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Abstract

Video-text retrieval is an emerging stream in both com-
puter vision and natural language processing communi-
ties, which aims to find relevant videos given text queries.
In this paper, we study the notoriously challenging task,
i.e., Unsupervised Domain Adaptation Video-text Retrieval
(UDAVR), wherein training and testing data come from dif-
ferent distributions. Previous works merely alleviate the
domain shift, which however overlook the pairwise mis-
alignment issue in target domain, i.e., there exist no se-
mantic relationships between target videos and texts. To
tackle this, we propose a novel method named Dual Align-
ment Domain Adaptation (DADA). Specifically, we first in-
troduce the cross-modal semantic embedding to generate
discriminative source features in a joint embedding space.
Besides, we utilize the video and text domain adaptations
to smoothly balance the minimization of the domain shifts.
To tackle the pairwise misalignment in target domain, we
propose the Dual Alignment Consistency (DAC) to fully ex-
ploit the semantic information of both modalities in target
domain. The proposed DAC adaptively aligns the video-
text pairs which are more likely to be relevant in target do-
main, enabling that positive pairs are increasing progres-
sively and the noisy ones will potentially be aligned in the
later stages. To that end, our method can generate more
truly aligned target pairs and ensure the discriminability of
target features. Compared with the state-of-the-art meth-
ods, DADA achieves 20.18% and 18.61% relative improve-
ments on R@1 under the setting of TGIF→MSR-VTT and
TGIF→MSVD respectively, demonstrating the superiority
of our method.

1. Introduction

Video-text retrieval enables users to search videos with
a simple and natural language description. The de facto
paradigm is to learn high-level visual-textual embeddings
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Figure 1. Illustration of the proposed method. Previous meth-
ods simply bring source and target features closer (blue and red
ovals are overlapping each other), whereas inevitably mixing tar-
get videos (red circles) and texts (red triangles) together, ignoring
whether they are semantically relevant or not. Instead, our method
exploits the semantic structures in target domain to adaptively gen-
erate truly aligned video-text pairs (dotted circles) and ensure the
discriminability of target data. Best viewed in color.

by off-the-shelf feature extractors, and to measure semantic
similarities in a joint embedding space [13, 42, 46, 63]. De-
spite their thrilling success, the primary assumption is that
training and testing data come from the same distribution,
which whereas may not hold in real scenarios.

To alleviate the domain shift problem, Unsupervised Do-
main Adaptation (UDA) has gained a lot of attention due to
its efficient training without the need of supervision in target
domain. UDA transfers knowledge from a labeled source
domain to an unlabeled target domain [15, 33, 40, 41, 53],
which has made remarkable progress in many fields, such as
image classification [33, 56], autonomous driving [54, 55],
medical image processing [35, 36], and video-based action
recognition [50,52]. However, these methods are originally
designed for classification tasks, which might not be suit-
able for the video-text retrieval.

Note that in UDA Video-text Retrieval (UDAVR), there
exists no identical label set for source and target do-
mains. The only supervision is the semantic relationship in
source dataset, which is also the general setting for UDA
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cross-modal tasks [4, 11, 62, 64]. To that end, some ap-
proaches have been recently proposed [9, 17, 39], such as
directly minimizing the distribution discrepancy [17], dis-
tilling knowledge from the source domain [9], or introduc-
ing pre-defined prototype assignments [39]. However, they
overlook the pairwise misalignment issue in target domain,
i.e., there exist no semantic relationships between target
videos and texts. Merely alleviating the video and text do-
main shifts is a sub-optimal solution, which fails to fully
explore the semantic structures of target data, i.e., whether
the video-text pair is semantically relevant or not. As illus-
trated in Fig. 1, previous methods bring the learned source
and target features close together, which whereas inevitably
mixes up target videos and texts, ignoring whether they are
a truly relevant pair or not. This will further induce less dis-
criminative target features, and thus becomes the motivation
of our work.

