TEF and ra-
diance values, which yields several capabilities, in-
cluding color image restoration, hyperspectral mea-
surement, depth sensing, and iso-depth contour recon-
struction.

3) We calibrate the linearity of TEF and measure the
spectral response function of the event camera. Mul-
tiple experiments validate the broad response and ro-
bust precision of radiance values recovered from TEF
in spectroscopic and stereoscopic vision fields.

2. Related Works
Event cameras are sensitive to radiance changes at high

temporal resolution with HDR, which could be induced
by objects movement or the illumination changes in active
lighting.

2.1. Event-based vision triggered by motion

Under static lighting conditions, event streams are pri-
marily triggered by scene and/or camera motion. Thanks
to the advantages of event cameras, they are being im-
posed to computer vision and robotics fields to solve ver-
satile tasks. In intensity reconstruction, event cameras have

been applied to improve the quality of restored images and
videos, such as image deblurring [5, 23, 31, 39, 41], opti-
cal flow estimation [1, 22, 30, 42], high-speed video recon-
struction [18, 27, 29, 44], high-frame-rate (HFR) video syn-
thesis [25, 33, 34], and HDR imaging [10, 11, 38, 40], etc.
Besides, there are many works applying event cameras to
stereoscopic vision tasks, like depth estimation [9, 12, 26],
shape reconstruction [4, 37], SLAM [19, 24], etc. Since the
events are mainly triggered in the edges of objects, event
cameras can replace conventional cameras in many high-
level vision tasks that utilize edge information, such as ob-
ject segmentation [3, 35], tracking [2, 8], and pose recogni-
tion [36, 43]. These event-based methods rely on the events
triggered by motion, assuming that the lighting conditions
remain unchanged during the process of capturing.

2.2. Event-based vision under active lighting

Illumination changes are another source to trigger events
of a scene. Research utilizing active lighting for event trig-
gering can be categorized into two categories: structured
light and intensity-changing light. The structured light with
different patterns illuminates the target objects, whose re-
flection is captured by event cameras with high temporal
resolution. MC3D [17] exploited the mapping between spa-
tial disparity of a laser point projector and the temporal in-
formation encoded in event streams for 3D shape recovery.
Huang et al. [13] used a high-speed digital light projec-
tor (DLP) as the light source, and proposed a digital im-
age correlation method to calculate the displacements for
3D surface reconstruction. ESL [20] maximized the spatio-
temporal correlation between the projector and a event cam-
era to suppress the effect of noise in event streams. Besides
structured light, researchers use light sources with inten-
sity changes to trigger event signals. Takatani et al. [32]
proposed to use an event camera for bispectral photometry
with temporally modulated light. The light modulated at
two individual wavelengths illuminated the target medium,
while the triggered events recorded the bispectral differ-
ence, which can be used for depth estimation and turbid
medium concentration estimation. Chen et al. [6] analyzed
the event streams triggered in the split second when the light
is turned on and solved the problem of intensity-distance
ambiguity for indoor lighting estimation.

Both of these methods [6, 32] tried to recover radiance
values by integrating a period of events. But we focus on the
event triggering frequency during the transient illumination
changes.

3. Preliminaries
3.1. Event signals triggering

An event camera detects the changes of radiance in a
scene and outputs a sequence of event stream E = {ei}Ni=1.
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The radiance I is firstly amplified into logarithm domain by
the photoreceptor in an event camera. When the logarithmic
amplified radiance change exceeds the contrast threshold θ,
an event ei = (x, y, p, t) will be triggered, which encodes
the coordinate (x, y) of the pixel, the polarity p ∈ {−1, 1}
indicating the increase or decrease of radiance values, and
the timestamp t when the event is triggered. The process
can be formulated as:

∆I


≥ θ, p = +1

∈ [−θ, θ], none
≤ −θ, p = −1

(1)

where ∆I = log I
(x,y)
t − log I

(x,y)
t−∆t represents the radiance

changes in the pixel (x, y) during the period of ∆t.

