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Abstract

We propose a novel visual-inertial odometry (VIO) ini-
tialization method, which decouples rotation and transla-
tion estimation, and achieves higher efficiency and bet-
ter robustness. Existing loosely-coupled VIO-initialization
methods suffer from poor stability of visual structure-from-
motion (SfM), whereas those tightly-coupled methods of-
ten ignore the gyroscope bias in the closed-form solution,
resulting in limited accuracy. Moreover, the aforemen-
tioned two classes of methods are computationally expen-
sive, because 3D point clouds need to be reconstructed si-
multaneously. In contrast, our new method fully combines
inertial and visual measurements for both rotational and
translational initialization. First, a rotation-only solution
is designed for gyroscope bias estimation, which tightly
couples the gyroscope and camera observations. Second,
the initial velocity and gravity vector are solved with lin-
ear translation constraints in a globally optimal fashion
and without reconstructing 3D point clouds. Extensive ex-
periments have demonstrated that our method is 8 ∼ 72
times faster (w.r.t. a 10-frame set) than the state-of-the-art
methods, and also presents significantly higher robustness
and accuracy. The source code is available at https:
//github.com/boxuLibrary/drt-vio-init.

1. Introduction
Visual-inertial odometry (VIO) aims to estimate camera

motion and recover 3D scene structure by fusing both im-
age and IMU measurements. The low-cost and compactness
of the camera module and IMU sensors make VIO widely
used in virtual or augmented reality systems (VR/AR) and
various autonomous navigation systems. Currently, most
VIO systems track camera motion by minimizing nonlinear

*Equal contribution.
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Figure 1. Comparison of computational cost and scale factor er-
rors on EuRoC dataset. Different colors indicate different types
of methods. Our proposed initialization method for decoupling
rotation and translation (DRT) is accurate and computationally ef-
ficient.

visual re-projection errors [14, 30], so the accuracy of the
initial value will affect the convergence. In addition, the ro-
bustness and lower latency of the initialization are also very
important for the downstream application, e.g. AR develop-
ers need accurate camera tracking within a few hundred mil-
liseconds after launching VIO, regardless of the use case.
For the sensor that has calibrated intrinsic and extrinsic pa-
rameters, the initial variables for VIO include the gravity
vector, initial velocity, gyroscope and accelerometer biases.

Many VIO systems are initialized by setting the initial
velocity to zero, then calculating the gravity vector and gy-
roscope bias with IMU measurements [14,20,36]. However,
this method only works when the system is strictly static.
For sensors in motion, loosely-coupled and tightly-coupled
initialization methods are widely studied. As shown in Fig.
2, the loosely-coupled methods [5,28,30] combine the cam-
era poses estimated by visual SfM and the IMU measure-
ments to estimate the initial state variables. However, vi-
sual SfM is prone to inaccuracy or failure when co-viewed
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Figure 2. Comparison between our method and previous VIO initialization methods. Different colored arrows indicate different information
flows for VI fusion. Our method takes full advantage of the complementary information between vision and IMU. In contrast, previous
loosely-coupled methods do not incorporate IMU information into visual SfM, and previous tightly-coupled methods do not use visual
observations to remove gyroscope bias, either of which affects the robustness and accuracy of VIO initialization.

frames are insufficient or the camera rotates rapidly. The
motion information measured by IMU is not used to im-
prove the robustness of visual SfM. The tightly-coupled
methods [8, 9, 24, 25] firstly use gyroscope measurements
and calibrated extrinsic parameters to estimate camera rota-
tion, then use closed-form solution constructed with vision
and accelerometer observations to solve for the initial ve-
locity and gravity vector. However, this type of method has
poor accuracy on systems equipped with inexpensive and
noisy IMU (e.g. cell phones), because no visual observa-
tions are used to estimate the gyroscope bias. Moreover,
the three-dimensional coordinates of point clouds are ob-
tained with the closed-form solution, resulting in a large and
time-consuming solution matrix. Both the above two kinds
of methods under-utilize the complementary advantages be-
tween visual and inertial sensors, resulting in limited accu-
racy and robustness.