In this paper, we propose a novel method named Dual
Alignment Domain Adaptation (DADA) to tackle the pair-
wise misalignment issue in target domain. We first in-
troduce the cross-modal semantic embedding to generate
discriminative source features in a joint embedding space,
where semantically relevant pairs should lie close together
and vice versa. To alleviate the domain shift, we further
utilize a smooth adaptation procedure to balance the min-
imization of distribution shifts between source and target
domains. Last but not least, to tackle the pairwise misalign-
ment in target domain, we propose a simple yet effective
Dual Alignment Consistency (DAC), which fully exploits
the semantic information of both modalities in target do-
main. The proposed DAC adaptively aligns the video-text
pairs which are more likely to be relevant in target domain,
enabling that (1) positive pairs are increasing progressively,
(2) the noisy ones will potentially be aligned in the later
stages and (3) the discriminability of target features. Ex-
tensive experiments on several benchmarks demonstrate the
superiority of our method.

The contributions of this paper are mainly threefold:

• To tackle the pairwise misalignment problem in
UDAVR task, we develop a novel method named Dual
Alignment Domain Adaptation (DADA) which fully
exploits the semantic structures of target data.

• The proposed Dual Alignment Consistency (DAC)
mechanism adaptively aligns the most similar videos
and texts in target domain, ensure that the positive
pairs are increasing progressively and the noisy ones
are potentially aligned in later stages.

• Compared with the state-of-the-art methods, DADA
achieves 20.18% and 18.61% relative improvements
on R@1 under the setting of TGIF→MSRVTT and
TGIF→MSVD respectively, demonstrating the supe-
riority of our method.

2. Related Work
Video-Text Retrieval. In recent years, cross-modal

embedding-based approaches [2, 10, 20, 26, 27, 37, 47, 58]
have emerged as a dominant paradigm for video-text re-
trieval. [48] proposes the JEMC framework using action,
object, text and audio features by a simple concatenation
fusion strategy. CE [37] adopts video features extracted
from all modalities to encode a video. T2VLAD [59] au-
tomatically learns text-and-video semantic topics and re-
emphasizes the importance of local semantic alignment be-
tween texts and videos. HGR [10] proposes a Hierarchical
Graph Reasoning (HGR) model, which decomposes video-
text pairs into global-to-local levels. GPO [5] learns to
automatically adapt itself to the best pooling strategy for
different baselines. Recently, the Contrastive Language-
Image Pretraining (CLIP) [3] model is widely used in video-
text retrieval [24, 31, 38, 45]. CLIP4Clip [43] investigates
three mechanisms of similarity calculation based on the pre-
trained CLIP. Similarly, CLIP2video [18] focuses on the
spatial semantics captured by the CLIP model. Different
from them, we explore the video-text retrieval task through
the lens of unsupervised domain adaptation.

Unsupervised Domain Adaptation. UDA transfers
predictive models from a fully-labeled source domain to
an unlabeled target domain. Existing classification-based
UDA methods seek to alleviate the domain shift between
source and target domains [15, 22, 33, 40, 41, 56, 60]. Be-
sides, UDA methods have been extended to various video-
based tasks, like video action recognition [6, 12, 49], video
segmentation [7, 8] and video localisation [1]. Recently,
some cross-modal tasks also resort to UDA and try to utilize
the unpaired data in target domain, such as image caption-
ing [11, 62, 64] and VQA [4]. The similar work to ours
is DCKT [29] which focuses on UDA image-text retrieval
and transfers knowledge from a large dataset to promote
the model performance on small dataset. However, DCKT
needs labeled target image-text pairs during the training
procedure, which fails to work well for UDAVR task.

Unsupervised Domain Adaptation for Video-Text Re-
trieval. To the best of our knowledge, there are only a few
explorations of the UDAVR task [9,17,39]. MAN [17] pro-
poses three alignments to alleviate different gaps in UDAVR
task. CAPQ [9] comprises a concept preservation regu-
lariser to enhance the transferability of the learned embed-
dings. ACP [39] focuses on minimizing both uni-modal and
cross-modal distribution shift across the source and target
domains. Compared to these methods, our approach dif-
fers in three aspects. (1) MAN tries to directly alleviate
three different gaps in a classification-based manner, which
is not suitable for cross-modal retrieval task. (2) CAPQ and
ACP maximize the mutual information or minimize the KL-
divergence between the prototype assignments of source
and target videos, which however ignores the domain shift
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Figure 2. The overall framework of DADA. Video/text features are first fed into video/text encoders to generate high-level representations.
The video and text domain adaptation modules simultaneously alleviates the distribution shifts across domains in both modalities (Lvideo

