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Abstract

We explore long-term temporal visual correspondence-
based optimization for 3D video object detection in this
work. Visual correspondence refers to one-to-one map-
pings for pixels across multiple images. Correspondence-
based optimization is the cornerstone for 3D scene recon-
struction but is less studied in 3D video object detection,
because moving objects violate multi-view geometry con-
straints and are treated as outliers during scene recon-
struction. We address this issue by treating objects as
first-class citizens during correspondence-based optimiza-
tion. In this work, we propose BA-Det, an end-to-end op-
timizable object detector with object-centric temporal cor-
respondence learning and featuremetric object bundle ad-
justment. Empirically, we verify the effectiveness and ef-
ficiency of BA-Det for multiple baseline 3D detectors un-
der various setups. Our BA-Det achieves SOTA perfor-
mance on the large-scale Waymo Open Dataset (WOD) with
only marginal computation cost. Our code is available at
https://github.com/jiaweihe1996/BA-Det.

1. Introduction
3D object detection is an important perception task, es-

pecially for indoor robots and autonomous-driving vehi-
cles. Recently, image-only 3D object detection [23, 52] has
been proven practical and made great progress. In real-
world applications, cameras capture video streams instead
of unrelated frames, which suggests abundant temporal in-
formation is readily available for 3D object detection. In
single-frame methods, despite simply relying on the predic-
tion power of deep learning, finding correspondences play
an important role in estimating per-pixel depth and the ob-
ject pose in the camera frame. Popular correspondences
include Perspective-n-Point (PnP) between pre-defined 3D
keypoints [22, 52] and their 2D projections in monocular
3D object detection, and Epipolar Geometry [6,12] in multi-
view 3D object detection. However, unlike the single-frame

case, temporal visual correspondence has not been explored
much in 3D video object detection.

As summarized in Fig. 1, existing methods in 3D video
object detection can be divided into three categories while
each has its own limitations. Fig. 1a shows methods with
object tracking [3], especially using a 3D Kalman Filter
to smooth the trajectory of each detected object. This ap-
proach is detector-agnostic and thus widely adopted, but it
is just an output-level smoothing process without any fea-
ture learning. As a result, the potential of video is under-
exploited. Fig. 1b illustrates the temporal BEV (Bird’s-
Eye View) approaches [14, 23, 26] for 3D video object
detection. They introduce the multi-frame temporal cross-
attention or concatenation for BEV features in an end-to-
end fusion manner. As for utilizing temporal information,
temporal BEV methods rely solely on feature fusion while
ignoring explicit temporal correspondence. Fig. 1c depicts
stereo-from-video methods [46,47]. These methods explic-
itly construct a pseudo-stereo view using ego-motion and
then utilize the correspondence on the epipolar line of two
frames for depth estimation. However, the use of explicit
correspondence in these methods is restricted to only two
frames, thereby limiting its potential to utilize more tem-
poral information. Moreover, another inevitable defect of
these methods is that moving objects break the epipolar con-
straints, which cannot be well handled, so monocular depth
estimation has to be reused.

Considering the aforementioned shortcomings, we seek
a new method that can handle both static and moving
objects, and utilize long-term temporal correspondences.
Firstly, in order to handle both static and moving objects, we
draw experience from the object-centric global optimization
with reprojection constraints in Simultaneous Localization
and Mapping (SLAM) [21, 48]. Instead of directly estimat-
ing the depth for each pixel from temporal cues, we utilize
them to construct useful temporal constraints to refine the
object pose prediction from network prediction. Specifi-
cally, we construct a non-linear least-square optimization
problem with the temporal correspondence constraint in an
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Figure 1. Illustration of how to leverage temporal information in different 3D video object detection paradigms.

object-centric manner to optimize the pose of objects no
matter whether they are moving or not. Secondly, for long-
term temporal correspondence learning, hand-crafted de-
scriptors like SIFT [27] or ORB [35] are no longer suit-
able for our end-to-end object detector. Besides, the long-
term temporal correspondence needs to be robust to view-
point changes and severe occlusions, where these traditional
sparse descriptors are incompetent. So, we expect to learn
a dense temporal correspondence for all available frames.

