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Abstract

The deployment of perception systems based on neu-
ral networks in safety critical applications requires assur-
ance on their robustness. Deterministic guarantees on net-
work robustness require formal verification. Standard ap-
proaches for verifying robustness analyse invariance to an-
alytically defined transformations, but not the diverse and
ubiquitous changes involving object pose, scene viewpoint,
occlusions, etc. To this end, we present an efficient ap-
proach for verifying specifications definable using Latent
Variable Models that capture such diverse changes. The ap-
proach involves adding an invertible encoding head to the
network to be verified, enabling the verification of latent
space sets with minimal reconstruction overhead. We re-
port verification experiments for three classes of proposed
latent space specifications, each capturing different types of
realistic input variations. Differently from previous work in
this area, the proposed approach is relatively independent
of input dimensionality and scales to a broad class of deep
networks and real-world datasets by mitigating the ineffi-
ciency and decoder expressivity dependence in the present
state-of-the-art.

1. Introduction
The deployment of perception systems based on neu-

ral networks in safety-critical applications requires assur-
ance on their performance, notably accuracy and robust-
ness. Formal verification contributes to this requirement by
providing provable and deterministic guarantees that a net-
work meets a given specification. Typically, specifications
are mathematically expressed constraints on the network’s
intended input/output and may encode desirable proper-
ties, such as robustness to noise (including adversarial at-
tacks) [35], geometric changes [1,2], bias-field changes [14]
and beyond.

While the above is useful, practical applications require
robustness against diverse changes in a scene, including
changes in the pose of objects, viewpoints, occlusions, etc.

Such changes cannot be efficiently mathematically defined,
but may be encoded from data by using generative mod-
els. For instance, [11, 12, 28, 34] use generative models to
generate novel in-domain images for data augmentation, ad-
versarial training or evaluating network generalisation; [34]
additionally derives formal conditions for a latent space set
to necessarily contain sufficient perturbations for it to be
trusted for adversarial training and robustness checks. All
these approaches either provide statistical robustness mea-
sures, or generate attacks based on gradient-search, which
is not guaranteed to find an attack if one exists.

Popular for network robustification and empirical eval-
uation, latent space sets are seldom used as inputs for ver-
ification due to the valid concern over the lack of mathe-
matical guarantees on the completeness of the specifications
they encode. Therefore, we reiterate that this work is most
useful for changes that are difficult to mathematically de-
fine. We additionally argue that formal verification of latent
space-based specifications can be more valuable than their
empirical evaluation. This is because the latent space is a
continuous domain and countably infinite number of inputs
can be mapped to and reconstructed from a latent space set.
Therefore, no amount of testing, or search in the latent space
can provide guarantees against all the variations encoded in
it. To the best of our knowledge, only [20,27] encode speci-
fications in a latent space and propose architectures to verify
them.

There are, however, two difficulties with verification in
the latent space. The first concerns the scalability of verifi-
cation methods; the second relates to the quality of recon-
structions affecting the verification outcomes. In this paper,
we focus on alleviating these two concerns. Specifically,
we propose a novel, invertible encoder-based pipeline for
verifying latent space sets, that lends two key benefits of:
• Computational efficiency and relative independence to in-

put dimensionality,
• Verification outcomes’ independence to reconstructions,

and precise counterexamples with high recall.
We focus our analysis on pose and attribute variations in vi-
sion inference tasks, but the approach is likely extendable
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to other variations, domains and tasks. Next, we recall key
notions for network verification and discuss the existing rel-
evant work, before presenting and validating our method in
subsequent sections.

2. Background and Related Work
Neural network verification. Given a network N and

an input-output specification (Xdes,Ydes), the network ver-
ification problem is the decision problem of determining
whether

N(x) ∈ Ydes,∀x ∈ Xdes.

Verification methods, such as those based on SMT [19],
MILP [4, 10, 22], Interval Propagation [15, 16, 32, 33],
SDP [3, 29] or Lipschitz analysis [39], propagate a set Xdes
in a single forward pass through N and determine whether
or not the output set of N for Xdes lies in Ydes. These meth-
ods mostly support input specifications defined in:
• Data space, such that Xdes is a norm ball around an input
x, i.e., Bϵ(x) = {x′ | ∥x′−x∥ < ϵ}. The norm is defined
in metric spaces such as ℓp [2,16,19] or Wasserstein [36],
and the ϵ is adequately set to include intended photomet-
ric and geometric variations, albeit along with consider-
able unrealistic instances in case of large variations.

