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Abstract

Despite the success of multimodal learning in cross-
modal retrieval task, the remarkable progress relies on the
correct correspondence among multimedia data. How-
ever, collecting such ideal data is expensive and time-
consuming. In practice, most widely used datasets are har-
vested from the Internet and inevitably contain mismatched
pairs. Training on such noisy correspondence datasets
causes performance degradation because the cross-modal
retrieval methods can wrongly enforce the mismatched data
to be similar. To tackle this problem, we propose a Meta
Similarity Correction Network (MSCN) to provide reliable
similarity scores. We view a binary classification task as
the meta-process that encourages the MSCN to learn dis-
crimination from positive and negative meta-data. To fur-
ther alleviate the influence of noise, we design an effective
data purification strategy using meta-data as prior knowl-
edge to remove the noisy samples. Extensive experiments
are conducted to demonstrate the strengths of our method in
both synthetic and real-world noises, including Flickr30K,
MS-COCO, and Conceptual Captions. Our code is publicly
available.1

1. Introduction

Recently, cross-modal retrieval has drawn much atten-
tion with the rapid growth of multimedia data. Given a
query sample of specific modality, cross-modal retrieval
aims to retrieve relevant samples across different modali-
ties. Existing cross-modal retrieval works [1, 6, 11] usu-
ally learn a comparable common space to bridge different
modalities, which achieved remarkable progress in many
applications, including video-audio retrieval [1, 33], visual
question answering [11, 26], and image-text matching [44].

Despite the promise, a core assumption in cross-modal
retrieval is the correct correspondence among multiple

*Minnan Luo is the corresponding author.
1https://github.com/hhc1997/MSCN

Figure 1. Illustration of noisy correspondence in image-text re-
trieval. A standard triplet loss is used to enforce the positive pairs
to be closer than negatives in the common space. Noisy correspon-
dence is the mismatched pairs but wrongly considered as positive
ones, and thus results in model performance degradation.

modalities. However, collecting such ideal data is expen-
sive and time-consuming. In practice, most widely used
datasets are harvested from the Internet and inevitably con-
tain noisy correspondence [31]. As illustrated in Fig. 1, the
cross-modal retrieval method will wrongly enforce the mis-
matched data to be similar when learning with noisy corre-
spondence, which may significantly affect the retrieval per-
formance. To date, few effort has been made to address
this. Huang [15] first researches this issue and proposes the
NCR method to train from the noisy image-text pairs ro-
bustly. Inspired by the prior success for noisy labels [20],
NCR divides the data into clean and noisy partitions and
rectifies the correspondence with an adaptive model. How-
ever, NCR based on the memorization effect of DNNs [3],
which leads to poor performance under high noise ratio.

To tackle the challenge, we propose a Meta Similarity
Correction Network (MSCN) which aims to provide reli-
able similarity scores for the noisy features from main net.
We view a binary classification task as the meta-process:
given a multimodal sample, the MSCN will learn to deter-
mine whether the modalities correspond to each other or
not, where the prediction of MSCN can be naturally re-
garded as the similarity score. Specifically, a small amount
of clean pairs is used to construct positive and negative
meta-data, both viewed as meta-knowledge that encourages
MSCN to learn the discrimination. Meanwhile, the main net
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trained by the corrected similarity score from MSCN with a
self-adaptive margin to achieve robust learning. This inter-
dependency makes the main net and MSCN benefits each
other against noise. However, due to the property of triplet
loss, it remains to produce positive loss for noisy pairs even
if we employ the ideal similarity scores. To this end, we
further propose a meta-knowledge guided data purification
strategy to remove samples with potentially wrong corre-
spondence. Extensive experiments are conducted to demon-
strate the strengths of our method in both synthetic and real-
world noises.

The main contributions of this work are summarized as
follows:

• We pioneer the exploration of meta-learning for noisy
correspondence problem, where a meta correction net-
work is proposed to provide reliable similarity scores
against noise.

• We present a novel meta-process that first considers
both positive and negative data as meta-knowledge
to encourage the MSCN to learn discrimination from
them.