In this paper, as shown in Fig. 1d, we propose a 3D video
object detection paradigm with learnable long-term tempo-
ral visual correspondence, called BA-Det. Specifically, the
detector has two stages. In the first stage, a CenterNet-
style monocular 3D object detector is applied for single-
frame object detection. After associating the same objects
in the video, the second stage detector extracts RoI features
for the objects in the tracklet and matches dense local fea-
tures on the object among multi-frames, called the object-
centric temporal correspondence learning (OTCL) module.
To make traditional object bundle adjustment (OBA) learn-
able, we formulate featuremetric OBA. In the training time,
with featuremetric OBA loss, the object detection and tem-
poral feature correspondence are learned jointly. During in-
ference, we use the 3D object estimation from the first stage
as the initial pose and associate the objects with 3D Kalman
Filter. The object-centric bundle adjustment refines the pose
and 3D box size of the object in each frame at the track-
let level, taking the initial object pose and temporal feature
correspondence from OTCL as the input. Experiment re-
sults on the large-scale Waymo Open Dataset (WOD) show
that our BA-Det could achieve state-of-the-art performance
compared with other single-frame and multi-frame object
detectors. We also conduct extensive ablation studies to
demonstrate the effectiveness and efficiency of each com-
ponent in our method.

In summary, our work has the following contributions:

• We present a novel object-centric 3D video object detec-
tion approach BA-Det by learning object detection and
temporal correspondence jointly.

• We design the second-stage object-centric temporal cor-
respondence learning module and the featuremetric object
bundle adjustment loss.

• We achieve state-of-the-art performance on the large-
scale WOD. The ablation study and comparisons show
the effectiveness and efficiency of our BA-Det.

2. Related Work
2.1. 3D Video Object Detection

For 3D video object detection, LiDAR-based meth-
ods [4, 8, 49] usually align point clouds from consecutive
frames by compensating ego-motion and simply accumu-
late them to alleviate the sparsity of point clouds. Object-
level methods [5, 9, 33, 50], handling the multi-frame point
clouds of the tracked object, become a new trend. 3D ob-
ject detection from the monocular video has not received
enough attention from researchers. Kinematic3D [3] is a
pioneer work decomposing kinematic information into ego-
motion and target object motion. However, they only apply
3D Kalman Filter [17] based motion model for kinematic
modeling and only consider the short-term temporal asso-
ciation (4 frames). Recently, BEVFormer [23] proposes
an attentional transformer method to model the spatial and
temporal relationship in the bird’s-eye-view (BEV). A con-
current work, DfM [46], inspired by Multi-view Geometry,
considers two frames as stereo and applies the cost volume
in stereo to estimate depth. However, how to solve the mov-
ing objects is not well handled in this paradigm.

2.2. Geometry in Videos

Many researchers utilize 3D geometry in videos to re-
construct the scene and estimate the camera pose, which
is a classic topic of computer vision. Structure from Mo-
tion (SfM) [37] and Multi-view Stereo (MVS) [38] are two
paradigms to estimate the sparse and dense depth from
multi-view images respectively. In robotics, 3D geometry
theory is applied for Simultaneous Localization and Map-
ping (SLAM) [30]. To globally optimize the 3D position of
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the feature points and the camera pose at each time, bun-
dle adjustment algorithm [42] is widely applied. However,
most of them can only handle static regions in the scene.

In the deep learning era, with the development of object
detection, object-level semantic SLAM [21, 31, 48] is ris-
ing, aiming to reconstruct the objects instead of the whole
scene. These methods can handle dynamic scenes and help
the object localization in the video. Besides, feature cor-
respondence learning [36, 39] has received extensive atten-
tion in recent years. Deep learning has greatly changed the
pipeline of feature matching. Differentiable bundle adjust-
ment, like BANet [41] and NRE [11], makes the whole 3D
geometry system end-to-end learnable. Unlike these works,
we focus on the representation of the 3D object and inte-
grate feature correspondence learning into 3D object detec-
tion. Utilizing the learned temporal feature correspondence,
the proposed BA-Det optimizes the object pose of a tracklet
in each frame.