According to [17, 18, 26, 38], image observations could
be directly used to optimize frame-to-frame rotation and
camera poses could be efficiently solved with linear global
translation constraints [3]. Inspired by this, we propose
a novel rotation-translation-decoupled VIO initialization
framework. Gyroscope measurements are directly inte-
grated into the camera rotation estimation, which greatly
improves the robustness of initialization, and the translation
related initial variables are solved efficiently without esti-
mating the 3D structure. As shown in Fig. 1, our method
achieves the lowest scale error and is significantly faster
than previous methods. The scale factor error is one of the

metrics for evaluating the initialization. Our main contribu-
tions are

- We propose a rotation-only solution to directly opti-
mize gyroscope bias using image observations, which
can obtain camera rotation more efficiently and more
robustly compared to vision-only methods.

- We propose a globally optimal solution for estimating
the initial velocity and gravity vector based on linear
translation constraints. Its linearity and independence
of scene structure significantly benefit computational
efficiency.

- Our proposed initialization framework outperforms the
state-of-the-art in both accuracy and robustness on
public datasets while being 8 ∼ 72 times faster in cal-
culation time for a 10-frame set. We published our
code to facilitate communication.

2. Related Work
Visual-inertial odometry has been widely studied in

terms of reducing time consumption or improving accu-
racy [7, 21, 22, 37]. A robust and accurate initialization
method is indispensable for VIO. Many influential VIO sys-
tems [4, 14, 28, 30] have their own designed initialization
methods.

Martinelli [25] proposed an impressive tightly-coupled
closed-form solution that uses tracked visual features and
accelerometer measurements to jointly estimate initial state
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variables and features depth. But the gyroscope is as-
sumed to be unbiased. [16] and [8] demonstrated that the
gyroscope bias will significantly affect the accuracy of the
closed-form solution, and proposed a method to iteratively
optimize the gyroscope bias. Recently, [11] reduces the
computational complexity by using the projection matrix to
eliminate the variables of the solution matrix, and the gyro-
scope bias is obtained with a global bundle adjustment opti-
mization. However, these methods of estimating gyroscope
bias by minimizing the nonlinear loss function are sensitive
to the results of closed-form solutions and are computation-
ally time-consuming.

With the development of visual odometry or SfM [10,
13, 27], loosely-coupled methods for estimating VIO initial
variables with high-precision camera trajectories as mea-
surements were naturally proposed [28,31]. Recently, Cam-
pos et al. [5] pointed out that the previous method did not
consider the IMU measurement uncertainty, and proposed
to use the maximum a posteriori to optimize the initial vari-
ables. Zuñiga-Noël et al. [40] extended this method to a
non-iterative efficient analytical solution.

Benefiting from deep learning-based monocular depth
estimation [32,33], Zhou et al. [39] used the learned monoc-
ular depth as input to improve the robustness of VIO ini-
tialization in scenarios with small parallax and low motion
excitation. However, this method is limited by the gener-
alization ability of the learning-based model and the large
computational cost of the convolutional network.

3. Notations and Preliminaries

In this section, notations are defined and IMU motion
model is given. Let Fci and Fbi denote the camera frame
and IMU frame at time-index i. Tbibj to be the Euclidean
transformation that take 3D points from IMU frame at time-
index j to the one at time-index i, which consisted of trans-
lation pbibj and rotation Rbibj . The calibrated extrinsic
transformation from Fb to Fc is denoted by Tcb. ⌊·⌋× and
∥·∥ are skew-symmetric operator and Euclidean norm oper-
ator, respectively.

The IMU integration follows the standard approach on
SO(3) manifold as proposed in [12].

pb1bj = pb1bi + vb1
b1
∆tij −

1

2
gb1∆t2ij +Rb1biα

bi
bj

vb1
bj

= vb1
bi

− gb1∆tij +Rb1biβ
bi
bj

Rb1bj = Rb1biγ
bi
bj

(1)

where vb1
b1

and gb1 represent the initial velocity and grav-
ity vector in Fb1 which are need to be estimated. αbi

bj
, βbi

bj
,

γbi
bj

are defined as the pre-integration of translation, veloc-
ity, and rotation, respectively. ∆tij is the time interval from

time i to time j.