• We design an effective data purification strategy us-
ing meta-data as prior knowledge to remove the noisy
samples.

2. Related Work

2.1. Cross-Modal Retrieval

Cross-modal retrieval works aim to take one modality of
data as query to retrieve the related data in other modal-
ities. Based on the utilization of annotation information,
cross-modal retrieval methods can be roughly divided into
two categories: 1) Unsupervised Methods [8, 22, 25, 36]. It
only uses the co-occurrence information to learn the com-
mon representations among the multimodal data. 2) Super-
vised methods [14,34,38,45]. The extra label information is
employed to boost the discrimination of common represen-
tations. However, the lack of annotations limited the practi-
cability in the real world.

Our proposed approach falls in the category of unsu-
pervised methods. For example, Wang [36] uses a two-
branch neural networks to learn the joint embeddings of
multimodal data. Inspired by hard negative mining, VSE++
[8] uses hard negatives to improve the retrieval perfor-
mance. To capture fine-grained interplay between modali-
ties, SCAN [18] introduce stacked cross attention to enable
attention with context from both image and sentence. Re-
cently, motivated by the powerful learning ability of graph
model, GSMN [25] and SGRAF [7] construct graph struc-
ture for multimodal data to benefit the learning of fine-
grained correspondence. Although existing works have
achieved remarkable results, they usually depend on the
correct correspondence among multimodal data and cannot

tackle the noise issue. Thus, it is significant to explore how
to learn cross-modal retrieval with noisy correspondence,
but which is rarely touched in previous studies.

2.2. Noisy Correspondence Learning

As a newly proposed problem, noisy correspondence
is the mismatched pairs but wrongly considered as posi-
tive ones. Huang [15] first research this issue and propose
the NCR method to robustly train the image-text matching
model with noisy correspondence pairs. Inspired by the
prior success for noisy labels [20], NCR divides the data
into clean and noisy part based on the memorization ef-
fect of DNNs, and then rectifies the correspondence with
an adaptive model. Qin [29] proposes a uncertainty-based
method to achieve efficient learning. Moreover, some works
[40, 41] study the partially view-unaligned problem which
can be viewed as a generalized noisy correspondence learn-
ing. Recently, some works [13,39] explore a more challeng-
ing scenario where noisy labels and noisy correspondence
may occur simultaneously. In contrast, our work tackles
this challenge in cross-modal retrieval from a meta-learning
perspective.

2.3. Meta-Learning

The objective of meta-learning is to learn at a more ad-
vanced level than conventional learning, such as learning
the update rule [28], finding easily fine-tuned parameters
[9], or adapting to new tasks [19]. Recently, researchers
use meta-learning to find model’s parameters that robust
against noisy labels [21, 32, 46]. For example, Li [21] opti-
mizes a meta-objective before conventional training to en-
able the model not overfit to noise. MW-Net [32] use a
meta-process to automatically assign weights to the train-
ing samples. MLC [46] presents a label correction network
trained as a meta manner which generate reliable labels for
the noisy training data.

The most relevant existing method is MLC [46], which
first poses the noisy label problem as a meta label correc-
tion. However, we argue that our proposed method dif-
fers from MLC in two aspects. First, we focuses on the
noisy correspondence problem in multimodal data instead
of the unimodal classification scenarios. Second, we lever-
age both positive and negative meta-data to guide model
learning the discrimination, which is unexplored in previ-
ous meta-learning methods.

3. The Proposed Method
3.1. Problem Formulation

Without losing generality, we use the image-text re-
trieval task as a proxy to investigate the noisy correspon-
dence problem in cross-modal retrieval. Given a training set
Dtrain = {(Ii, Ti, yi)}Ni=1, where (Ii, Ti) is the i-th image-

7518



Figure 2. Overview of the proposed meta-process. The positive pairs are taken from the original meta-data which contain corresponding
image and text, while negative pairs are extracting from different pairs in training set to construct mismatched pairs. Then the MSCN is
learned to determine whether the modalities correspond to each other or not.

text pair, yi ∈ {1, 0} indicates the pair is positive (matched),
i.e. (Ii, Ti), or negative (mismatched), i.e. (Ii, Tj ̸=i), and N
is the number of the entire training data. The noisy corre-
spondence in bimodal data is the negative pair but wrongly
considered as yi = 1. To address this issue, we propose a
meta-learning based method to achieve robust training. The
details are delineated next.