D
and Ltext

D ). Source video and text features are expected to be discriminative by the cross-modal semantic embedding (LS ). Besides,
the proposed Dual Alignment Consistency (DAC) adaptively aligns the target video-text pairs which are more likely to be relevant and
progressively generates dual aligned video-text pairs (vpi , t

p
i )

np

i=1 in target domain(LP ). Best viewed in color.

in text modality. (3) The semantic relationships of videos
and texts in target domain have not been fully exploited by
previous methods, leading to the pairwise misalignment is-
sue, which is the primary concern of this paper.

3. Methodology
3.1. Preliminaries

For notational clarity, we first introduce some symbols
and definitions used throughout this paper. Formally, as-
sume that we have a set of samples in source domain{
(Vs, T s) = (vsi , t

s
i )

ns

i=1

}
, where ns indicates the number

of video-text pairs. Similarly, we also have a set of samples
in target domain

{
Vt = {vti}

nt

i=1 , T t =
{
ttj
}nt

j=1

}
with two

collections of nt videos Vt and texts T t, respectively.
Note that the target videos and texts are unpaired, which
means the supervised information, i.e., whether one target
video-text pair is semantically relevant or not, is not avail-
able in target domain. The Unsupervised Domain Adapta-
tion Video-text Retrieval (UDAVR) aims at improving the
model’s generalization performance on target domain with
the utilization of source domain. The overall framework of
our method is illustrated in Fig. 2.

Given one video-text pair, following the state-of-the-art
baseline in video-text retrieval [5], we utilize a video en-
coder φ (·) and a text encoder ψ (·) to map each video sam-
ple v and text description t into a joint embedding space.
The visual embedding φ (v) ∈ RM and text embedding

ψ (t) ∈ RM are semantically relevant if the text describes
the video, where M denotes the dimension in the common
space. In the source domain, we utilize the video-text con-
trastive loss to guide the semantic alignment learning. Fol-
lowing [30, 32, 51], the contrastive loss considers matched
pairs as positive and all others pairs that can be formed in a
batch as negatives. For each input video-text pair (vi, ti),
the video-text contrastive loss consists of two symmetric
terms, one for video-to-text classification:

Lv2t = −log exp (s (vi, ti) /τ)∑B
j exp (s (vi, tj) /τ)

, (1)

and the other for text-to-video classification:

Lt2v = −log exp (s (ti, vi) /τ)∑B
j exp (s (ti, vj) /τ)

. (2)

τ is the temperature parameter and B is the batch size. We
calculate similarity scores with the cosine similarity, which
is a widely-used similarity metric and has been proved ef-
fective [10, 16]:

s (vi, tj) =
φ (vi) · ψ (tj)

∥φ (vi) ||||ψ (tj) ∥
, (3)

where φ (vi) and ψ (tj) are the corresponding mapped fea-
tures, and ∥·∥ denotes the l2 norm of vectors and the Frobe-
nius norm of matrices. Formally, the contrastive loss for the
video-text pairs is as follows:

LS =
1

2

(
Lv2t + Lt2v

)
. (4)
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Figure 3. Illustration of the performance decrease when training
data and testing data are sampled from different distributions. Mt,
Md and Tf denote the dataset MSR-VTT, MSVD and TGIF, re-
spectively. For instance, Mt→Md denotes training on MSR-VTT
and testing on MSVD.

3.2. Domain Adaptation in UDAVR

Different datasets usually have inconsistent data distri-
butions and representations, thus leading to the domain shift
problem. To verify this, we show the performance compar-
isons in Fig. 3, where training data and testing data come
from different distributions. As can be seen, when both
training and testing data come from MSR-VTT dataset, i.e.,
Mt→Mt, the R@10 result is 34.30%. In the contrast, when
training on MSVD and testing on MSR-VTT, i.e., Md→Mt,
the R@10 result decreases to 13.27%, indicating a relative
21.03% performance drop. The significant performance de-
generation identifies the domain shift problem in UDAVR.