αbi
bj

=

j−1∑
k=i

k−1∑
f=i

Rbibfa
m
f ∆t

∆t+
1

2
Rbibka

m
k ∆t2


βbi
bj

=

j−1∑
k=i

Rbibka
m
k ∆t

γbi
bj

=

j−1∏
k=i

Exp (ωm
k ∆t)

(2)
where function Exp(·) : so(3) → SO(3) for Lie algebra
to Lie group. ωm

k and am
k denote the gyroscope and ac-

celerometer measurements at time k, respectively. ∆t rep-
resents the time interval between adjacent IMU data.

Note that the pre-integration formula does not take into
account the bias of the measurement. Considering the ac-
celeration bias and the gravity vector are coupled together
and cannot be distinguished in a small motion, ignoring the
acceleration bias will not greatly affect the initialization re-
sults [8, 31]. In this work, the acceleration bias is assumed
to be zero, and the effect of gyroscope bias on the γbi

bj
can

be represented by a first-order Taylor approximation [12].

γ̂bi
bj

= γbi
bj
Exp

(
J
γ

bi
bj

bg
bg

)
(3)

where bg is gyroscope bias which to be estimated, γ̂bi
bj

is the

updated γbi
bj

, J
γ

bi
bj

bg
is the Jacobian of the derivative of γbi

bj
with respect to bg and is a constant can be calculated [12].

4. Our Initialization Framework
An accurate and robust rotation estimation is crucial for

improving the trajectory accuracy of the system since the
rotation will affect the accumulation of translation vectors.
In this section, we first introduce our method for robust es-
timation of gyroscope bias using at least two images. Then,
we derive two linear solutions for the initial velocity and
gravity vector after the rotation is obtained by gyroscope
integration.

4.1. Gyroscope Bias Optimizer

The rotation between the two cameras can be directly
iteratively optimized using the geometric constraints con-
structed by feature correspondences [17], but this method
requires the initial value of the rotation to be close to the
ground truth. We extend this method to visual-inertial sys-
tems to avoid the above problem and extend it to solving
rotations between multiple views.

In this paragraph, we revisit the main idea of directly op-
timizing frame-to-frame rotation [17]. As shown in Fig. 3,
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Figure 3. Geometric relationships of unit feature observation vec-
tors and gyroscope bias. The normal vectors (yellow and blue) per-
pendicular to the corresponding epipolar plane (yellow and blue)
should be coplanar (purple plane), which can form a constraint for
solving the relative rotation (gray). The gyroscope bias optimizer
converts the value to be solved into gyroscope bias (orange) by the
known extrinsic rotation (green).

if a 3D point p1 can be observed by two cameras, the two
camera centers Fci and Fcj and the 3D point construct an
epipolar plane. Define f1i and f1j represent the unit vectors
pointing from Fci and Fcj to p1, respectively. The nor-
mal vector of the epipolar plane can be calculated by cross
product, nk = ⌊fki ⌋×Rcicj f

k
j . The normal vectors of all

epipolar planes will be perpendicular to the translation vec-
tor, which means these normal vectors need to be copla-
nar. Suppose we have n 3D points observed in two frames,
stacking all normal vectors into a matrix N =

[
n1 . . . nn

]
,

then coplanarity is algebraically equivalent to the minimum
eigenvalue of the matrix M = NN⊤ equal to zero. The
final problem of calculating the relative rotation Rcicj is
parameterized as

R∗
cicj = argmin

Rcicj

λMij ,min

with Mij =

n∑
k=1

(
⌊fki ⌋×Rcicj f

k
j

) (
⌊fki ⌋×Rcicj f

k
j

)⊤ (4)

where λMij ,min is the smallest eigenvalue of Mij .
For the visual and inertial system with known extrinsic

parameters Rbc,pbc, the relative motion between cameras
can be represented in the IMU body frame:

Rcicj = R⊤
bcRbibjRbc

pcicj = R⊤
bc

(
pbibj +Rbibjpbc − pbc

) (5)

where Rbibj represents the rotation from Fbj to Fbi , which

can be obtained by integrating the gyroscope measurements
between time i and time j using Eq. (3).