3.2. Meta-Learning Based Similarity Correction

The Training Objective. To begin with, we describe
the standard projection module to enable cross-modal fea-
tures to be comparable. Let f(I;Wf ) and g(T ;Wg) be
the modal-specific networks to map the visual and tex-
tual modalities into the joint embedding space, respectively.
Then we compute the similarity feature between bimodal
features by the function

S (f (I) , g (T ) ;Ws) =
Ws|f(I)− g(T )|2

∥Ws|f(I)− g(T )|2∥2
, (1)

where Ws is a learnable parameter matrix to obtain low-
dimensional similarity representation. For notation conve-
nience, we collect {Wf ,Wg,Ws} into W as the parameters
of main net F = (f, g, S) and denote similarity feature as
FW (I, T ). With the presence of noisy correspondence, the
model will inevitably overfit to noise if we use the similar-
ity representation directly. To tackle this problem, we pro-
pose a meta similarity correction network (MSCN), regard-
ing process of obtaining similarity score as a meta-process,
which takes the noisy similarity representation as input and
produces the corrected similarity score. Specifically, our
MSCN is formulated as a MLP network VΘ(·) with param-
eters Θ. The output si = VΘ(FW (Ii, Ti)) is activated with
Sigmoid function to represent the similarity score located in
[0, 1].

For the noisy training pairs, the main net learns noise-
tolerant features guided by the corrected similarity scores
produced from MSCN; while the MSCN predicts the reli-
able similarity score based on features from main net. This
interdependency enables the main net and meta net rein-
force each other against noise, and optimized via a bi-level
optimization. Formally, the optimal parameters W ∗ is cal-
culated by minimizing the cumulative loss over training
data:

W ∗(Θ) = argmin
W

E(Ii,Ti)∈Dtrain
ltrain(Ii, Ti), (2)

where ltrain(·) is the triplet ranking loss:

ltrain(Ii, Ti) = [γ̂ − VΘ (FW (Ii, Ti)) + VΘ

(
FW (Ii, T

−
i )

)
]+

+ [γ̂ − VΘ (FW (Ii, Ti)) + VΘ

(
FW (I−i , Ti)

)
]+,
(3)

where [x]+ = max(x, 0), I−i and T−
i are the hardest nega-

tives corresponding to given pair (Ii, Ti) similar to VSE++
[8]. To achieve robust cross-modal retrieval, we desigin a
self-adaptive margin γ̂ instead of a fixed value in VSE++.
Ideally, the margin should put less value on the noisy pairs
and more on the clean pairs. To this end, we adjust the mar-
gin according to the similarity score:

γ̂ =
1

1 + ( si
1−si

)−τ
γ, (4)

where γ is the original margin value and τ > 0 is the pa-
rameter. This self-adaptive margin will enable the triplet
loss put more attention on the samples with high similarity
scores that possibly are clean pairs.

Meta Training Process. To ensure the reliability of the
similarity scores produced by MSCN, we utilize a small
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Figure 3. Flowchart of the proposed bi-level optimization. At each iteration, we alternately update the main net and the meta net (MSCN)
following the steps in Eq. (7) - (9).