• Parameter space, such that, given an input x and a set of
transformations T , Xdes is defined by prepending para-
metric transform layers NT (α), where α determines the
transformation extent, to the network; Xdes = NT (α)(x).
This definition is more precise in capturing planar ge-
ometric changes [26] and photometric changes, such as
smooth illumination variations [14], in an input.

While these specifications are important, they do not effi-
ciently capture non-planar and semantic transformations.

LVM-based specifications. Latent Variable Mod-
els (LVMs) for data generation map a typically lower-
dimensional, continuous latent distribution to the input
space. This mapping and its converse is learnt by LVM’s
decoder-encoder pair. Additionally, conditional training can
disentangle latent dimensions to precisely capture specific
dataset features and variations [5, 7, 23]. We refer to spec-
ifications which use LVM encoders to map input variations
and define query input sets as LVM-based specifications.

Related work. As mentioned in Section 1, most for-
mal verification approaches do not use generative models.
Only [20, 27] use an autoencoder in a verification setup to
prove whether or not the output of a network N is consis-
tent for the image set produced by an independent autoen-
coder (e, d) from the interpolations in its latent space. For-
mally, [27] establishes whether

(N ◦ d) ◦ e(x) ∈ Ydes,∀x ∈ {X | e(X ) ∈ Zdes},

where Zdes ∈ Rlatent dim is a segment joining latent en-
codings of samples in Xdes. Since propagating Zdes through

a useful decoder is computationally expensive, determinis-
tic verification using this approach is reported to not scale
beyond small networks. To overcome this, the authors a)
heuristically subsume and approximate line segments by
axes-aligned boxes, and b) turn specifications into proba-
bilistic statements that determine whether a vector sampled
uniformly from Zdes generates a correctly classified image.

The general approach of prepending a generative model
as an independent input set generator for verifying a
network, which we henceforth refer to as the Encoder-
Decoder-Network (EDN) approach, suffers from the fol-
lowing limitations:
1. The network is verified only against images appropri-

ately mapped by the encoder, but the encoding could be
loose (z ∈ Zdes ≠⇒ e−1(z) ∈ Xdes) and incomplete
(x ∈ Xdes ≠⇒ e(x) ∈ Zdes).

2. The network is verified against reconstructions of the
decoder which may not have the same quality as the
dataset images in terms of sharpness and diversity. If
the decoder does not reconstruct an intended attribute’s
variations, either because all variations of that attribute
are encoded to the same latent vector, or because it is not
expressive enough, verification may incorrectly suggest
that the network is invariant to that attribute.

3. The input set Zdes is propagated through both the de-
coder and the network to be verified, thereby resulting
in considerable computational cost.

In the rest of the paper, we propose a pipeline for verifying
LVM-based specifications in a computationally lighter man-
ner, and alleviate the last two shortcomings by construction.
We do not solve the first limitation; but in Section 5.4, we
present metrics to quantify the precision of the proposed
specifications in terms of how well they capture the desired
variations.

3. Efficient Verification in Latent Space

In this section we present an efficient approach to ver-
ify the robustness of neural networks against specifications
capturing diverse and realistic input variations. Formally,
given a network N and a variation v, we define the Seman-
tic Verification Problem (SVP) as the network verification
problem where Xdes is the preimage of a set Zdes under a
partially invertible encoder e:

N(x) ∈ Ydes,∀x ∈ {X | e(X ) = Zdes}.

Here, Zdes is a set in the encoder’s output space that cap-
tures v and the input-output specification set is (Zdes,Ydes).
In the following, we study the Semantic Robustness Verifi-
cation Problem (SRVP), which is an instance of SVP that
checks for network robustness, i.e., Ydes is a singleton. To
solve SRVP, we propose the multi-head architecture shown
in Figure 1.
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Figure 1. The proposed pipeline consists of an LVM, built around
the network to be verified, that takes the network’s intermediate
features as its input. The LVM encoder is invertible and maps its
input feature set to a spatially coherent latent manifold, where the
input specification is defined.

Verification pipeline. The network N to be verified is
divided into a Feature Detection Network (FDN), consisting
of N ’s initial layers, and a task head, e.g., a classification
or regression head. In our implementation, N is a classifier,
but the approach applies similarly for other learning tasks.
To define the specification, we add an LVM after the FDN.
The encoder of this LVM is invertible and maps the inter-
mediate features, output by FDN, to its latent space where
the input specification is defined. Unlike the feature space,
this latent space is queryable by using the decoder and can
be made approximately bounded.