3.2. Radiance from integrating event signals

Previous research [6, 32] show that intensity values can
be recovered by integrating a period of events, which is rep-
resented as:

It1 = It0 · exp
(
θ

∫ t1

t0

Edt
)
, (2)

where It1 and It0 are intensity values at timestamp t1 and
t0, respectively. When the light is turned on, the illumina-
tion increases dramatically in a split second, which triggers
tons of events in a very short period. This is known to re-
sult in a smearing effect when detecting sudden changes of
motion [21]. Similarly, in the case of turning on a light,
there often exits the tailing effect due to the latency and
noise of event triggering. As Fig. 2 (a) shows, there exists
the tailing effect even after the illumination becomes stable,
which makes it difficult to decide the termination timestamp
of event counting.

4. Transient Event Frequency
Instead of reconstructing radiance values in an integra-

tion way, we turn to focus on the event triggering frequency
during the period of turning light on, which builds a much
more accurate and robust connection to radiance values.

4.1. Radiance from event frequency

Consider a simple case where a white board with diffuse
reflection (supposed as 1) and a light source. When turn-
ing the light on, the radiance of the white board directly
reflects the illumination increase of the light source, which
is captured by an event camera. The intensity of illumina-
tion changes can be formulated as an exponential function
exp(Φ(t)) [6,15] with respect to time t shown in Fig. 2 (b).
After the logarithm amplification in event camera, the illu-
mination changes can be represented as:

∆I = Φ(t)− Φ(t−∆t). (3)
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Figure 2. (a) A white board with diffuse reflection is illuminated
by the light source, and triggers lots of event signals (the blue dots)
with a tailing effect. (b) The intensity of illumination changes
along the timeline. When turning on the light, the illumination
increases dramatically and then becomes stable. The increase pe-
riod can be formulated as an exponential function exp(Φ(t)). (c)
The average number of events triggered in each pixel of the white
board along the timeline. (d) A patch of pixels in the white board
(blue masked) is selected for analysis. (e) The variance of the val-
ues from the integration-based method and our frequency-based
method among the selected pixels.

According to Eq. (1), when ∆I exceeds the contrast thresh-
old θ, an event signal will be triggered. Therefore, we can
plot the number of events along the timeline to find its rela-
tionship to illumination increase in the split second of turn-
ing light on. As shown in Fig. 2 (c), after the turning on ac-
tion, the average number of events increases linearly from
ts to te. It means that the event signals are triggered in a
constant frequency especially in the central period of illu-
mination increase, which is defined as the transient event
frequency.

Therefore, Φ(t) can be easily approximated by a linear
function1:

Φ(t) = kt+ b, (4)

1What we approximate is just the linearly increasing part of the number
of events (i.e., ts to te in Fig. 2 (c)), not the whole curve.
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Figure 3. (a) The first 5 patches in the last row of a Macbeth Col-
orChecker are selected for comparison. (b) The events triggered in
different patches along timeline, where blue up-arrows represent
the positive (“+1”) events. (c) The number of events increasing
during the split second of turning light on.

where k is the slope factor and b is the constant term. The
slope factor k reflects different radiance values reflected
from the scene. As shown in Fig. 3, when turning on the
light source, the amount of radiance increase of the white
patch (labeled as “a”) in a Macbeth ColorChecker is larger
than that from the gray patch (labeled as “e”), both from the
total dark. Therefore, patches with higher radiance values
trigger events in a higher frequency, as shown in Fig. 3 (b).
We plot the number of events along timeline. The larger
slope factor k, or a higher TEF represents a higher radiance
value.

During the period of radiance increase (e.g., from ts to
te), a sequence of event signals {ei}Ni=1 will be triggered in
each pixel. The time interval ∆ti between two consecutive
events is computed by ti+1−ti. Therefore, the TEF at pixel
(x, y) can be formulated as:

f (x,y) =
N − 1∑N−1

i=1 ∆t
(x,y)
i

=
1

∆t
(x,y)

,

(5)

where ∆t
(x,y) is the averaged timestamp interval of event

signals triggered at (x, y) during the period of illumination
increase (from ts to te).