amount clean meta-data set Dmeta = {(Ii, Ti)}Mi=1 to guide
the training, where M is much smaller than N . While
meta-learning has been extensively studied in recent liter-
ature [10, 32, 46], it remains challenging to construct the
meta-process in our objective. On the one hand, the simi-
larity features from main net can not used directly to pro-
duce loss. On the other hand, the meta-process should en-
able the output of MSCN to represent the similarity score.
To achieve this, we view a binary classification task as
the meta-process: given an image-text pair, the MSCN is
learned to determine whether the modalities correspond to
each other or not. Specifically, the positive pairs are taken
from the meta-data which contain corresponding image and
text, i.e. (Ii, Ti, yi = 1), while negative pairs are extracting
from different pairs in training set to construct mismatched
pairs, i.e. (Ii, Tj ̸=i, yi = 0). The binary labels are produced
from the data itself, and can be regarded as the ideal similar-
ity score to guide the training of MSCN. The prediction of
MSCN measures the probability of a pair being clean which
can be naturally equivalent to the similarity score. Formally,
in each iteration of training, we randomly construct M mis-
matched pairs from training set to extend the meta-data set
as D′

meta = {(Ii, Ti, yi)}2Mi=1. Then the optimal parameter
Θ∗ can be learned by minimizing the following meta-loss
calculated on meta-data:

Θ∗ = argmin
Θ

E(Ii,Ti)∈D′
meta

lmeta(Ii, Ti, yi), (5)

where lmeta(·) is cross-entropy loss [35, 37]:

lmeta(Ii, Ti, yi) = −yi · logVΘ

(
FW∗(Θ) (Ii, Ti)

)
. (6)

As illustrated in Fig. 2, despite its simplicity, our proposed
meta-process can not only enforce the MSCN to learn reli-
able similarity score but also has the following advantages:

1) previous works only guide the meta net with ground truth
data; however, we leverage both positive and negative data
as meta-knowledge that encourage the MSCN to learn dis-
crimination from them. 2) We overcome one limitation of
meta-learning methods that the lack of meta-data. We ex-
tract from different pairs among training set to construct
massive negative meta-data. Moreover, it is more suitable
to the rule of noisy correspondence, which the irregularity
of noisy data causes in various patterns.

Bi-level Optimization. Motivated by recent works [9,16,
30, 32], we use a bi-level optimization strategy to guaran-
tee the efficiency for updating our main net and MSCN.
As illustrated in Fig. 3, it is practically solved via two
nested loops of optimization. Specifically, at each itera-
tion t of training, we sample a mini-batch of training pairs
{(Ii, Ti)}ni=1, where n is the size of mini-batch. We first
update the main net parameters by taking a gradient descent
step toward the direction of triplet loss, which can be for-
mulated as follows:

Ŵ (t)(Θ) = W (t) − α

n∑
i=1

∇W ltrain(Ii, Ti)
∣∣
W (t) , (7)

where α means the learning rate. The updated Ŵ (t) can be
regard as the approximation of the optimal W ∗(Θ) at t it-
eration, containing the gradient information of Θ. Then we
update the parameters of MSCN with main net parameters
fixed. Guided by the objective loss in Eq. (5) and a mini-
batch of meta-data {(Ii, Ti, yi)}mi=1, where m is the mini-
batch size. The updated parameters of MSCN is calculated
as:

Θ(t+1) = Θ(t) − β
1

m

m∑
i=1

∇Θl
meta(Ii, Ti, yi)

∣∣
Θ(t) , (8)
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where β is the learning rate for meta-process. Finally, we
update the parameters of main net while fixing the MSCN
parameters. With the corrected similarity scores produced
by the newly updated Θ(t+1), we can update the main net
parameters W (t+1) by employing the gradient decent as:

W (t+1) = W (t) − α

n∑
i=1

∇W ltrain(Ii, Ti)
∣∣
W (t) . (9)

The above procedure proceeds in an alternating manner
to optimize the main net and MSCN until it exceeds the
maximal iteration.

3.3. Meta-Knowledge Guided Data Purification

As mentioned, our MSCN can provide corrected simi-
larity score to avoid noise. However, due to the property of
triplet loss, it remains to produce positive loss for the noisy
pairs even if we employ the ideal similarity score (e.g.,
V (F (Ii, Ti)) ≈ 0 < V

(
F (I−i , Ti)