To alleviate this, we resort to recently proposed DA
method [14], which generates intermediate domain repre-
sentations on-the-fly to gradually bridge the source and tar-
get domains. By utilizing the appropriate intermediate do-
main to bridge the source and target, the source knowledge
can be better transferred to the target domain. Specifically,
we denote distributions of source, target and intermediate
domain as Ps, Pt and Pi respectively, and useD(·) to repre-
sent the Euclidean distance. Besides, we also introduce the
domain factor α for the source and target domains respec-
tively. The domain factor can be seen as the relevance of
the intermediate domain to the other two extreme domains.
Thus, in the video stream, the distance relationship (con-
trary to the relevance relationship) between Pi and other
two domains, i.e., Ps and Pt, can be formulated as:

D(P v
s , P

v
i )

D(P v
t , P

v
i )

=
α

1− α
. (5)

Formally, the domain shift problem can be converted into
minimizing the intermediate domain loss as:

Lvideo
D = αD(P v

s , P
v
i ) + (1− α)D(P v

t , P
v
i ). (6)

The loss in Eq. 6 aims at guiding the distribution of ap-
propriate intermediate domain to keep the right distance to
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Figure 4. Illustration of Dual Alignment Consistency (DAC). If
vti∗ and ttj∗ are the reciprocal nearest neighbor of each other, then
they can be considered as a truly aligned pair in target domain.

the source and target domains. Similarly, in the text stream,
the intermediate domain loss can be computed as:

Ltext
D = αD(P t

s , P
t
i ) + (1− α)D(P t

t , P
t
i ). (7)

To sum up, the domain adaptation loss can be defined as:

LD = Lvideo
D + Ltext

D . (8)

3.3. Dual Alignment Consistency

Despite the efficiency of the cross-modal semantic em-
bedding and domain adaptations, we argue that the desired
discriminability in target domain still can not be ensured.
Note that in UDA cross-modal tasks, there exists no identi-
cal label set for source and target domains, and the only su-
pervision available is the semantic relationship in the source
dataset [4, 11, 62, 64]. Merely alleviating the domain shift
will inevitably mix up target videos and texts, ignoring
whether they are a relevant pair or not. This thus leads
to the pairwise misalignment issue in target domain. In
other words, the target videos and texts are unpaired, which
means the pairwise information is not available in target do-
main.

To alleviate this, we propose a simple yet effective Dual
Alignment Consistency (DAC). The DAC tries to utilize the
truly aligned target video-text pairs which are more likely to
be semantically relevant, and to avoid including the noisy
ones which tend to be irrelevant. Specifically, given the
target set

{
Vt = {vti}

nt

i=1 , T t =
{
ttj
}nt

j=1

}
, we try to find

if there exist truly positive video-text pairs. (vti , t
t
j) can be

considered as a truly positive pair if and only if vti and ttj are
mutually the most similar to each other, indicating a dual
aligned pair. For a target video vti , we calculate the similar-
ities of vti and all the target texts, which can be defined as:

SV→T
vt
i

= [Svt
it

t
1
, Svt

it
t
2
, ..., Svt

it
t
j
, ..., Svt

it
t
nt
]. (9)
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Table 1. Comparison of three datasets, i.e., MSR-VTT, MSVD and TGIF in the UDAVR task.

Dataset #Videos #Caps. Video Len. Query Len. #Train #Val # Test Scene Text Src. Video Src. Semantics
MSR-VTT 10,000 200k 20s 9.34 6,513 497 2,990 Open AMT YouTube Category

MSVD 1,970 86k 10s 7.03 1,200 100 670 Open AMT YouTube Multi. Lang.
TGIF 101,412 120k 3s 8.67 79,451 10,651 11,310 Anim. GIF Crowdsouring Tumblr None