3. Preliminary: Bundle Adjustment
Bundle Adjustment [42] is a widely used globally tem-

poral optimization technology in 3D reconstruction, which
means optimally adjusting bundles of light rays from a
given 3D global position to the camera center among multi-
frames. Specifically, we use Pi = [xi, yi, zi]

⊤ to denote
the i-th 3D point coordinates in the global reference frame.
According to the perspective camera model, the image co-
ordinates of the projected 3D point at time t is

Π(Tt
cg,Pi,K) =

1

zti
K(Rt

cgPi + ttcg), (1)

where Π is the perspective projection transformation,
Tt

cg = [Rt
cg|ttcg] is the camera extrinsic matrix at time t.

Rt
cg and ttcg are the rotation and the translation components

of Tt
cg , respectively. K is the camera intrinsic matrix, and

zti is the depth of the i-th 3D point in the camera frame at
time t.

Bundle adjustment is a nonlinear least-square problem to
minimize the reprojection error as:

{T̄t
cg}Tt=1, {P̄i}mi=1 =

argmin
{Tt

cg}T
t=1,{Pi}m

i=1

1

2

m∑
i=1

T∑
t=1

||pt
i −Π(Tt

cg,Pi,K)||2,
(2)

where pt
i is the observed image coordinates of 3D point Pi

on frame t. Bundle adjustment can be solved by Gauss-
Newton or Levenberg–Marquardt algorithm effectively [1,
20].

4. BA-Det: Object-centric Global Optimizable
Detector

In this section, we introduce the framework of our BA-
Det (Fig. 2), a learnable object-centric global optimization

network. The pipeline consists of three parts: (1) First-stage
single frame 3D object detection; (2) Second-stage object-
centric temporal correspondence learning (OTCL) module;
(3) Featuremetric object bundle adjustment loss for tempo-
ral feature correspondence learning.

4.1. Single-frame 3D Object Detection

Given a video clip with consecutive frames V =
{I1, I2, · · · , IT }, 3D video object detection is to predict
the class and the 3D bounding box of each object in each
frame. Let Ot

k be the k-th object in frame t. For the 3D
bounding box Bt

k, we estimate the size of the bounding box
skt = [w, h, l]⊤ and the object pose kTt

co in the camera
frame, including translation kttco = [xc, yc, zc]

⊤ and ro-
tation krtco = [rx, ry, rz]

⊤. In most 3D object detection
datasets, with the flat ground assumption, only yaw rotation
ry is considered.

We basically adopt MonoFlex [52] as our first-stage 3D
object detector, which is a simple and widely-used baseline
method. Different from the standard MonoFlex, we make
some modifications for simplicity and adaptation. (1) In-
stead of ensemble the depth from keypoints and regression,
we only used the regressed depth directly. (2) The edge
fusion module in MonoFlex is removed for simplicity and
better performance. The output of the first-stage object de-
tector should be kept for the second stage. The predicted
2D bounding box bt

k for each object is used for the object-
centric feature extraction in the second stage. The 3D esti-
mations should be the initial pose estimation and be asso-
ciated between frames. We follow ImmortalTracker [44] to
associate the 3D box prediction outputs with a 3D Kalman
Filter frame by frame. For convenience and clarity, we use
the same index k to denote the objects belonging to the same
tracklet in the video from now on.

4.2. Object-Centric Temporal Correspondence
Learning

Based on the predictions from the first-stage detector, we
propose an object-centric temporal correspondence learn-
ing (OTCL) module, which plays an indispensable role
in the learnable optimization. Specifically, the OTCL
module is designed to learn the correspondence of the
dense features for the same object among all available
frames. Given a video {I1, I2, · · · , IT } and image features
{F1,F2, · · · ,FT } from the backbone in the first stage, we
extract the RoI features kFt ∈ RH×W×C of the object Ot

k

by the RoIAlign operation [13],

kFt = RoIAlign(Ft,bt
k). (3)