)
+ γ̂), which results in

the model fitting to the noise. To tackle this issue, we adopt
sample selection strategy to remove the noisy data and only
use clean samples as training data. Previous works [2, 42]
motivated by the memorization effect of DNNs that clean
sample has a lower loss during the beginning of training.
Unfortunately, the triplet ranking loss is more complex, i.e.,
affected by both positive and negative samples, which leads
to sub-optimal selection results. Based on the observation
shown in Fig. 4, the clean and noisy pairs are prone to distin-
guish from the similarity scores. Gaussian Mixture Model
(GMM) is a widely used technique to model mixture dis-
tribution [15, 20]. However, we find the similarity distribu-
tion exhibits high skew toward 1 and causes a poor approx-
imation for GMM. Therefore, we fit a two-component Beta
Mixture Model (BMM) [27] of per-pair similarity score si
to better distinguish clean and noisy samples:

p(si) =

K∑
k=1

λkϕ(si|αk, βk), (10)

where K = 2 and λk is the mixture coefficient, and
ϕ(s|αk, βk) denotes the probability density function with
parameters αk, βk > 0.

We use the Expectation-Maximization [5] algorithm to
optimize the BMM, which poses a crucial challenge: the
initialization of model parameters. Existing methods typ-
ically adopt the K-Means algorithm [23] for initializing;
however, it is time-consuming (i.e., the time complexity is
O(TKN), where T is the number of iterations) and under-
performing. We thus propose a novel initialization approach
which takes the meta-data as prior knowledge. Specifically,
we fit the two Beta components with positive and negative
meta-data to model the distribution of clean and noisy pairs,
respectively. Given the similarity scores Sp = {si}Mi=1
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Per-sample Similarity
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BMM Meta

Figure 4. Per-sample similarity score distribution, estimated BMM
and BMM with meta prior knowledge under 20% noisy correspon-
dence in Flickr30K after 5 epochs warmup.

corresponding to positive meta-data, the parameters of the
component modeling clean distribution can be initialled by

αk =
(1− E (Sp))E(Sp)

2

V (Sp)
− E(Sp),

βk =
αk (1− E (Sp))

E(Sp)
,

(11)

where E(·) and V (·) are the mean and variance function, re-
spectively. The initialization of component modeling noisy
distribution is analogous but uses similarity scores Sn =
{si}Mi=1 of negative meta-data. As illustrated in Fig. 4, our
meta-knowledge guided initialization method achieves bet-
ter approximation while with lower time complexity (i.e.,
O(KM)).

Finally, we compute the posterior probability pi =
p(k|si) = p(k)p(si|αk, βk)/p(si) as the probability of i-
th simple being clean. The purified training set is defined
as:

D′
train = {(Ii, Ti) ∈ Dtrain|pi > 0.5}. (12)

At each iteration, we produce the purified dataset before the
training of our meta-learning objective. Moreover, follow-
ing [12, 15, 20], we maintain two networks {F1

W ,V1
Θ} and

{F2
W ,V2

Θ} to avoid error accumulation that one network
will produce the purified training set to train the other one.
The full algorithm is shown in supplementary material.

4. Experiment
4.1. Datasets and Evaluation Protocol

Datasets. We evaluate our method on three standard
image-text retrieval datasets. To be specific, the Flickr30K
[43] collects 31,783 images with 5 corresponding captions
each from Flickr website. Following the split in [15], we
use 1,000 image-text pairs for validation, 1,000 image-text
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pairs for testing, and the rest for training. The MS-COCO
[24] contains 123,287 images with 5 corresponding cap-
tions each. We split the MS-COCO following [15] that
113,287 image-text pairs for training, 5,000 pairs for valida-
tion, and 5,000 pairs for testing. Conceptual Captions [31]
is a large-scale dataset contains 3.3M images with one cor-
responding caption each. We employ the same subset fol-
lowing [15], i.e., CC152K. Specifically, CC152K consists
of 150,000 pairs from training set for training, 1,000 pairs
from validation set for validation, and 1,000 pairs from val-
idation set for testing. Moreover, we use an extra meta-data
set from validation containing 3,000 pairs.

Evaluation Protocol. We evaluate the retrieval perfor-
mance with the recall rate at K (R@K) metric. In a nutshell,
R@K is the proportion for the relevant items retrieved in the
closest K items to the query. In our experiments, we take
image and text as queries, respectively, and report R@1,
R@5, and R@10 results for a comprehensive evaluation.
Following [15], we average the similarity scores from two
networks at the inference phase.