Then, we nominate the selected text for target video vti with
the maximum similarity as the candidate matching text:

j∗ = arg max
j∈{1,2,...,nt}

Svt
it

t
j
, (10)

where j∗ is the index of the candidate matching text ttj∗ .
Similarly, the candidate matching text ttj∗ is further calcu-
lated back to video set in a similar way, and the correspond-
ing candidate matching video vti∗ can be nominated accord-
ing to ST →V

ttj
. As in Fig. 4, this dual mapping and matching

operation between Vt and T t determines the dual alignment
consistency as:{(

vti∗ , t
t
j∗
)

is an aligned pair, if vti∗ = vti ,(
vti∗ , t

t
j∗
)

is a misaligned pair, if vti∗ ̸= vti .
(11)

The dual alignment consistency requires vti∗ and ttj∗ to
be the reciprocal nearest neighbor of each other, indicating
a truly aligned (or positive) pair. To that end, we can obtain
np positive pairs in one batch from target dataset, denoted
as

{
(Vp, T p) = (vpi , t

p
i )

np

i=1

}
, where (vpi , t

p
i ) =

(
vti∗ , t

t
j∗
)
.

To further boost the accuracy of aligned pairs, we intro-
duce T as the threshold to sort the similarities of all pairs in
one batch with descending order and choose the T -th value,
implying to select top T similar pairs. The intuition is that
a truly positive video-text pair should not only be the most
similar to each other, but also have a relatively high similar-
ity score compared with all the misaligned pairs. We also
conduct some vanilla aligning mechanisms and ablations on
threshold T , which are reported in Sec. 4 (Tab. 3 and Fig. 5).

With these self-discovered matching pairs, we can treat
the pairwise misalignment issue as a fully supervised prob-
lem to benefit the model training. Similar to LS in source
domain, the dual alignment consistency loss can be defined
as:

LP = − 1

2
(log

exp (s (vpi , t
p
i ) /τ)∑np

j exp
(
s
(
vpi , t

p
j

)
/τ

)
+ log

exp (s (tpi , v
p
i ) /τ)∑np

j exp
(
s
(
tpi , v

p
j

)
/τ

) ) (12)

During the training process, the positive pairs are in-
creasing progressively and the noisy ones will potentially
be aligned in the later stages (empirical results can be found
in Fig. 5). To this end, more target samples are truly aligned
as relevant video-text pairs, generating discriminative fea-
tures in target domain.

3.4. Overall Training

In a nutshell, we minimize the sum of the above losses,
including the semantic embedding loss LS in source do-
main, the domain adaptation loss LD for alleviating domain
shift, and the dual alignment consistency loss LP for align-
ing positive pairs in target domain. Combining these loss
terms together, the overall objective function can be formu-
lated as:

L = LS + λ1LD + λ2LP , (13)

where λ1 and λ2 are hyper parameters for balancing these
terms. The parameters of the whole network can readily be
updated by the stochastic gradient descent (SGD) algorithm
and the chain rules.

4. Experiments

4.1. Experimental Setting

Datasets. In this paper, we take advantage of existing
datasets across three domains to explore the UDAVR task.
To be specific, we construct a comprehensive evaluation
benchmark which is the combination of three widely used
datasets, i.e., MSR-VTT (Mt) [61], MSVD (Md) [23] and
TGIF (Tf) [34]. An overview of three datasets is given in
Tab. 1. The diversities of different datasets, e.g., lengths,
numbers and video scenes, contribute to the domain shift in
UDAVR task.

Evaluation Metrics. We adopt standard retrieval met-
rics (following [10, 25, 28]) to evaluate the performance of
video-text retrieval. We measure rank-based performance
by R@K (higher is better) and also report Median Rank,
i.e., MR, (lower is better).

Implementation Details. For fair comparison, we uti-
lize the same architecture of the video and text encoders as
in GPO [5], which is the state-of-the-art baseline for video-
text retrieval. Note that our method is orthogonal to the
visual and textual encoder, allowing us to flexibly embrace
state-of-the-art visual and textual encoders, of which the de-
tails are discussed in ablation studies. The length of shared
embeddingM is set to 1024. Moreover, we adopt the Adam
optimizer for all our experiments, set λ1=λ2 = 0.1. We set
the mini-batch size to 64, and utilize a step-decayed learn-
ing rate with initialization value 0.0001.
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Table 2. Effect of LP and LD .