The verification path with this pipeline is limited to the
inverse of LVM’s encoding head and N ’s task head (green
region in Figure 1). Differently from previous work, the de-
coder here is only used for training the LVM and as a coun-
terexample generator to provide semantically meaningful
counterexamples when verification outcomes are negative.

Specification inputs in latent space. We consider spec-
ifications focused on encoding the network’s invariance
to changes in an object-of-interest in the input. These
changes include non-planar transformations, specific se-
mantic changes of the object or its arbitrary task-orthogonal
variations commonly occurring in the dataset. The learn-
ing tasks and datasets where the objects-of-interest and their
variations are discernible against unimportant content in the
input are well suited for such specifications.

We now describe the definitions we consider for the local
latent space set Zdes against which the network is verified.

• Segment. We define Zdes to be a path connecting the
encodings of two images {x1, x2} that differ in the in-
tended attributes or transforms (e.g., images of an object
with different poses or backgrounds). Multiple defini-
tions for Zdes are possible based on the traversal between
the pair encodings, such as the maximum likelihood-
based traversal [24], splines using multiple interme-
diate encodings, etc. With the Shortest Length Path

(SLP), we get

Zdes = e(x1) + α (e(x2)− e(x1)) , α ∈ [0, 1]latent dim.

This Zdes is highly expressive since, in general, the im-
age pair can be of any two images whose semantic inter-
polations should be consistently predicted by a network.

• Axis. We define Zdes to be the set generated by varying
an encoding’s disentangled dimensions, such as those
trained to capture variations of a specific attribute or a
single degree of freedom for pose change. For example,
we may consider

Zdes = [max{zl, e(x)i− ϵ},min{e(x)i+ ϵ, zu}], i ∈ IC

where IC is the set of conditional dimension indices
and [zl, zu] are the limits containing a significant per-
centile of the distribution along these dimensions.
Given conditional training, this Zdes can capture all

variations of an image generated by an attribute or trans-
form change, even when this image has no similar vari-
ations present in the dataset.

• Region. We define Zdes as a ℓ∞-norm ball around an
image encoding, i.e., Bϵ(z) = {z′ | ||z′−e(x)||∞ < ϵ}.
Given a spatially coherent manifold, Zdes should capture
the commonly occurring variations of an image.

The rest of our method is independent of the choice of Zdes.
Note again that since the specifications cannot be guaran-

teed to be complete by construction, we empirically ascer-
tain Zdes to be sufficiently capturing the intended variations
using metrics presented in Section 5.4. Also note that [34]
gives theoretical guarantees that local epsilon balls in a suf-
ficiently trained Conditional VAE’s latent space, necessar-
ily generate sufficient instances of local input perturbations.
This further validates the use of Axis and Region queries
for formal robustness checks and the use of VAEs as the
LVM in our pipeline (details in the next section). The spec-
ifications can also be systematically inspected by means of
sample reconstructions, representative results for which are
shown in Figure 2.

Verification. Having formally defined Zdes to capture
a variation v, the SRVP becomes a standard verification
problem for a network composed of the inverted encod-
ing head and the original network’s task head. This prob-
lem can be solved by any standard NN verifier; we use
VeriNet [15,17], an open-source linear programming-based
verification toolkit. The invertibility of the encoding head
is necessary to guarantee that the feature vectors that map
to Zdes are contained in the bounds of feature space set ob-
tained during verification. In our queries, the output con-
straints Ydes encode invariance of N to v. When the query
outcome is negative, the verifier provides a counterexample
in Zdes which is then mapped to a counterexample in input
space using the decoder. This ideally gives an instance of v
against which the network is incorrect (see Section 5.3 for
details).
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x Bϵ=0.1(e(x)) x Bϵ=0.3(e(x))

(a)

(b)

Attribute change:
Beard Eyeglasses

Hair color change:
Blond-Brown-Black-Grey

Pose changes:
Distance | Elev.∠ | Azimuth ∠
Closer→ 30◦ 60◦ 0◦ 30◦ 60◦ 90◦120◦150◦180◦210◦240◦270◦300◦330◦

Shear: left to right→ | Object rotation: CW→ | Distance: closer→

(c)

Figure 2. Reconstructions by our LVMs for Region specifications in (a), Segment specifications in (b) and Axis specifications in (c). (a)
shows variations sampled from ϵ-balls around an image encoding; notice how a larger ϵ captures more varied changes of the input. The
middle columns in (b) show reconstructions of samples from a segment joining the encodings of the dataset images in outer columns. In
(c), all images are reconstructions and can be seen undergoing changes as specified conditional dimensions are varied.