According to the definition of events integration, all the
events triggered before the light becoming constant should
be counted for computing the changes of radiance. How-
ever, for TEF, the ending time bounds (te) are earlier be-
cause we intercept the period when events are triggered in
a constant frequency2. In fact, TEF can be computed from
any range within [ts, te], which is an advantage over integra-
tion of events. Averaging more time intervals can increase
the robustness of TEF. As shown in Fig. 2 (d), we select
a patch of pixels from the white board, and compute their

2Details of how to determine the time bounds for frequency and inte-
gration are described in the supplementary material.
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Figure 4. (a) The intensities of the light source at 6 different dis-
tances from the white board. (b) The relationship between TEF
and light intensity, which can be fitted by a linear curve.

values from integration-based method and our frequency-
based method. The values of different pixels should be
identical ideally. Figure 2 (e) shows that the variance of
values computed from the integration is much larger than
that from our frequency-based method, which demonstrates
that our frequency-based method is much more stable and
robust. The superiority is more obvious in low-light con-
ditions because of the difficulty in determining the ending
time bound for integration.

4.2. Linearity under active lighting

To verify the linearity of TEF with respect to radiance
values, we need to change the intensity of lighting and
record TEF under different lighting. We vary the inten-
sity of the light source at 6 different distances (in the same
direction) from the white board, and compute the TEF of
each point. The light source intensities are measured us-
ing a spectrometer by integrating the intensities across all
wavelengths (from 380nm to 800nm). As shown in Fig. 4,
we plot the TEF values for the 6 points (all the values are
normalized to [0, 1]) and find that they could be easily fit us-
ing a linear curve, which demonstrates the linearity of TEF
with respect to radiance values.

4.3. Measuring event spectral response

Measuring the spectral response curve of event cameras
is essential for acquiring accurate color information from
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Figure 5. (a) The experimental setup to obtain the spectral re-
sponse function of an event camera. (b) The spectral distribution
of the light source. (c) The spectral response curve of a Prophesee
EVK4 event camera that we measured in the range of 380nm to
760nm.

event signals. For event spectral response measurement, we
use a monochromator and a spectrometer to scan over the
wavelength range of interest (from 380nm to 760nm with an
interval of 10nm). A stable light source with a smooth spec-
tral distribution and sufficient intensity among the wave-
length is used. Besides, we use a projector to act as a switch
that controls turning light on and off. As shown in Fig. 5
(a), we use a white board with uniform reflectivity across
all wavelengths as the calibration object. The monochro-
mator produces narrow-band lights, while the spectrometer
measures the intensity of each narrow-band light.

Since we have demonstrated the linearity of TEF in
Sec. 4.2, the spectral response function of event cameras
can be computed by C(λ) = L(λ)/f(λ), where f(λ) is the
TEF under illumination L(λ). We plot the spectral response
curve of the event camera that we use (Prophesee EVK4) in
Fig. 5 (c).

4.4. Scene analysis

The high-fidelity radiance values recovered via TEF
benefit several fields, including hyperspectral (multi-band)
measurement, depth sensing, and iso-depth contour recon-
struction.