Method Tf→Mt Tf→Md
R1↑ R10↑ MR↓ R1↑ R10↑ MR↓

DADA(w/o LP ) 2.98 15.93 97 10.26 39.18 18
DADA(w/o LD) 4.12 20.29 75 11.47 41.90 17

DADA 5.30 24.54 50 14.34 48.77 11

Table 3. Comparison of different alignment mechanisms.

Method Tf→Mt Tf→Md
R1↑ R10↑ MR↓ R1↑ R10↑ MR↓

DADA(w/ text) 3.52 17.29 111 13.16 45.67 13
DADA(w/ video) 3.26 15.61 146 13.04 46.31 13

DADA(w/o T) 4.84 22.47 67 13.53 44.77 15
DADA 5.30 24.54 50 14.34 48.77 11

4.2. Ablation Studies

Effect of LP and LD. To evaluate the contribution of
LP and LD, we train the model by removing each compo-
nent solely and present the results in Tab. 2. The results
of DADA(w/o LD) and DADA(w/o LP ) are inferior to the
full DADA method, verifying the effectiveness of both com-
ponents. Besides, DADA(w/o LP ) achieves worse perfor-
mance than DADA(w/o LD), further indicating that the dual
alignment consistency is more important than simply alle-
viating the domain shift.

Effect of Dual Alignment Consistency. To explore the
effectiveness of Dual Alignment Consistency (DAC), we
comprehensively investigate several alignment mechanisms
and show the results in Tab. 3. Specifically, DADA (w/ text)
selects the unique text with the highest similarity for each
target video. Similarly, DADA (w/ video) selects the unique
video with the highest similarity for each target text. DADA
(w/o T ) removes the threshold T of DAC. The results of
DADA (w/ text) and DADA (w/ video) are worse than the
full DADA method, demonstrating that the dual alignment
mechanism is superior to aligning from only one modality
stream. Meanwhile, the result of DADA (w/o T ) is also in-
ferior, which proves that the constraint on high similarities
of truly aligned pairs is effective.

Furthermore, Fig. 5 shows the effect of threshold T in
dual alignment consistency within one batch during the
training procedure. We can find that in Fig. 5(a), the number
of dual aligned pairs (w/ T ) is relatively smaller than that of
w/o T . This is acceptable since the threshold T constrains
that aligned pairs should also have relatively high similar-
ities compared to all pairs. As in Fig. 5(b), however, the
accuracy of truly aligned pairs (w/ T ) is evidently higher
than that of w/o T , indicating that considering the threshold
T of DAC ensures the number of truly aligned pairs. As
the training proceeds, the number of truly aligned pairs in-
creases adaptively, which justifies the intuition that positive
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Figure 5. Analysis on threshold T of dual alignment consistency.
As training epochs proceeds, (a) numbers of dual aligned pairs and
(b) accuracy of truly aligned pairs in one batch.

Table 4. Impact of different source datasets scales. Split-1/2/3
denotes 7,945/39,726/79,451 training data in source domain, re-
spectively. Split-1 is adopted as the baseline.

Splits Tf→Mt Tf→Md
R1↑ R10↑ MR↓ R1↑ R10↑ MR↓

split-1 5.30 24.54 50 14.34 48.77 11
split-2 7.82 31.38 33 19.10 54.02 8
split-3 9.08 35.79 24 20.58 57.40 7

pairs are increasing and noisy ones are diminished.
Impact of source datasets scales. To assess the impact

of source datasets scales on the UDAVR task, we randomly
split the TGIF dataset into three splits: Split-1/2/3 denotes
7,945/39,726/79,451 training data in source domain, re-
spectively. The results are shown in Tab. 4. We observe
that on one hand, increasing the number of training data
in source dataset brings a trend of performance gain (split-
1 to split-2). This is reasonable since large-scale source
dataset usually provide more knowledge when transferring
to the target domain. On the other hand, when the number
goes to a relatively large value (split-2 to split-3), the per-
formance gain is mostly marginal when transferring from
TGIF to MSVD. We argue that the pairwise misalignment
issue in UDAVR task can not be solved by simply increas-
ing the number of source training data. Considering the data
volume of MSR-VTT and MSVD, we adopt split-1 as the
baseline for TGIF dataset.