4.2. Implementation Details

As a general approach, our method can be easily applied
to almost all cross-modal retrieval methods to improve ro-
bustness . For fair comparison, we chose the same network
backbones with NCR [15], i.e., the projection modules and
similarity function. For all datasets, the training processes
contain 50 epochs after a 5 epochs warmup. We employ
ADAM [17] as the optimizer for both main net and meta
net with a batch size of 64. To fit the BMM, we set the stop
threshold as 10−2 and maximum number of iterations as 10
for the EM procedure. Note that, we clamp the similarity
scores into a range of [10−4, 1 − 10−4] instead of [0,1] for
stable fitting. Moreover, we set the margin parameter as 0.2
and τ = 2 to calculate the self-adaptive margin. For all
datasets, the number of ground-truth meta-data is approxi-
mately 2% of training data, and the learning rate of main net
and meta net are initialized with 2× 10−4 and 1.7× 10−5,
respectively. For CC152K containing real noise, we employ
the validation data as the meta set due to the lack of ground-
truth data. For all experiments, we decay the learning rate
by 0.1 after 30 epochs.

4.3. Comparison with the State-of-the-Art

In this section, we conduct comparison experiments with
7 state-of-the-art methods that include SCAN [18], VSRN
[22], IMRAM [4], SGR, SAF, SGRAF [7], and NCR [15].
As Flick30K and MS-COCO are well annotated datasets,
we generate synthetic noisy correspondence by randomly
shuffling the training images and captions for a specific
noise ratio, and we conduct experiments with three different

Image to Text

Methods R@1 R@5 R@10 SUM

SCAN (ECCV’18) 30.5 55.3 65.3 151.1
VSRN(ICCV’19) 32.6 61.3 70.5 164.4

IMRAM(CVPR’20) 33.1 57.6 68.1 158.8
SAF (AAAI’21) 31.7 59.3 68.2 159.2
SGR (AAAI’21) 11.3 29.7 39.6 80.6

SGR* (AAAI’21) 35.0 63.4 73.3 171.7
NCR(NIPS’21) 39.5 64.5 73.5 177.5
MSCN*(Ours) 39.7 65.4 75.3 180.4
MSCN(Ours) 40.1 65.7 76.6 182.4

Text to Image
SCAN (ECCV’18) 26.9 53.0 64.7 144.6
VSRN(ICCV’19) 32.5 59.4 70.4 162.3

IMRAM(CVPR’20) 29.0 56.8 67.4 153.2
SAF (AAAI’21) 31.9 59.0 67.9 158.8
SGR (AAAI’21) 13.1 30.1 41.6 84.8

SGR* (AAAI’21) 34.9 63.0 72.8 170.7
NCR(NIPS’21) 40.3 64.6 73.2 178.1
MSCN*(Ours) 39.8 66.1 75.0 180.9
MSCN(Ours) 40.6 67.4 76.3 184.3

Table 1. Image-Text Retrieval Performance on CC152K with real
noise, and the best results are highlighted in bold.

level of noise ratios, i.e., 20%, 50%, and 70%. For all meth-
ods, we choose the best checkpoint on the validation set and
report its performance on the test set. Following NCR, we
also report two strong baselines based on SGR, i.e., SGR-
C and SGR*. In short, SGR-C uses only clean data for
training, and SGR* employs a pre-training process while
training without hard negatives to improve robustness. To
evaluate our method on real-world noisy data, we conduct
experiments on the CC152K, which is harvested from the
Internet and contains about 3% ∼ 20 % noisy correspon-
dence [31].

Experiments on CC152K. Tab. 1 shows the results on
CC152K with real noisy correspondence. On CC152K, our
MSCN achieves the state-of-the-art performance in terms of
all metrics. Specifically, the sum score of MSCN is 4.9 %
and 6.2 % higher than the best baseline in text and image
retrieval, respectively. In addition, we also present a more
strict comparison (denoted by MSCN*) that trained our
method with only 1,000 meta-data (approximately 0.67%
of all data). We can see that our MSCN* also achieves a
competitive performance. Specifically, all metrics except
R@1 of image retrieval are superior to the baselines.