Hyperspectral (Multi-band) measurement. Since, the
TEF builds a linear relationship with the scene radiance, we
can measure the spectral reflectance R(λ) of a scene using
narrow-band illuminants. The intensity value of a pixel in
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Figure 6. Left: The experimental setup for validating the relation-
ship between distance and TEF. Right: We plot the 7 data points
and fit them using a reciprocal of quadratic function described in
Eq. (10).

an image is modeled as the product of three factors: the
illumination Ln(λ), the camera’s spectral response function
C(λ), and the spectral reflectance of this pixel R(x,y)(λ).
Since the TEF has a linear response to scene radiance I(x,y)n ,
the TEF can be formulated as:

f (x,y)
n ∝ I(x,y)n =

∫
Ln(λ)C(λ)R(x,y)(λ)dλ, (6)

where λ is the wavelength, f (x,y)
n is the TEF at pixel (x, y)

under the n-th illumination. Since we use a monochromator
to produce narrow-band illuminants, Eq. (6) can be rewrit-
ten as:

f (x,y)
n = Ln(λn)C(λn)R

(x,y)(λn), (7)

where λn is the peak wavelength of the n-th narrow-band
illuminant. Then, the spectral reflectance of wavelength λn

at pixel (x, y) can be computed by:

R(x,y)(λn) =
f
(x,y)
n

Ln(λn)C(λn)
. (8)

Depth sensing. The relationship between light inten-
sity and distance can be formulated according to the inverse
square law of light fall-off property:

Ld = L · 1

4πd2
, (9)

where Ld is the light intensity at the spherical surface with
a radius d, and the light source L is the center of the sphere.
So Ld is proportional to 1

d2 (e.g., Ld ∝ 1
d2 ). When we

increase the distance of target objects from the light source,
the radiance reflected from the target objects decreases. The
TEF is sensitive to small differences in radiance, which di-
rectly reflects the depth values. We use a white board with
diffuse reflection as the target object, and increase the dis-
tance between the white board and the light source linearly
from 10cm to 40cm with an interval of 5cm. As shown in
Fig. 6, the relationship between distance and TEF can be
fitted by a reciprocal of quadratic function:

fd = a · 1

d2
+ b, (10)
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Figure 7. The results of color image restoration. The first row is the results from integrated events using Eq. (2). The second row is the
results using the proposed TEF. The final row is the images captured with an RGB camera.
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Figure 8. A Macbeth ColorChecker is used to evaluate the accuracy of reconstructed spectral reflectance curves. 8 patches are selected as
samples to show the similarity between our estimation (red solid line labeled as “Est”) and the ground truth (green dotted line labeled as
“GT”). The RMSE of all patches are plotted in the bottom left chart.

where fd is the TEF at distance d. It directly corresponds to
the inverse square law of light fall-off property in Eq. (10).
So the depth information can be easily distinguished by the
TEF values.

Iso-depth contour reconstruction. Assuming there are
parallel rays of distant light and a Lambertian surface with
uniform albedo, the radiance value of a point in the surface
can be formulated as:

R(x,y) = ρL cos(α), (11)

where ρ is the albedo, L is the light intensity, and α is the
angle between the light direction and the surface normal of
point (x, y). The angle α decides the radiance value of a
point in the surface (e.g., larger α leads to lower radiance
value). Since TEF is linearly related to radiance value, it is
possible to estimate a conical surface containing the surface
normal of each point in the surface. The points with surface
normals in the same conical surface can be clustered into
the same contour line. This allows us to reconstruct the iso-
depth contours of the differentiable surface of an object.
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Figure 9. Image relighting results computed from the recovered spectral reflectance curves under 4 different illuminations. The illumination
spectrums are measured by a spectrometer. The real images are captured using an RGB camera.
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Figure 10. An HDR example of image relighting for specular surface.

5. Experiments

5.1. Color image restoration

Since event cameras only measure the radiance changes,
no color information is captured. We apply red, green, and
blue filters in front of the light source and capture the TEF
3 times for R, G, and B channel, respectively. The pixel
values of color images restored from transient frequency
can be viewed as a linear transformation from scene radi-
ance values. As shown in Fig. 7, we compare the color
images restored from TEF (ours) and the integration-based
method (baseline) used in [6, 32]. The pictures in the fi-
nal row are captured using a conventional RGB camera for
reference. The images restored from TEF and integration
baseline have the same input event signals. Our frequency-

based results are less affected by the noise, which have more
detailed color appearance. The results demonstrate that the
TEF can restore scene radiance values with higher fidelity
compared to integration of events.