Discussion. We evaluate the approach experimentally in
Section 5; below we analyse it against the last two short-
comings of the EDN approach discussed in Section 2.

1. Observe that this approach directly verifies network
features corresponding to latent space sets defined by
mappings of the original images, rather than the recon-
structed images. Thus, the pipeline ensures that the net-
work is tested against at least the original image(s) that
form the basis of a specification. Notice from Eq. 2,
that this is not the case with the EDN approach if the
decoder is not the exact inverse of the encoder. More-
over, since the encoding head is invertible, variations of
an image mapping onto the same latent vector directly
implies the stability of the network against these varia-
tions. Therefore, a many-to-one mapping is not a bar-
rier for our approach, whereas it leads to insufficiently
diverse input specifications with the EDN approach.

2. The proposed approach employs shorter paths for ver-
ification than the EDN approach. Since the encoding
head is invertible, a latent space set need not be passed
through the decoder and original network to obtain its
corresponding feature set, and since most verification
methods have an exponential complexity dependence
on the number of unstable activations, the exclusion of
the high-dimensional decoder and initial network lay-
ers from the verification path allows this approach to
scale more favourably than the EDN approach.

A concern over the proposed approach could be that the
network to be verified is partly used to define the input spec-

ification that it is verified for. However, consider the FDN-
encoding head pair as an independent encoder, and the en-
coding head inverse as a compute efficient analogue of the
decoder-FDN pair in the EDN pipeline. From this perspec-
tive, the proposed approach is identical to the traditional
EDN-based approaches for robustness validation. Addition-
ally, the proposed approach benefits from:

• Added flexibility to use a deep decoder for manifold
learning and sharper counterexample generation with-
out impacting verification outcomes. Verification also
ensures maximal recall in finding counterexamples as
opposed to a gradient search-based approach.

• Relative flexibility in choosing the network layer after
which the encoding head is added and thereby, how
many of the network’s posterior layers feature in the
verification path. This decision can depend on the scal-
ability and implementation support of the chosen ver-
ification backend or the feasibility of learning a latent
space of given dimensionality (see Section 5.2).

• Independence with respect to the FDN architecture’s
depth and type (residual, recurrent, non-standard con-
volutional, etc.), and possibly to input dimensionality1,
leading to an easier extension of the verification ap-
proach to newer architectures.

1Independence to input dimensionality is conditional on the nature of
the FDN and its last layer being fully-connected (fc); however, since most
vision inference tasks, such as classification, regression and detection, in-
volve dimensionality reduction and network’s posterior layers are usually
fc, the specification input dimensionality can almost always be made lower
than that of input data.
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4. Implementation
In this section we describe our implementation of the

proposed verification pipeline [13].
Encoding head. In terms of design choices, all com-

mon LVMs for data generation, including VAEs, Normalis-
ing Flows (NFs) and GANs, can be used in the pipeline if
the following holds:

• The FDN of the network to be verified can serve as the
backbone of the LVM encoder (e.g., if the FDN involves a
dimensionality change then NFs cannot serve as the LVM).

• The verification backend can verify the inverted encoding
head of the pipeline.

Given any LVM, Zdes is defined in the output space of the
LVM encoding head in ways described in Section 3. A VAE
fits the pipeline particularly well given the backing of the
theoretical analysis in [34], and as it regularises the under-
lying latent space to resemble a prior. This prior (normal,
von Mises-Fisher distribution in N -VAE [21], S-VAE [8]
resp.) is light-tailed, so the latent space can be approxi-
mately bounded or truncated, and the epsilons in our speci-
fications have bounded domain. Note that the latent variable
z in a VAE is not the output of the encoder but a random
variable conditioned on its outputs (µ, σ ∈ Rlatent dim) by
reparameterisation [21]. Since reparameterisation cannot be
inverted, Zdes is defined using the vector [µ, σ] instead of z,
albeit with no change in Zdes.

In contrast, GANs do not use an encoder to learn a latent
distribution and instead take a prior distribution as input.
However, when using a GAN as the LVM, we still add an
encoding head after the FDN to transform the unconstrained
FDN output to a desired prior for the GAN and define input-
parameterized local specifications.