We apply L layers of cross- and self-attention operations
before calculating the correspondence map to aggregate and
enhance the spatial and temporal information for RoI fea-
tures. Note that the object tracklet is available with the
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Figure 2. A overview of the proposed BA-Det framework. The left part of the framework is the first-stage object detector to predict the
3D object and its 2D bounding box. The second stage is called OTCL module. In the OTCL module, we extract the RoI features kFt by
RoIAlign, aggregate the RoI features and learn object-centric temporal correspondence using featuremetric object bundle adjustment loss.

aforementioned tracker, so the cross-attention is applied be-
tween the objects in different frames for the same tracklet.
For each layer of attention operations between two adjacent
frames t and t′:

kF̃t = AttS(Q,K, V ) = AttS(
kF̂t, kF̂t, kF̂t),

kF̃t′ = AttS(Q,K, V ) = AttS(
kF̂t′ , kF̂t′ , kF̂t′),

kF̂t′ = AttT(Q,K, V ) = AttT(
kF̃t′ , kF̃t, kF̃t),

(4)
where kF̂t ∈ RHW×C is the flattened RoI feature, AttS
is the spatial self-attention, AttT is the temporal cross-
attention.

We then define the spatial correspondence map between
two flattened RoI features after the attention operations. In
frame pair (t, t′), we use kfi to denote i-th local feature in
kF̂(L) (i ∈ {1, 2, · · · , HW}). The correspondence map
kCt′

t ∈ RHW×HW in two frames is defined as the inner
product of two features in two frames:

kCt′

t [i, i
′] = kf ti ∗ kf t

′

i′ . (5)

To normalize the correspondence map, we perform softmax
over all spatial locations i′,

kC̃t′

t [i, i
′] = softmax(kCt′

t [i, i
′]). (6)

4.3. Featuremetric Object Bundle Adjustment Loss

In this subsection, we present that how to adapt and inte-
grate the Object-centric Bundle Adjustment (OBA) into our
learnable BA-Det framework, based on the obtained cor-
respondence map. Generally speaking, we formulate the
featuremetric OBA loss to supervise the temporal feature

correspondence learning. Note that here we only derive the
tracklet-level OBA loss for the same object, and for the fi-
nal supervision we will sum all the tracklet-level loss in the
video.

First, we revisit the object-centric bundle adjustment, as
shown in Fig. 3a. As proposed in Object SLAM [21, 48],
OBA assumes that the object can only have rigid motion
relative to the camera. For the object Ok, we denote the 3D
points as Pk = {kPi}mi=1 in the object frame, 2D points
as {kpt

i}mi=1, 2D features at position kpt
i as {f [kpt

i]}mi=1,
and the camera pose in the object reference frame as Tk =
{kTt

co}Tt=1, OBA can be casted as:

T̄k, P̄k = argmin
Tk,Pk

1

2

m∑
i=1

T∑
t=1

||kpt
i −Π(kTt

co,
kPi,K)||22.

(7)

To make the OBA layer end-to-end learnable, we formulate
featuremetric [25] OBA:

T̄k, P̄k =

argmin
Tk,Pk

1

2

m∑
i=1

T∑
t=1

T∑
t′=1

||f [kpt
i]− f [Π(kTt′

co,
kPi,K)]||22,

(8)

where f [p] denotes the feature vector in pixel coordinates
p. Representing the 3D point kPi in Eq. 8 with 2D points
in each frame, the featuremetric reprojection error of frame
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(b) The computation of the featuremetric OBA loss.

Figure 3. Illustration of featuremetric object bundle adjustment.

t could be derived as

keti =

T∑
t′=1

f [kpt
i]− f [kpt′

i ] (9)

=

T∑
t′=1

f [kpt
i]− f [Π(kTt′

co,Π
−1(kTt

co,
kpt

i,K, zti),K)],

(10)

where Π−1(·) is the inverse projection function to lift the
2D point on the image to 3D in the object frame. zti is the
ground-truth depth of kpt

i (from LiDAR point clouds only
for training). In the training time, we learn the feature cor-
respondence, given the ground-truth pose of the object Ok,
denoted as kTt

co and kTt′

co in frame t and frame t′, respec-
tively. Considering the featuremetric reprojection loss in all
frames and all points, the overall loss term for object k can
be formulated as