5.2. Hyperspectral (Multi-band) imaging

We reconstruct the spectral reflectance at each patch3

using the monochromator scanning from 380nm to 760nm
with an interval of 20nm. To evaluate spectral accuracy of
our reconstruction, a 24-patch Macbeth ColorChecker with
ground truth spectral reflectance curves is used as the stan-
dard object. As shown in Fig. 8, the spectral reflectance
curves reconstructed with TEF are similar to the ground
truth curves. Besides, we compute the root mean square

3We consider each 2× 2 pixels as a small patch to suppress noise.
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Figure 11. Depth sensing result. Top left: The target object that
is made of diffuse paper. Top right: The visualized event signals
triggered during the period of all wavelengthsing light on. Bottom
left: The reconstructed depth map. Bottom right: A 3D rendering
of the object.

error (RMSE) of the 24 patches. The biggest error coming
from the pink patch (labeled as “q”) is smaller than 0.125.
The results demonstrate the accuracy of spectral reflectance
recovery via TEF both qualitatively and quantitatively.

Given the recovered spectral reflectance curves of the
scene, we can conduct spectral relighting using Eq. (6) with
known illumination spectrum. As shown in Fig. 9, the re-
lit results appear very similar to real images captured by
a conventional RGB camera (FLIR Grasshopper GS3-U3-
28S5C-C) under different illuminants. Thanks to the HDR
property, event cameras can preserve texture details of a
scene with high dynamic range, while conventional cam-
eras suffer from saturation or noise effect due to the limited
dynamic range of their sensors. An example of a box lid
with specular textures is shown in Fig. 10. We firstly mea-
sure the spectral reflectance of the surface using TEF. Then
we relight the image under the illumination shown in the
first column in Fig. 9. The HDR result is tone mapped us-
ing the method [28] for visualization. It is obvious that the
image reconstructed from TEF restores both high-radiance
specular and low-radiance parts of the surface accurately.

5.3. Depth sensing

We design an object with multiple paper layers lying at
different levels and capture the events triggered during the
split second of turning light on. Then we measure the tran-
sient event frequencies of different paper layers. Since all
the layers are faced to the same direction, their radiance val-
ues are only affected by the distance to the light source. As
shown in Fig. 11, the event camera can successfully distin-
guish different layers based on the values of TEF. By cre-
ating a look-up table according to Fig. 6, under the same
lighting setup, we can even recover the actual depth values
of the target objects. Such differences of depth values are

Target object Iso-depth contour map
0.0

1.0

0.0

1.0

Event signals

Figure 12. Iso-depth contour reconstruction results. Left column:
The target objects. Middle column: The visualized event signals
triggered during the period of turning light on. Right column: The
reconstructed iso-depth contour maps.

hard to distinguish by conventional cameras.

5.4. Iso-depth contour reconstruction

We use an event camera to capture several target objects
with a diffuse surface, and compute the TEF at each small
patch. The values of frequency represent the angles between
the surface normals and the direction of the light source.
Therefore, we can plot the iso-depth contour map by clus-
tering the points that have the same TEF values. The results
are shown in Fig. 12.

6. Conclusion
In this paper, we propose the concept of transient event

frequency, which directly reflects the scene radiance. We
can recover the precise scene radiance values by convert-
ing the high temporal resolution of event signals during the
split second of turning light on into radiance value differ-
ences. TEF yields various capabilities in spectroscopic and
stereoscopic vision, as demonstrated by several experimen-
tal applications.

Limitations and future work. Although we can recover
the precise radiance values by analysing the event triggering
frequency, our method requires a specific setup, e.g., an ac-
tion of turning on a light, which cannot be directly applied
to outdoor scenarios with natural lighting. Besides, we as-
sume the event camera and objects in the scene are both
static, as motion may also trigger event signals. Separat-
ing event signals triggered from illumination changes and
movement is left for future work.
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