Combining Eq. (3), (4) and (5), Mij can be represented
as a new matrix related to gyroscope information

M′
ij =

n∑
k=1

(
⌊fki ⌋×R⊤

bcγ
bi
bj
Exp

(
J
γ

bi
bj

bg
bg

)
Rbcf

k
j

)
(
⌊fki ⌋×R⊤

bcγ
bi
bj
Exp

(
J
γ

bi
bj

bg
bg

)
Rbcf

k
j

)⊤ (6)

where only bg needs to be estimated. Using the properties
of the rotation matrix and vector cross product, Eq. (6) can
be further simplified to the following form

M′
ij =

n∑
k=1

(
R⌊fki

′⌋× Exp

(
J
γ

bi
bj

bg
bg

)
fkj

′
)

(
R⌊fki

′⌋× Exp

(
J
γ

bi
bj

bg
bg

)
fkj

′
)⊤ (7)

where R = R⊤
bcγ

bi
bj

, fki
′
= R⊤fki , and fkj

′
= Rbcf

k
j .

Please refer to the supplement material Sec.1 for details.
Let E denote the set of keyframe pairs that observe

enough common features. Since the gyroscope bias is
slowly time-varying, it can be assumed to be a constant dur-
ing VIO initialization, so any keyframe pair (i, j) ∈ E can
be used to estimate the gyroscope bias. To fully utilize all
visual observations, multiple keyframe pairs are combined
to optimize the solution

b∗
g = argmin

bg

λ

with λ =
∑

(i,j)∈E

λM′
ij ,min

(8)

Eq. (8) is the cornerstone and one of the main contribu-
tions of this paper. To solve Eq. (8), quaternions are used
as minimal rotation parameterization, and the Levenberg-
Marquardt strategy with automatic differentiation in ceres
[1] is used to iteratively optimize the solution [17]. Since
the gyroscope bias is small (usually less than 0.1 rad/s),
we can set the initial value bg = 0 during iterative opti-
mization.

In addition, after solving bg , we can calculate the ro-
tation matrices between all cameras by integrating the bias-
removed gyroscope measurements. Although there are mul-
tiple keyframes, only a three-dimensional variable bg needs
to be solved.

4.2. Velocity And Gravity Estimator

After the rotation is calculated, the initial velocity and
gravity vector of the system can be solved efficiently with-
out estimating 3D point clouds. In this section, tightly-
coupled and loosely-coupled solvers based on linear trans-
lation constraints are presented separately.
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4.2.1 Tightly-Coupled Solution

Assuming that the first frame of a multi-frame sequence is
the world coordinate system, the position of each frame in
the world coordinate system can be solved efficiently by
directly using the linear global translation constraint [3].
Suppose there are three keyframes and the index of these
keyframes is r, i, and l, respectively. The LiGT constraint
can be expressed as :

Bpc1cr +Cpc1ci +Dpc1cl = 0, 1 ≤ i ≤ n,i ̸= l (9)

where
B = ⌊fki ⌋×Rciclf

k
l a

⊤
lrRcrc1

C = θ2lr⌊fki ⌋×Rcic1

D = −(B+C)

a⊤
lr =

(
⌊Rcrclf

k
l ⌋×fkr

)⊤ ⌊fkr ⌋×
θlr =

∥∥⌊fkr ⌋×Rcrclf
k
l

∥∥
(10)

When we have m(m > 3) keyframes, there are multiple
B, C, D. We can concatenate them and define as the coef-
ficient matrix L which containing only visual observations
and global rotations. Let P =

(
p⊤
c1cr , ...,p

⊤
c1cn

)⊤
, then

Eq. (9) can be written as

L ·P = 0 (11)

The positions of all cameras concerning the first
keyframe can be solved by Eq. (11). Since the translation
vectors of Eq. (9) are all about the camera coordinate sys-
tem, we substitute Eq. (5) into Eq. (9) to transform the cam-
era coordinate system into IMU coordinate system.