Lk
rep =

m∑
i=1

T∑
t=1

||keti||22 =

m∑
i=1

T∑
t=1

T∑
t′=1

||kf ti − kf t
′

i ||22 (11)

Finally, we replace the L2 norm in Eq. 11 with the co-
sine distance to measure the featuremetric reprojection er-
ror. Thus we bring the normalized correspondence map C̃
in Sec. 4.2 into the loss term. With log-likelihood formula-
tion, we formulate the featuremetric OBA loss to supervise
the object-centric temporal correspondence learning:

Lk
OBA = −

m∑
i=1

T∑
t=1

T∑
t′=1

log(kC̃t′

t [
kp̄t

i,
kp̄t′

i ]). (12)

where (kp̄t
i,

kp̄t′

i ) are the ground-truth corresponding pair
of the i-th local feature. The illustration of the loss compu-
tation is in Fig. 3b.

4.4. Inference

After introducing the training loss design, we present the
inference process of BA-Det as follows.

First-stage 3D object detection and association. The
first-stage detector makes the prediction of classification
scores and 2D / 3D bounding boxes. The 3D bound-
ing boxes are associated across the frames by Immortal-
Tracker [44]. The following process is on the tracklet level.

Dense feature matching. To optimize the object pose,
we need to obtain the feature correspondence in each frame
for the same object. As mentioned in Sec. 4.2, the OTCL
module is trained to generate a dense correspondence map
in all frames. During inference, we match all H ×W dense
local features in RoI between adjacent two frames and be-
tween the first frame and last frame of the time window
[t, t + τ ]. We use the RANSAC algorithm [10] to filter the
feature correspondence outliers.

Feature tracking. To form a long-term keypoint track-
let from the obtained correspondence, we leverage a graph-
based algorithm. First, the matched feature pairs are con-
structed into a graph G. The features are on the vertices.
If the features are matched, an edge is connected in the
graph. Then we track the feature for the object in all avail-
able frames. We use the association method mainly fol-
lowing [7]. The graph partitioning method is applied to G
to make each connected subgraph have at most one vertex
per frame. The graph cut is based on the similarity of the
matched features.

Object-centric bundle adjustment. In the inference
stage, given the initial pose estimation and the temporal fea-
ture correspondence, we solve the object-centric bundle ad-
justment by Levenberg–Marquardt algorithm, and the ob-
ject pose in each frame and the 3D position of the keypoints
can be globally optimized between frames.

Post-processing. We also apply some common post-
processing in video object detection techniques like tracklet
rescoring [18] and bounding box temporal interpolation.

5. Experiments
5.1. Datasets and metrics

We conduct our experiments on the large autonomous
driving dataset, Waymo Open Dataset (WOD) [40]. The
WOD has different versions with different annotations and
metrics. To keep the fairness of the comparisons, we re-
port the results both on WOD v1.2 and WOD v1.3.1. The
annotations on v1.2 are based on LiDAR and the official
metrics are mAP IoU@0.7 and mAP IoU@0.5. Recently,
v1.3.1 is released to support multi-camera 3D object detec-
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LEVEL 1 LEVEL 2
3D AP70 3D APH70 3D AP50 3D APH50 3D AP70 3D APH70 3D AP50 3D APH50

M3D-RPN [2] 0.35 0.34 3.79 3.63 0.33 0.33 3.61 3.46
PatchNet [29] 0.39 0.37 2.92 2.74 0.38 0.36 2.42 2.28
PCT [43] 0.89 0.88 4.20 4.15 0.66 0.66 4.03 3.99
MonoJSG [24] 0.97 0.95 5.65 5.47 0.91 0.89 5.34 5.17
GUPNet [28] 2.28 2.27 10.02 9.94 2.14 2.12 9.39 9.31
DEVIANT [19] 2.69 2.67 10.98 10.89 2.52 2.50 10.29 10.20
CaDDN [34] 5.03 4.99 17.54 17.31 4.49 4.45 16.51 16.28
DID-M3D [32] - - 20.66 20.47 - - 19.37 19.19
BEVFormer [23]† - 7.70 - 30.80 - 6.90 - 27.70
DCD [22] 12.57 12.50 33.44 33.24 11.78 11.72 31.43 31.25