Experiments on Flickr30K and MS-COCO. Tab. 2
shows the results on Flickr30K and MS-COCO under a
range of synthetic noise rates. Following [15], we report the
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Flickr30K MS-COCO
Image to Text Text to Image Image to Text Text to Image

Noise Methods R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

SCAN 59.1 83.4 90.4 36.6 67.0 77.5 66.2 91.0 96.4 45.0 80.2 89.3
VSRN 58.1 82.6 89.3 40.7 68.7 78.2 25.1 59.0 74.8 17.6 49.0 64.1

IMRAM 63.0 86.0 91.3 41.4 71.2 80.5 68.6 92.8 97.6 55.7 85.0 91.0
SAF 51.0 79.3 88.0 38.3 66.5 76.2 67.3 92.5 96.6 53.4 84.5 92.4

20% SGR* 62.8 86.2 92.2 44.4 72.3 80.4 67.8 91.7 96.2 52.9 83.5 90.1
SGR-C 72.8 90.8 95.4 56.4 82.1 88.6 75.4 95.2 97.9 60.1 88.5 94.8
NCR 75.0 93.9 97.5 58.3 83.0 89.0 77.7 95.5 98.2 62.5 89.3 95.3

MSCN 77.4 94.9 97.6 59.6 83.2 89.2 78.1 97.2 98.8 64.3 90.4 95.8

SCAN 27.7 57.6 68.8 16.2 39.3 49.8 40.8 73.5 84.9 5.4 15.1 21.0
VSRN 14.3 37.6 50.0 12.1 30.0 39.4 23.5 54.7 69.3 16.0 47.8 65.9

IMRAM 9.1 26.6 38.2 2.7 8.4 12.7 21.3 60.2 75.9 22.3 52.8 64.3
SAF 30.3 63.6 75.4 27.9 53.7 65.1 30.4 67.8 82.3 33.5 69.0 82.8

50% SGR* 36.9 68.1 80.2 29.3 56.2 67.0 60.6 87.4 93.6 46.0 74.2 79.0
SGR-C 69.8 90.3 94.8 50.1 77.5 85.2 71.7 94.1 97.7 57.0 86.6 93.7
NCR 72.9 93.0 96.3 54.3 79.8 86.5 74.6 94.6 97.8 59.1 87.8 94.5

MSCN 74.4 93.2 96.0 55.3 80.4 86.8 77.5 96.2 98.7 60.7 89.1 94.9

SCAN 5.6 19.3 27.4 2.2 8.0 12.8 18.1 43.1 57.4 0.3 1.3 2.3
VSRN 0.8 2.5 4.1 0.5 1.5 2.7 5.1 15.7 24.6 2.5 8.8 13.3

IMRAM 1.3 3.1 3.9 0.3 1.2 2.8 7.1 20.0 33.4 5.3 15.2 22.0
SAF 0.5 2.2 3.0 0.2 0.8 1.7 0.1 1.7 4.0 0.6 1.9 3.0

70% SGR* 17.9 42.1 51.9 14.6 31.0 40.8 35.7 71.2 85.4 31.6 65.8 79.0
SGR-C 65.0 89.3 94.7 48.1 74.5 81.1 69.8 93.6 97.5 56.5 86.0 93.4
NCR 16.1 38.5 52.8 11.0 29.5 41.4 35.4 69.5 83.4 31.5 66.4 81.1

MSCN 69.0 89.3 93.0 49.2 73.1 79.0 74.4 94.9 97.7 58.8 87.2 93.7

Table 2. Image-Text Retrieval Performance under synthetic noise rates of 20%, 50% and 70% on Flickr30K and MS-COCO 1K, and the
best results are highlighted in bold.