B′ur +C′ui +D′ul = 0, 1 ≤ i ≤ n,i ̸= l (12)

where

B′ = BR⊤
bc, C′ = CR⊤

bc, D′ = DR⊤
bc

um = (pb1bm +Rb1bmpbc − pbc) , m ∈ r,i,l
(13)

All global translations in the above formulation can be
replaced using IMU integration formulation in Eq. (1).
Therefore, the system of linear equations (11) for solving
the global position is transformed into the following equa-
tions for solving the initial velocity and gravity vector,[

A1 A2

] [ vb1
b1

gb1

]
= d (14)

where

A1 = B′∆t1r +C′∆t1i +D′∆t1l

A2 =
1

2

(
B′∆t21r +C′∆t21i +D′∆t21l

)
d = −B′s1r −C′s1i −D′s1l

s1m = αb1
bm

+Rb1bmpbc − pbc, m ∈ r,i,l

(15)

For detailed derivation, please refer to the supplement mate-
rial Sec.2. Since the norm of the gravity vector is constant,
the Lagrange multiplier method [6] is used to find the opti-
mal solution for the constrained least squares problem.

4.2.2 Loosely-Coupled Solution

The loosely-coupled approach requires computing the cam-
era translation first, which is then combined with the IMU
measurements to compute the initial state variables. The
camera pose can be calculated by Eq. (9), and if monocular
camera is used, the position obtained from LiGT constraint
is up to scale, then the metric scale factor s needs to be com-
puted explicitly during initialization. Define X as a vector
of initial state variables, vbn

bn
means the velocity of body in

Fbn , gc0 is the gravity in Fc0 and s is the metric scale.

X =
[
vb0
b0
,vb1

b1
, · · · ,vbn

bn
, s,gc0

]
∈ R3(n+1)+1+3 (16)

Assume that the body coordinate systems correspond-
ing to two keyframes are Fbi and Fbk , The following con-
straints [31] exist between IMU and visual measurements

α̂bi
bk

= Rbic0

(
s (pc0bk − pc0bi) +

1

2
gc0∆t2ik

)
− vbi

bi
∆tik

β̂
bi
bk

= Rbic0

(
Rc0bkv

bk
bk

+ gc0∆tik

)
− vbi

bi

(17)
The residual is the difference between the estimated and

measured values, it can be parameterized as

r (X ) =

[
αbi

bk
− α̂bi

bk

βbi
bk

− β̂
bi
bk

]
(18)

In the presence of noise this system have no exact solu-
tion, so we still use the least squares solution:

H′


vbi
bi

vbk
bk
s
gc0

 = b′ (19)

Finally, we stack H′ generated by multiple adjacent
frames into a coefficient matrix H, and the same is true for
b′ and b. Solving the least squares solution HX = b, X
can be obtained. Please refer to the supplement material
Sec.2 for the specific forms of H′ and b′.

5. Experiments
In the section, simulation experiments are first used to

verify the effectiveness of our method, and then the eval-
uation on real datasets demonstrates the accuracy, robust-
ness and computational efficiency. Gyroscope bias error,
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velocity error, gravity direction error, and scale factor er-
ror are used to evaluate the performance of each algorithm.
We perform a Sim(3) alignment [35] against the ground
truth trajectory to get scale error. For the gyroscope bias
error, let bg be the mean of all biases in the GT trajec-
tory, and the percent of the relative error is computed with∣∣||bg|| − ||bg||

∣∣ /||bg||. We divided all the datasets collected
by continuous motion in different scenarios into several data
segments. Each data segment used for initialization con-
sists of 10 keyframes, where the keyframes are obtained by
sampling image frames at a frequency of 4Hz as used in
other works [5, 40]. In all quantitative experiments, only
datasets with successful initialization, i.e., scale error less
than 1 (|s − 1| < 1), were used for statistics, and the Root
Mean Square Error (RMSE) is used for evaluation. All the
experiments were conducted on a computer with Intel i7-
9750H@ 2.6GHz CPU.