LVM design. As discussed previously, our pipeline fea-
tures an encoding head after the FDN of the network to be
analysed. Since the encoding head must not undergo dimen-
sionality change, the dimension of the flattened FDN output
is the dimension of the encoding head layers and the latent
space where the input specification is defined. Typically, a
shorter FDN implies larger latent space dimensionality and
verification involves more network layers.

We use two types of feed-forward encoding heads:
one consists of pairs of an invertible activation and fully-
connected (FC) layers; the other consists of alternating
affine-coupling layers [9]. The former is easier to train
and supported by most NN verifiers, but its invertibility to
sufficient precision needs to be validated by checking the
singular values of the individual layers’ weight matrices.
Affine-coupling layer is invertible-by-construction but not
supported by standard NN verifiers. To support its ver-
ification, we replace its typically input dependent scaling
and translation unit with an input independent learnt vector
and an FC layer respectively. This modified affine-coupling
layer is equivalent to an FC layer in expressiveness, but is

more challenging to train.
One can increase the encoding head depth with the pairs

described above until the LVM is adequately trained; in
our experience, a single layered encoding head sufficed for
good reconstructions. The decoder is always a deep upscal-
ing network mirroring the pipeline encoder.

LVM training. In addition to the negative log likeli-
hood or GAN loss, we conditionally train latent dimen-
sions [5, 23] for Axis specifications. We use Cross-Entropy
(CE) loss for discrete attributes. For instance, we train one
dimension with binary CE loss so that [0, 1] for this dimen-
sion corresponds to variations from no attribute to com-
plete attribute. Note that we cannot use the common con-
ditional generation approach of augmenting encodings with
attribute labels [31] because the entire encoding must be
inferred from the FDN output for invertibility. Therefore,
differently from usual practice, our VAEs for conditional
generation do not take attributes as priors to condition on
but rather learn them with supervision from data.

Continuum in transformations is important when veri-
fying against pose changes, which CE loss may not pro-
vide. Therefore, dimensions capturing continuous changes
are trained as graphics code as per the procedure in [23].

Note that it may not be possible to train an LVM by
adding an encoding head to the extreme end of every net-
work, as network’s task-agnostic information may be lost
till that layer. However, if an LVM can be trained by adding
an encoding head after the Kth network layer, it is inexpen-
sive to train a new LVM from after the (K − k)th, k > 0,
layer, with the frozen original network.

Datasets preparation. To train the LVMs for our ex-
periments, we used public datasets with custom dataload-
ing to have attribute and transform labels for every input.
We only used datasets for which realistic variations can be
produced with labels, as it is required for conditional train-
ing and forming precise queries for pipeline evaluation (see
Section 5.4). We worked with five datasets: CelebA [25],
Traffic Signs Recognition (TSRD), 3D Objects (3DOD),
(Fashion)MNIST [38]. For TSRD, we took traffic signs and
city scene crops, apply planar (rotation, scale, photometric)
and spatial (perspective) transformations on the former and
blend them into the latter during dataloading. For 3DOD,
we took 3D models from ModelNet10 dataset [37] and ren-
der their images from different distances, azimuth and ele-
vation angles in Blender [6]. For all trainings, the dataset
was balanced such that every class had adequate samples of
the variation being verified against.

5. Experimental Analysis
We report on our experiments to validate the proposed

approach, with focus on answering three key questions:
Q1. Can an LVM added to a classifier generate an appro-

priate latent manifold and good reconstructions?
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Q2. Can the proposed pipeline efficiently verify deep net-
works?

Q3. Can the specifications, discussed in Section 3, encode
intended input variations?

To assess Q1, we refer to the reconstructions presented in
Figure 2 and the low values of mean reconstruction error
and FID score [18] reported in Table 1. To assess Q2, we
refer to the verification outcomes for deep networks of dif-
ferent architectures reported in Sections 5.1, 5.2. To assess
Q3, we refer to the values of metrics quantifying the preci-
sion of a specification in capturing intended variations, dis-
cussed in Section 5.4. With this overview, we now discuss
the experiments in greater detail.

5.1. Verifying segments joining input encodings

To verify robustness against variations reflected in an
image pair, we generated Segment specifications capturing
object pose and viewpoint changes. For CelebA, we also
verify specifications capturing the classifier’s invariance to
task-orthogonal attributes. These queries are similar to the
queries in [27] which uses the EDN approach and reports
successful deterministic verification of 23.8% queries for a
ConvMed model with 64k activations. Based on the classi-
fier layer separating the FDN and task head, multiple veri-
fication pipelines were trained for each classifier. The veri-
fication outcomes for all queries and pipelines are reported
in Table 1, from which the following observations can be
drawn:

• The mean reconstruction errors and FID scores for the
multiple SRVP pipelines per classifier are low with
consistent verification outcomes, indicating that latent
spaces of a considerable range of dimensionality can be
successfully learnt and verified against.