Generalization to different video-text retrieval meth-
ods. As shown in Tab. 5, we implement several state-of-the-
art video-text retrieval methods and the corresponding com-
binations with our DADA. Clearly, our method consistently
improve the performances on target domain when combined
with original baselines. Surprisingly, when combined with
CLIP based methods, our DADA can still contribute to a re-
markable performance gain. This verifies that the pairwise
misalignment issue can’t be diminished by merely adopting
more powerful cross-modal retrieval methods, justifying the
efficacy of our method.

Sensitivity of Hyper-parameters. We conduct experi-
ments under the setting of Tf→Mt and Tf→Md, and present
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Figure 6. The t-SNE visualizations of (a) Source Only, (b) MMD, (c) ACP and (d) Our method. Blue/red denotes source/target domain,
while circles/triangles denote videos/texts. Our method progressively generates truly aligned video-text pairs in target domain, i.e., red
circles and triangles are close together if they are semantically relevant (best viewed in color).

Table 5. Generalization to different video-text retrieval methods:
(a) Single feature based methods (b) Multi-feature based methods
and (c) CLIP based methods.

Backbone Tf→Mt Tf→Md
R1↑ R10↑ MR↓ R1↑ R10↑ MR↓

HGR [10] 2.20 11.98 154 9.25 37.73 21
(a) HGR + DADA 3.82 18.75 96 10.97 39.16 20

GPO [5] 2.69 13.63 144 9.39 37.77 20
GPO + DADA 5.30 24.54 50 14.34 48.77 11

CE [37] 2.93 14.7 122 10.3 39.2 18
(b) CE + DADA 5.67 25.30 47 15.20 49.87 11

MMT [21] 4.20 22.30 78 12.45 46.53 18
MMT + DADA 6.23 27.31 38 17.30 50.34 10

CLIP4CLIP [44] 7.20 28.50 35 19.23 50.23 8
(c) CLIP4CLIP + DADA 8.62 33.12 28 21.30 58.90 6

CLIP2Video [19] 7.80 31.50 31 20.23 51.20 8
CLIP2Video + DADA 8.90 36.50 25 23.10 63.6 5
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Figure 7. Sensitivity of hyper-parameters.

the sensitivity of hyper-parameters α and T in Fig. 7.
Within a wide range of α in [0.1, 0.9], the performance only
varies in a small range, indicating the robustness to differ-
ent choices of α. Similarly, when progressively increasing
threshold T in DAC from 16 to 1,024, our method consis-
tently performs well and achieves the best when T = 128.
Thus, we set α to 0.7 and T to 128 under all settings.

Feature Visualisations. We randomly choose 100 pairs
in source and target domain respectively, and show the t-
SNE [57] visualizations of Source Only, MMD, ACP and

our method in Fig. 6. As can be seen, (a) Source Only
shows that blue and red features are clearly separated, in-
dicating the video and text domain shifts. (b) MMD and (c)
ACP alleviate the domain shift, whereas inevitably mix up
target videos and texts, ignoring whether they are a relevant
pair or not. Obviously, our method not only diminishes the
domain shift, i.e., blue and red features are mixed up, but
also generates aligned pairs in target domain, i.e., red cir-
cles and triangles are close together if relevant.

4.3. Comparison with the State-of-the-arts

We compare our method with several state-of-the-art
baselines across three categories, i.e., Source Only, DA
methods and UDAVR methods. As a lower bound, we in-
clude the non-adapted Source Only results, which directly
applies the model trained on the source domain to the target
domain. We also implement five classification-based (i.e.
typical) DA methods and modify them for the UDAVR task,
including MMD [40], CORAL [53], DANN [22], IDM [14]
and SCDA [33]. Moreover, we compare to three recently
proposed UDAVR methods, i.e., MAN [17], CAPQ [9] and
ACP [39]. For fairness, all methods adopt the same features
and the backbone network as [5].