The loosely-coupled VI-initialization methods used for
comparison include the VINS-Mono initialization (denoted
as VINS-Mono) [30] and the analytical-solution [40] which
is an improved work of the ORB-SLAM3 initialization [5]
(denoted as AS-MLE). The code for the tightly-coupled
initialization (denoted as CS-VISfM) [25] used for com-
parison is from the open-sourced SLAM OpenVINS [14].
We denote our method of solving the velocity and grav-
ity vectors in a tightly-coupled or loosely-coupled manner
as DRT-t and DRT-l, respectively. To verify the neces-
sity of a gyroscope bias estimator (GBE), we evaluate the
method combining our GBE with CS-VISfM (denoted as
CS-VISfM-GBE) and the DRT-l method without GBE (de-
noted as DRT-l-wo-GBE) as ablation experiments.

5.1. Simulation Experiments

We simulated camera motion with 20Hz and IMU mea-
surements with 200Hz, forming an ellipse trajectory with
sinusoidal vertical motion. The long-semi axis and short-
semi axis of the ellipse trajectory are 4m and 3m, respec-
tively. The number of observed feature points in each frame
is limited to 150, and the Gaussian noise with standard devi-
ation δpix = 1 pixel is added to the landmark observations.
The simulated acceleration and gyroscope measurements
are computed from the analytic derivation of the paramet-
ric trajectory and additionally corrupted by white noise and
slowly time-varying bias terms 1. To verify the convergence
of the gyroscope bias estimator, we set different gyroscope
biases from 0.02 rad/s to 0.18 rad/s during simulation.

1We used the following IMU parameters: Gyroscope and accelerometer
continuous-time noise density: σg = 1.5e−4

[
rad/(s

√
Hz)

]
, σa =

1.9e−4
[
m/(s2

√
Hz)

]
. Gyroscope and accelerometer bias continous-

time noise density: σbg = 1e−5
[
rad/(s2

√
Hz)

]
, σba =

1e−5
[
m/(s3

√
Hz)

]
.

Table 1. Initialization accuracy in gyroscope bias error (%), grav-
ity direction error (◦), velocity error (m/s) and scale error metrics
with DRT-t method.

Metrics 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18
Bg 28.50 12.56 7.23 5.82 4.02 3.53 2.48 2.52 2.03

G.Dir 0.58 0.60 0.58 0.59 0.60 0.59 0.61 0.59 0.61
Vel 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

Scale 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08

As shown in Tab. 1, the percentage of the gyro bias er-
ror decreases with the increase in the gyro bias magnitude,
which is caused by the estimated absolute error of gyro bias
all being about 0.01 rad/s. Meanwhile, the gravity direction
errors obtained by DRT-t are about 0.6◦, and the trajectory
scale errors are 0.08, indicating the effectiveness of our ini-
tialization algorithm. The simulation results show that our
method can not only converge on different gyroscope bias
magnitude, but also accurately initialize the state variables.

5.2. Real Experiments

The popular EuRoC dataset [2] from a micro air vehi-
cle (MAV) is used to verify the algorithms. This dataset
contains 11 sequences of different motion patterns collected
in two scenes. We sampled 1422 data segments with suf-
ficient motion excitations to exhaustively evaluate the ac-
curacy, robustness, and time-consuming of each algorithm.
In the experiments, all algorithms use the same image pro-
cessing operations, existing features are tracked by the KLT
sparse optical flow algorithm [23], and new corner features
are detected [34] to maintain 150 points for each image.
The outliers are culled using RANSAC with a fundamental
matrix model [15] for 1 pixel re-projection error. For the
loosely-coupled algorithms, we adopt a general SfM frame-
work to estimate camera motion, which first estimates the
initial camera pose with the 5-point algorithm [29] and the
PnP solver [19], and then uses bundle adjustment to opti-
mize all poses and point clouds. The max running time of
BA is set to 0.2s to fulfill real-time commands [30].