• The SRVP pipelines require an order of magnitude less
time than the EDN pipelines to solve safe queries, and
produce fewer trivial output bounds or undecided cases.
This remains the case with the inclusion of more net-
work layers in the verification path.

• The verified robust accuracy tightly lower bounds the
adversarial accuracy computed against gradient-ascent-
based latent space interpolation attacks [28].

5.2. Verifying along latent dimensions

As discussed in Section 3, Axis specifications can be
used to verify an input against the entire range of a task-
orthogonal change (e.g., style, or pose). Figure 3 shows rep-
resentative results for verifying these specifications where
the local input set is increased for individual latent dimen-
sions of an encoding. For many inputs, conditional dimen-
sions were verifiably robust for almost their entire range,
while dimensions without conditional training were found
to be robust for much smaller epsilons. Decoded sam-
ples from latent dimensions in Figure 4 corroborate these

outcomes. The object class change was not observed for
all non-conditional dimensions, but conditional dimensions
were more consistent in preserving the object class. How-
ever, with increase in latent dimensionality, as with a shorter
FDN, it became harder to balance the conditional and stan-
dard LVM training to achieve both good reconstructions and
distinct attribute changes with class consistency. This ex-
plains the reduced transform detections for higher dimen-
sional manifolds reported in Figure 3. In Section 5.4, we
present a validity metric to assess the success of conditional
manifold training and in turn, derive expectation on the use-
fulness of Axis specifications defined in the manifold.
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Figure 3. Both graphs show mean percentage of Axis queries veri-
fied as safe (out of 200 tested) for local intervals of ±ϵ for LVMs of
different latent dimensionality. The percentage of reconstructions
of samples along the conditional axes, around the ϵs reported on
the x-axis, in which a learnt transform detector detects the intended
transform, is also plotted. The axes were trained with (B)CE loss
with 0,1 mapping to the base and the attribute added image resp.

Left shear

Right shear

Rot. CCW

Azim -120◦

Azim -60◦

Azim 0◦

Figure 4. All images above are generated by an LVM from a sin-
gle image per dataset. The columns feature samples along non-
conditional dimensions, and each row has a constant conditional
axis value which enforces rendering of the specified transform in
all its reconstructions.

In case of Region specifications, where the local ep-
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Dataset Verifying Network Accuracies∗ Pipeline∗∗ Verification outcomes (100 std.safe queries) Recons.outcomes
(size) inv. to * Std. Adv. Type #Ver.actv.layers (actvs.) Safe(s†) Unsafe(s) Undec.(s) Rob.acc RMSerr⋆ FIDscore

Runs for efficiency comparison of EDNs (with decoders of different depths) vs. SRVPs (with encoding heads after different n/w layers).
CelebA

Head Flip

64.2% EDtinyN-32 8 (5k) 61 (6.8) 39 (3.94) 0 56% 0.064 218.61
65% EDdeepN-32 9 (27k) 64 (22.3) 29 (31.6) 7 (64) 59% 0.053 107.42

(64x64) ConvSmall 92% 69% EDresnet18N-32 11 (0.2M) 0 42 (370) 58 (802) 0% 0.051 89.62
(6k ReLUs) 91% SRVP Lin1-32 1 (64) 99 (0.4) 1 (0.01) 0 91% 0.058 114

89% SRVP Lin1-64 2 (192) 94 (0.5) 6 (0.02) 0 85.5% 0.042 112
87% SRVP Lin1-192 3 (576) 88 (1.1) 12 (0.08) 0 81% 0.035 105

(gender cla.) 89% SRVP Lin1-392 4 (1.3k) 91 (2.7) 9 (0.11) 0 84% 0.031 102
74% EDtinyN-32 8 (86k) 59 (32.8) 41 (20) 0 56.6% 0.07 264
81% EDdeepN-32 9 (0.1M) 66 (35.3) 22 (23.5) 12 (64) 63% 0.06 223

(128x128) ConvBig 96% 77% EDresnet18N-32 11 (475k) 0 21 (410) 79 (816) 0% 0.06 124
(72k ReLUs) 93% SRVP Lin1-64 1 (64) 95 (0.4) 5 (0.07) 0 91% 0.23 252