MonoFlex [52] (Baseline) 11.70 11.64 32.26 32.06 10.96 10.90 30.31 30.12
BA-Det(Ours)† 16.60 16.45 40.93 40.51 15.57 15.44 38.53 38.12

Table 1. The results on WODv1.2 [40] val set. AP70 denotes AP with IoU threshold at 0.7. AP50 denotes AP IoU@0.5.† denotes the
method utilizing temporal information.

(a) Frame 8. (b) Frame 22. (c) Frame 36. (d) Frame 50. (e) Frame 57.

Figure 4. Qualitative results from the BEV in different frames. We use blue and red boxes to denote initial predictions and optimized
predictions of the object we highlight. The green and black boxes denote the other box predictions and the ground truth boxes. The ego
vehicle lies at the bottom of each figure.

Method LET-APL LET-AP LET-APH 3D AP70 3D AP50

MV-FCOS3D++ [45]† 58.11 74.68 73.50 14.66 36.02
BA-DetFCOS3D(Ours)† 58.47 74.85 73.66 15.02 36.89

Table 2. The multi-camera results on WODv1.3.1 [16] val set.
Besides the official LET-IoU-based metrics, we also report the
metrics with standard 3D IoU. All metrics are reported for the
LEVEL 2 difficulty.†: use temporal information.

tion, and the annotations are camera-synced boxes. On the
v1.3.1 dataset, a series of new LET-IoU-based metrics [16]
are introduced to slightly tolerate the localization error from
the worse sensor, camera, than LiDAR. Early work mainly
reports the results on the v1.2 dataset, and we only compare
our methods with the ones from WOD Challenge 2022 us-
ing the v1.3.1 dataset. Because we mainly focus on rigid
objects, we report the results of the VEHICLE class.

LET-3D-AP and LET-3D-APL are the new metrics, re-
lying on the Longitudinal Error Tolerant IoU (LET-IoU).
LET-IoU is the 3D IoU calculated between the target ground

truth box and the prediction box aligned with ground truth
along the depth that has minimum depth error. LET-3D-AP
and LET-3D-APL are calculated from the average precision
and the longitudinal affinity weighted average precision of
the PR curve. For more details, please refer to [16].

5.2. Implementation Details

The first stage network architecture of BA-Det is the
same as MonoFlex, with DLA-34 [51] backbone, the output
feature map is with the stride of 8. In the second stage, the
shape of the RoI feature is 60×80. The spatial and temporal
attention module is stacked with 4 layers. The implementa-
tion is based on the PyTorch framework. We train our model
on 8 NVIDIA RTX 3090 GPUs for 14 epochs. Adam opti-
mizer is applied with β1 = 0.9 and β2 = 0.999. The initial
learning rate is 5 × 10−4 and weight decay is 10−5. The
learning rate scheduler is one-cycle. We use the Levenberg-
Marquardt algorithm, implemented by DeepLM [15], to
solve object-centric bundle adjustment. The maximum it-
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Method 3D AP70 3D APH70 3D AP50 3D APH50

0-30 30-50 50-∞ 0-30 30-50 50-∞ 0-30 30-50 50-∞ 0-30 30-50 50-∞

L1
DCD [22] 32.47 5.94 1.24 32.30 5.91 1.23 62.70 26.35 10.16 62.35 26.21 10.09
MonoFlex [52] 30.64 5.29 1.05 30.48 5.27 1.04 61.13 25.85 9.03 60.75 25.71 8.95
BA-Det (Ours)† 37.74 11.04 3.86 37.46 10.95 3.79 71.07 37.15 14.89 70.46 36.79 14.61

L2
DCD [22] 32.30 5.76 1.08 32.19 5.73 1.08 62.48 25.60 8.92 62.13 25.46 8.86
MonoFlex [52] 30.54 5.14 0.91 30.37 5.11 0.91 60.91 25.11 7.92 60.54 24.97 7.85
BA-Det (Ours)† 37.61 10.72 3.37 37.33 10.63 3.31 70.83 36.14 13.62 70.23 35.79 13.37

Table 3. The object depth range conditioned result on WODv1.2 [40] val set. L1 and L2 denote LEVEL 1 and LEVEL 2 difficulty,
respectively. †: use temporal information.