Tab. 6 shows that: (1) As the lower bound, Source Only
achieves the worst performance, which identifies the ex-
isted domain shift problem. (2) Traditional DA methods
in setting (a) are ineffective for the challenging UDAVR
task, which can only slightly outperform the Source Only
baseline. We owe this to that there exists no identical label
set in UDAVR, which is the key difference of classifica-
tion tasks. (3) Our method consistently outperforms other
UDAVR methods in setting (b) on all adaptation directions
across the three datasets, which demonstrates the effective-
ness of dual alignment consistency. Compared with the
SOTA method ACP, DADA achieves 20.18% and 18.61%
relative improvements on R@1 under the setting of Tf→Mt
and Tf→Md respectively.
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Table 6. Comparison with different baselines. We denote Tf the TGIF, Mt the MSR-VTT and Md the MSVD dataset.

Method
Tf→Mt Mt→Tf Tf→Md Md→Tf Mt→Md Md→Mt

R1↑ R10↑ MR↓ R1↑ R10↑ MR↓ R1↑ R10↑ MR↓ R1↑ R10↑ MR↓ R1↑ R10↑ MR↓ R1↑ R10↑ MR↓

Source Only 2.69 13.63 144 6.30 25.43 60 9.39 37.77 20 3.80 16.99 102 15.02 46.96 12 2.50 13.27 136

MMD [40] 2.68 13.59 135 6.77 27.11 54 9.11 36.11 23 3.50 16.28 119 15.31 47.65 12 2.62 13.18 136
CORAL [53] 2.74 14.07 128 6.56 26.49 52 9.44 37.87 21 3.65 17.34 108 15.65 49.43 11 2.65 13.34 138

(a) DANN [22] 2.76 13.94 127 6.86 27.17 48 9.27 38.00 20 3.74 16.72 103 15.67 48.67 11 2.62 13.17 134
IDM [14] 2.59 13.11 149 7.12 25.35 60 8.05 35.51 23 3.24 15.78 120 13.96 47.77 12 2.54 12.39 165

SCDA [33] 2.79 14.22 130 6.92 26.70 53 9.84 37.11 22 3.30 17.02 108 15.64 48.65 11 2.55 12.98 138

MAN [17] 2.53 12.98 144 6.42 25.96 63 8.84 37.06 21 3.06 16.31 119 15.05 48.51 11 2.40 12.00 174
(b) CAPQ [9] 3.46 17.02 110 7.33 25.64 62 9.30 37.97 21 3.97 17.75 113 15.66 49.08 11 3.35 15.47 158

ACP [39] 4.41 21.72 64 7.83 26.72 50 12.09 41.38 18 5.12 21.46 82 17.87 54.34 8 5.90 25.68 54

Ours DADA 5.30 24.54 50 8.21 28.97 45 14.34 48.77 11 6.03 22.52 78 18.97 57.93 7 6.40 27.61 42
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1←15←23

Obama is behind podium 
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leaves to a pot of boiling water 

Rank of that video: 3←12←19

Relevant video 
for that query:

Query: A fox is diving
into the snow

A whale is swimming
in the ocean slowly

Rank of that video: 4←19←27 15←6←18

woman is cooking 
meat in a pan

MSR-VTT MSVD TGIF

tv show of women talking 
about guy and his wound

2←11←21

2←16←29

Figure 8. Qualitative results of query texts and corresponding videos along with the changes in rank A←B←C, where A denotes the rank
of DADA, B the ACP method and C the Source Only.

4.4. Qualitative Results

As in Fig. 8, given a query text, we present how the
rank of the relevant video changes with different methods.
Obviously, our method results in higher ranks of relevant
videos compared with Source Only and ACP. Interestingly,
our method performs worse given the query ‘A fox is diving
into the snow’, which might be owed to the confusion of the
white fox and the background.

5. Conclusion
In this paper, we focus on the notoriously challenging

task, i.e., UDA Video-text Retrieval (UDAVR), and develop
the simple yet effective Dual Alignment Domain Adapta-
tion (DADA) method. We introduce the cross-modal se-
mantic embedding and domain adaptation to simultane-

ously generate discriminative source features and alleviate
the video and text domain shifts. To tackle the pairwise
alignment issue, we propose the Dual Alignment Consis-
tency (DAC), which progressively generates truly aligned
target pairs and ensures the discriminability of target fea-
tures. Extensive experiments justify our superiority.
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