95% SRVP Lin1-192 2 (256) 96 (0.8) 4 (0.09) 0 92% 0.15 225
94% SRVP Lin1-392 3 (648) 96 (1.9) 4 (0.11) 0 92% 0.04 202

SRVP runs with encoding heads of different dimensions for different n/w architectures and datasets
(64x64) ResNet18 84% 82% SRVP Lin1-256 1 (512) 95 (2.6) 5 (0.1) 0 80% 0.022 104
TRDS Planar Pose ResNet18 92.5% 91% SRVP Lin1-256 2 (1k) 96 (2.1) 4 (0.21) 0 89% 0.03 116
(64x64) (sign cla.) 89% SRVP Lin1-1024 2 (1.5k) 94 (3.8) 6 (0.46) 0 87% 0.03 106

MobileNetv2 82% 78% SRVP Lin1-640 1 (640) 93 (2.1) 7 (0.42) 0 76% 0.09 133
3DOD Spatial Pose ResNet18 97% 94% SRVP Lin1-256 2 (1k) 94 (1.9) 6 (0.2) 0 91% 0.04 106
(64x64) (obj cla.) 90% SRVP Lin1-1024 2 (1.5k) 92 (4.7) 8 (0.45) 0 89% 0.02 98

∗ Std. and Adv. accuracy are the network’s accuracy against clean, augmented data and latent-space PGD attacks [28] (α=2e-3,
#iters=2000) resp. The PGD attacks are found for N ◦ d(z) in EDN pipelines and e−1 ◦Nhead(z) in SRVP pipelines for z ∈ Zsegment.
∗∗ The suffixed integer in the pipeline type is the dimensionality of its latent space and is equal to its verification input. Higher dimensions
for a SRVP pipeline for the same network indicate an earlier split and the inclusion of more layers in the verification path.
† Seconds (s) reported are the mean query solving time. All queries were run on a 24 core, 256GB CPU with timeout of 60 or 800 seconds.
⋆ The reconstruction error is per-pixel for normalised float [-1,1] images. The FID score is computed by using pytorch-fid package [30].
All pipelines for the same network were trained until comparable reconstruction outcomes, were tested for the same queries using the same
backend and use N -VAE as the LVM so that all of them have an approximately normal latent manifold distribution.

Table 1. Verification results for Segment queries; representative specification inputs for the above are shown in Figure 2b.

silon ball is increased uniformly in all latent dimensions,
we could verify robustness for a maximum ϵ = 0.01 (for
<10% queries) for SRVP Lin-32 pipelines.

5.3. Counterexamples analysis

Counterexamples are instances of the input specifica-
tion set that falsify the robustness property under investi-
gation. In our approach, the verifier finds a latent space
counterexample z∗ ∈ Zdes for every unsafe query such that
Nhead ◦ e−1(z∗) demonstrates non-robustness. However,
since the LVM decoder is not the exact inverse of its en-
coder, the decoded counterexample could be spurious, i.e.,
N ◦ d(z∗) may not be a counterexample. Therefore, we
decode every z∗ and label it a valid counterexample iff its
reconstruction is also a counterexample for the network.

Similar to [16], in the case of a spurious counterexample
z∗, we run a local gradient search for a valid one, taking
z∗ as the starting point. In comparison to starting from a
mapped vector, this local gradient-based search around z∗

takes much fewer iterations to reach a valid counterexample
in most cases, and results in high precision in finding valid
and in-domain counterexamples (see Figure 5).

Dataset Valid-to-all Valid-to-all ceg. ratio-w-PGD search
ceg. ratio (full search #iters, refinement #iters)

CelebA 0.34 1 (174, 2.75)
TRDS 0.85 0.92 (385, 11)
FMNIST 0.7 0.96 (150, 9.6)

Male (Female)

Chair (Table)

No right
(No U-turn)

Old (Young)
Change:Glasses

Male (Female)
Change:Gender

Figure 5. The table reports the mean ratios of valid counterex-
amples (ceg.) to all cegs found by SRVP pipelines for net-
work Nhead ◦ e−1 through verification of 100 Segment queries,
with and without PGD-based search in the second and third col-
umn resp. The full search and refinement iterations are median
PGD iterations of step-size 1e-3 for success in the latent/attribute
space attack [28] and in the local search for a valid ceg around a
verification-returned spurious ceg resp. Rows in the figure below
show reconstructions for some unsafe Segment and Axis queries
with their valid cegs in the rightmost column.
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5.4. Validating the LVM based pipeline

Having assessed the capabilities of our approach in terms
of scaling to deep networks and the fidelity of returned
counterexamples, we now evaluate its precision in suffi-
ciently capturing the intended variations in the proposed
specifications. For this, we consider two latent space-based
validity metrics as described below.