LEVEL 1 LEVEL 2
3D AP70 3D APH70 3D AP50 3D APH50 3D AP70 3D APH70 3D AP50 3D APH50

MonoFlex (baseline) 11.70 11.64 32.26 32.06 10.96 10.90 30.31 30.12

Our first-stage prediction 13.57 13.48 34.70 34.43 12.72 12.64 32.56 32.32
+3D Tracking [44] 14.01 13.93 35.19 34.92 13.13 13.05 33.03 32.78
+ Learnable global optimization 15.85 15.75 38.06 37.76 14.87 14.77 35.72 35.44
+ Tracklet rescoring 16.43 16.30 40.07 39.70 15.41 15.29 37.66 37.31
+ Bbox interpolation 16.60 16.45 40.93 40.51 15.57 15.44 38.53 38.12

Table 4. Ablation study of each component in BA-Det.

eration of the LM algorithm is 200. For the object that ap-
pears less than 10 frames or the average keypoint number is
less than 5, we do not optimize it.

5.3. Comparisons with State-of-the-art Methods

We compare our BA-Det with other state-of-the-art
methods under two different settings. WODv1.2 is for the
front view camera and WODv1.3.1 has the official evaluator
for all 5 cameras. As shown in Table 1, using the FRONT
camera, we outperform the SOTA method DCD [22] for
about 4AP and 4APH (∼30% improvement) under the 0.7
IoU threshold. Compared with the only temporal method
BEVFormer [23], we have double points of 3D AP70 and
3D APH70. To validate the effectiveness, we also report
the multi-camera results on the newly released WODv1.3.1,
as shown in Table 2. No published work reports the re-
sults on WODv1.3.1. So, we only compare with the open-
source MV-FCOS3D++ [45], the second-place winner of
WOD 2022 challenge. We design the variant of BA-Det,
called BA-DetFCOS3D, to adapt to the multi-camera setting.
BA-DetFCOS3D is also a two-stage object detector. The first
stage is the same as MV-FCOS3D++, but with the output
of 2D bounding boxes. The second stage is OTCL mod-
ule supervised with featuremetric object bundle adjustment
loss. Although there are overlaps between 5 cameras, to
simplify the framework, we ignore the object BA optimiza-
tion across cameras and only conduct temporal optimiza-
tion. BA-DetFCOS3D outperforms MV-FCOS3D++ under
main metrics and traditional 3D IoU-based metrics.

5.4. Qualitative Results

In Fig. 4, we show the object-level qualitative results
of the first-stage and second-stage predictions in different
frames. For a tracklet, we can refine the bounding box
predictions with the help of better measurements in other
frames, even if there is a long time interval between them.

5.5. Distance Conditioned Results

We report the results with the different depth ranges in
Table 3. The results indicate that the single frame methods,
like DCD and MonoFlex, are seriously affected by object
depth. When the object is farther away from the ego ve-
hicle, the detection performance drops sharply. Compared
with these methods, BA-Det, has the gain almost from the
object far away from the ego-vehicle. The 3D AP70 and
3D APH70 are 3× compared with the baseline when the ob-
ject is located in [50m,∞), 2× in [30m, 50m) and 1.2× in
[0m, 30m). This is because we utilize the long-term tempo-
ral information for each object. In a tracklet, the predictions
near the ego-vehicle can help to refine the object far away.