5.2.1 Accuracy evaluation

To verify the accuracy and robustness of our gyroscope
bias estimation algorithm, our method is compared with
two loosely-coupled methods, VINS-Mono and AS-MLE.
Fig. 4 shows that our method significantly outperforms pre-
vious methods in almost all sequences. Specifically, the
loosely-coupled methods have no results on the V103 and
V203 sequences because they are successfully initialized on
too few data segments (less than 5) to be statistically signif-
icant. This also illustrates the robustness of our gyroscope
bias estimation method.
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Table 2. Exhaustive initialization results for 10KFs setting in low, medium, and high angular velocity datasets from EuRoC. For each
metric, the best in red, the second best in blue.

Scale RMSE Velocity RMSE (m/s) G.Dir RMSE (◦)

Low Medium High Mean Low Medium High Mean Low Medium High Mean

AS-MLE 0.28 0.35 0.25 0.31 0.16 0.21 0.23 0.18 1.70 3.15 4.16 2.38
CS-VISfM 0.53 0.50 0.41 0.51 0.23 0.24 0.30 0.24 6.10 5.93 6.07 6.03

CS-VISfM-GBE 0.23 0.23 0.07 0.22 0.13 0.13 0.06 0.12 1.18 1.23 0.86 1.18
VINS-Mono 0.19 0.23 0.16 0.20 0.11 0.13 0.16 0.12 1.38 1.80 1.60 1.53

DRT-t 0.25 0.22 0.06 0.23 0.13 0.13 0.06 0.13 1.22 1.26 0.95 1.22
DRT-l 0.15 0.15 0.07 0.15 0.09 0.10 0.07 0.09 1.20 1.22 0.97 1.19

DRT-l-wo-GBE 0.48 0.46 0.51 0.48 0.22 0.24 0.28 0.23 5.92 5.68 5.78 5.83
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Figure 4. Gyroscope bias errors on EuRoC sequences. Loosely-
coupled methods are difficult to initialize successfully on V103
and V203.

In the error statistics of other initial state variables such
as scale factor and gravity vector, we classified the 1422
data segments according to the magnitude of angular veloc-
ity, including 638 low-speed data segments (||ω|| < 15◦/s),
327 high-speed data segments (||ω|| > 30◦/s), and 457
medium-speed data segments. Please refer to the supple-
mentary material Sec.3 for the results of separate statistics
for the 11 sequences. From Tab. 2, it can be seen that
DRT-l significantly outperforms state-of-the-art initializa-
tion methods on almost all the motion scenarios, which ver-
ifies the effectiveness of our proposed framework. Specif-
ically, comparing the two tightly coupled methods CS-
VISfM-GBE and DRT-t, it can be found that the accu-
racy difference is marginal. In fact, the difference between
the two methods is whether to introduce 3D point coordi-
nates when constructing the constraint equation. Compar-
ing VINS-Mono and DRT-t, it can be seen that the method
of decoupling rotation and translation can estimate the grav-
ity vector more accurately. However, in the tightly cou-
pled method, the velocity and pose of each keyframe are
calculated by integrating the accelerometer data from the

initial moment, and the noise accumulated by the integra-
tion makes the accuracy of the scale factor and the velocity
lower than that of the loosely coupled method. DRT-l com-
bines the advantages of high rotation accuracy obtained by
the decoupling method and the advantage of not requiring
long-time integration of accelerometer data by the loosely
coupled method, making it the best overall performance. It
should be noted that compared with VINS-Mono, the LiGT
constraint used to solve translation in DRT-l is not more ac-
curate than the pose solved by SfM [3], so the core of the
accuracy improvement is the higher rotation accuracy es-
timated by the decoupling method. The main contribution
of the LiGT constraint is computational efficiency. Finally,
by comparing the results of CS-VISfM against CS-VISfM-
GBE and DRT-l-wo-GBE against DRT-l, we can find that
their performance degrades significantly when the visual in-
formation is not used to remove the gyroscope bias. This
validates the necessity of estimating the gyroscope bias and
also illustrates the importance of accurate rotation estima-
tion. For qualitative analysis, we visualize a dataset with the
trajectory in Fig. 5. The successful initialization rates and
accuracy of DRT outperform the other algorithms, which
intuitively illustrates the superiority of our algorithm in dif-
ferent motion modes (e.g., rapid rotation).