The assumption behind Segment specifications is that the
in-domain interpolations of an image pair map to the inter-
polations of its encoding pair. To validate this, we measure
the distance of the encodings of the desired interpolations
of an image pair to the path joining its encoding pair. In
practice, for validating pose invariance queries, we generate
images with varying extents of a transform, construct a path
between the encodings of the image pair with the most ex-
treme mutual transform, and compute the distance between
the encodings of the intermediate transforms and their pro-
jection on this path. This distance is divided by square-root
of latent dimensionality to generalise across manifolds of
different dimensions. We compute this metric for the fol-
lowing pairs of encoding paths and VAE manifolds used in
our pipelines, and report its mean value distribution below.
1. Shortest Length Path (SLP) + untrained normal distri-

bution manifold (baseline),
2. SLP + N -VAE,
3. SLP + N -VAE trained with a latent space-based cycle

consistency loss that encourages its encoder-decoder to
be an inverse pair,

4. Real-vs-fake discriminator-guided path + N -VAE.

0.3 1 2 >3.

0

0.25

0.5

0.75

1
TRDS FMIST 3DOD

Normalised histogram of distances of intermediate transform
encodings to Zdes, i.e., d(e(xi), projZdes

e(xi))/
√
m, e(.) ∈ Rm.

SLP+untrained N (0, 1) manifold
SLP+NVAE

SLP+NVAEcyc.loss
Disc+NVAE

In comparison to the primitive baseline, the metric values
with N -VAEs are low for most queries as desired, and fur-
ther reduce on incentivising consistency in their mappings,
as in 3., and making the encoding traversals more precise
and segmented, as in 4. Although we do not observe no-
table changes in the verification outcomes with different N -
VAEs, this metric could be used to guide the construction
of input specifications. Notice that this metric is the latent
space-based analogue of the pixel space distance used to de-
fine input specifications and evaluate generators for EDN-
based verification [20].

The motivation behind Axis specifications is the disen-

tanglement of conditional dimensions in capturing specified
variations. To assess disentanglement, we compute the ratio
of the highest value among the incorrect conditional dimen-
sions to the value of the correct conditional dimension of an
encoding for a discrete attribute. For the continuous trans-
forms encoded as graphics code [23], an equivalent metric
is the ratio of the maximum variance among the incorrect
conditional dimensions to the variance in the correct condi-
tional dimension, computed for a batch of encodings. Be-
low we report the mean value distribution of this metric for
normally and conditionally trained N -VAEs. As expected,
conditional training results in low metric values as desired,
while normal training results in similar values for most di-
mensions and metric values closer to unity.

0.3 1 2 >3.

0

0.5

1

Normalised histogram of maximum incorrect-to-correct
dimension ratios for conditionally trained LVMs.

Numbers in the legend entries denote manifold dimensionality.

TRDS uncond. cond.256 cond.1024
FMNIST uncond. cond.32 cond.192

3DOD uncond. cond.256
CelebA uncond. cond.64

These latent space-based metrics are more relevant to
our approach than the pixel space-based or the attribute
detection-based analyses relevant to the EDN approach.
This is because the effectiveness of verification with our ap-
proach depends more on the spatial coherence and precision
of the LVM encodings, than its reconstruction capabilities.

6. Conclusions
In this work we introduced an efficient and precise ap-

proach for verifying specifications in the latent space. By
means of the proposed approach, we could effectively as-
sess and verify deep networks against pose changes, and
provide counterexamples that inform of their fragilities.

In terms of limitations, we discussed that the ease of
learning a conditional latent manifold, and the computa-
tional gains of our verification approach can be affected by
the increase of layers in the network head of our pipeline.
However, since the largest activation layers can be excluded
from the verification path with our approach, it still fares
better than the existing approach. A general limitation of
latent-space based verification approaches is their necessity
for an adequate LVM, which, as discussed for our approach,
may require the original network to be trained as part of
the proposed pipeline. While we did not find these limita-
tions to hinder the application of our approach to the practi-
cal usecases demonstrated in this work, further experiments
should be conducted to better assess its generality.
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