5.6. Ablation study

We ablate each component of BA-Det. The results are
shown in Table 4. The first stage detector is slightly better
than the MonoFlex baseline mainly because we remove the
edge fusion module, which is harmful to the truncated ob-
jects in WOD. 3D KF associates the objects and smooths
the object’s trajectory. This part of improvement can be re-
garded as similar to Kinematic3D [3]. The core of BA-Det
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LEVEL 1 LEVEL 2
3D AP70 3D APH70 3D AP50 3D APH50 3D AP70 3D APH70 3D AP50 3D APH50

MonoFlex (baseline) 11.70 11.64 32.26 32.06 10.96 10.90 30.31 30.12
Initial prediction 13.57 13.48 34.70 34.43 12.72 12.64 32.56 32.32

Static BA 14.73 14.62 37.89 37.56 13.82 13.72 35.65 35.34
Ours 16.60 16.45 40.93 40.51 15.57 15.44 38.53 38.12

Table 5. Comparison between object-centric BA-Det and the traditional scene-level bundle adjustment (Static BA). Initial prediction
denotes the predictions in the first stage.

L̄t
LEVEL 1 LEVEL 2

3D AP70 3D APH70 3D AP50 3D APH50 3D AP70 3D APH70 3D AP50 3D APH50

MonoFlex (baseline) - 11.70 11.64 32.26 32.06 10.96 10.90 30.31 30.12

BA-Det+ ORB feature [35] 2.6 14.05 13.96 35.21 34.95 13.17 13.08 33.05 32.81
BA-Det+ Our feature 10 16.60 16.45 40.93 40.51 15.57 15.44 38.53 38.12

Table 6. Ablation study about different feature corresponding methods. L̄t denotes the average keypoint tracklet length for each object.

is the learnable global optimization module, which obtains
the largest gain in all modules. The tracklet rescoring and
temporal interpolation modules are also useful.

5.7. Further Discussions

BA vs. Object BA. We conduct experiments to discuss
whether the object-centric manner is important in tempo-
ral optimization. We modify our pipeline and optimize the
whole scene in the global frame instead of optimizing the
object pose in the object frame, called Static BA in Table 5.
Static BA ignores dynamic objects and treats them the same
as static objects. The inability to handle dynamic objects
causes decreases by about 2 AP compared with BA-Det.
Temporal feature correspondence. As shown in Table 6,
we ablate the features used for object-centric bundle ad-
justment. Compared with traditional ORB feature [35],
widely used in SLAM, our feature learning module predicts
denser and better correspondence. We find the average ob-
ject tracklet length is 19.6 frames, and the average feature
tracklet in our method is about 10 frames, which means we
can keep a long feature dependency and better utilize long-
range temporal information. However, the L̄t of the ORB
feature is only 2.6 frames. The results show the short key-
point tracklet can not refine the long-term object pose well.
Inference latency of each step in BA-Det. The inference
latency of each step in BA-Det is shown in Table 7. The
most time-consuming part is the first-stage object detec-
tor, more than 130ms per image, which is the same as the
MonoFlex baseline. Our BA-Det only takes an additional
50ms latency per image, compared with the single-frame
detector MonoFlex. Besides, although the dense feature
correspondence is calculated, thanks to the shared backbone
with the first stage detector and parallel processing for the
objects, the feature correspondence module is not very time-
consuming.

Total latency 181.5ms

First-stage detector 132.6ms
Object tracking 6.6ms
Feature correspondence 23.0ms
Object bundle adjustment 19.3ms

Table 7. Inference latency of each step in BA-Det per image.

6. Limitations and Future Work
In the current version of this paper, we only focus on the

objects, such as cars, trucks, and trailers. The performance
of non-rigid objects such as pedestrians has not been inves-
tigated. However, with mesh-based and skeleton-based 3D
human models, we believe that a unified keypoint temporal
alignment module can be designed in the future. So, we will
explore the extension of BA-Det for non-rigid objects.

7. Conclusion
In this paper, we propose a 3D video object detec-

tion paradigm with long-term temporal visual correspon-
dence, called BA-Det. BA-Det is a two-stage object de-
tector that can jointly learn object detection and temporal
feature correspondence with proposed Featuremetric OBA
loss. Object-centric bundle adjustment optimizes the first-
stage object estimation globally in each frame. BA-Det
achieves state-of-the-art performance on WOD.
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