results by averaging over 5 folds of 1K test images. From
Tab. 2, we can draw the observation that noisy correspon-
dence remarkably affect the performance of cross-modal re-
trieval methods. The retrieval accuracy will decrease fast
with the noise rate increasing. Our MSCN is superior to the
baselines in almost all metrics under different noise rates.
In the low noise cases, i.e., 20% and 50%, our MSCN im-
proves R@1 (sum of image and text) by 3.7%, 2.2%, 2.5%,
and 4.5% in the four valuations compared with NCR. In the
high noise case, i.e., 70%, all baselines can easily overfit
to noisy correspondence and results in poor performance.
Our MSCN improves R@1 by 52.9%, 38.2%, 39.4%, and
27.3% in these four valuations compared with NCR. Even
compared with the SGR-C trained only on clean data, our
MSCN also achieves competitive performance.

4.4. Ablation Study

To evaluate the performance of the proposed components
(i.e., self-adaptive margin and data purification), we con-
duct the ablation study on the Flickr30K with 20% noisy
correspondence. Note that for MSCN without D′

train, we
only use a single model to perform the experiment. As
shown in Tab. 3, we can see that the performance with-
out γ̂ or D′

train are worse than the complete MSCN, which

indicates that all components are important to achieve ad-
vantageous results. We explain more on the data selection
strategy in the supplementary material.

Method Image to Text

MSCN w/o γ̂ w/o D′
train R@1 R@5 R@10

✓ 77.4 94.9 97.6
✓ ✓ 75.3 94.5 97.2
✓ ✓ 75.8 93.8 96.2
✓ ✓ ✓ 74.1 91.5 94.7

Text to Image
✓ 59.6 83.2 89.2
✓ ✓ 58.3 83.1 88.9
✓ ✓ 55.8 74.5 77.4
✓ ✓ ✓ 53.4 71.2 72.2

Table 3. Ablation studies on Flickr30K with 20% noise rate.

4.5. Progressive Comparison

Fig. 6 plots the average of recalls on testing set of MSCN
and NCR as training proceeds. We show a representative re-
sult using Flickr30K with 50% noisy correspondence. From
the result, we can see that our MSCN achieves a more sta-
ble performance in overall training process. Although NCR
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Figure 5. Real-world noisy examples detected by our MSCN.

does not need an extra meta-set to guide the training, it re-
lies on a clean validation set to choose the best model pa-
rameters. The stableness also indicates that our method has
better alleviated the interference of noisy correspondence.
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Figure 6. Progressive performance comparison of MSCN and
NCR on testing set as training proceeds.

4.6. Detected Noisy Samples

Fig. 5 shows some real-world noisy image-text pairs de-
tected (with low similarity score) by MSCN in Conceptual
Captions. We also present the similarity score predicted by
our MSCN. For most noisy pairs, the image and text con-
tains completely irrelevant semantic information. More-
over, our MSCN can even find the subtle mistake in the
noisy image-text pair. In the last pair, the picture shows
a man covering his ears but wrongly caption as using a mo-
bile phone. Although this picture is misleading, our method
successfully detects the subtle difference.

4.7. Visualization on Similarity Score

Fig. 7 plots the similarity score distribution predicted by
MSCN for clean and noisy training samples. It can be seen
that almost all large similarity scores belong to clean pairs,
and the noisy pairs’ scores are smaller than clean samples,
which implies that the trained MSCN can successfully pro-
vide corrected similarity scores.

5. Conclusion
In this paper, we explore a meta-learning method to

address the problem of learning with noisy correspon-
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Figure 7. Per-sample similarity distribution on training data of
Flickr30K. (a) 20% noisy correspondence. (b) 50% noisy corre-
spondence.

dence. Specifically, we propose a meta correction network
(MSCN) to provide reliable similarity scores. Our MSCN
is trained by a novel meta-process that views both positive
and negative data as meta-knowledge to encourage MSCN
to learn discrimination from them. To further mitigate noise
interference, we design a data purification strategy that uses
meta-data as prior knowledge to purify the noisy data ef-
ficiently. We conduct comprehensive experiments on three
widely used datasets. The results validate the effectiveness
of our method in both synthetic and real noises.
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