5.2.2 Robustness evaluation

The robustness experiments are divided into two categories.
One is the histogram distribution of the error, the more
statistics on small errors, the better the robustness of the
system. The other is the proportion of successful initializa-
tion on low-latency data segments. For the evaluation of
lower latency initialization, the number of keyframes is re-
duced from 10 KFs to 5 KFs (≈ 1s), so as to reduce image
observations and motion excitation. In Fig. 6, we plot the
distribution of the percents for the scale error, velocity error,
and gravity error metrics. It can be seen that no matter the
10KFs test results in the first row or the 5KFs test results in
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Figure 5. Angular velocity and scale error visualizations for the V202 dataset. Left: Trajectory colored by angular velocity magnitude.
Right: Segments of poses colored by scale error magnitude for each initialization window in the dataset (lighter is better). Segments
colored black indicate failed initializations for the respective methods.
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Figure 6. Distribution plots of successful percentages for primary
error metrics. First row: Results with 10 keyframes. Second row:
Results with 5 keyframes. For each plot, the X axis denotes the
threshold for the error metric and the Y axis shows the fraction of
initialization sequences with the respective error metric belonging
to the threshold boundary on the X axis.

the second row, the number of initialization sequences with
DRT-l is the largest in the small-errors range, which demon-
strates the robustness of our rotation and translation decou-
pled method in different scenarios (e.g., fast motion and low
latency). The results of CS-VISfM are significantly better
than CS-VISfM-GBE, which shows that our rotation-only
optimizer plays a corner-stone role in robustness and accu-
racy. Comparing CS-VISfM-GBE and DRT-t, their perfor-
mance difference in robustness is still tiny as they are in the
accuracy evaluation.

5.2.3 Running time evaluation

To show the time-consuming details of each algorithm, the
time-consuming of each module is counted separately, such
as SfM, gyroscope bias optimizer, velocity and gravity es-
timator, and point triangulation. Since our method does not
need to compute point clouds, in order to be consistent with
other methods, we triangulate all observations after initial-
izing the IMU variables. The point cloud triangulation mod-

Table 3. Average initialization computation duration of EuRoC
for 10KFs setting in milliseconds. The time consumption of SfM,
gyroscope bias optimizer, velocity and gravity estimator, and the
point triangulation module are calculated.

Module AS-MLE CS-VISfM VINS-Mono DRT-t DRT-l

SfM 30.30 - 30.35 - -
Bg Est. 0.15 - 0.44 1.95 1.94

Vel&Grav Est. 0.08 279.95 0.14 2.81 1.53
Point Tri. 0.01 - 0.01 0.42 0.41

Total Cost 30.54 279.95 30.94 5.18 3.89

ule of the loosely-coupled method refers to scaling all point
clouds with the estimated scale factor.

The computation cost (in milliseconds) of different ini-
tialization methods for the 10KFs setting is shown in Tab. 3.
We can observe that the initialization speed of DRT-l is the
fastest, and it only takes 3.89 ms, which is 72 times faster
than the tightly-coupled method CS-VISfM and 8 times
faster than the loosely-coupled method VINS-Mono. CS-
VISfM needs to solve the large dimensional matrix con-
taining the initial variables and the position of the points.
The loosely-coupled method uses the SfM module to esti-
mate the visual poses, which is the source of the most time-
consuming in the initialization process.

6. Conclusion
This paper proposes a rotation and translation decoupled

solution for visual-inertial initialization. A new formulation
for optimizing gyroscope bias directly using visual observa-
tions and inertial information is derived, and a globally op-
timal solver for initial velocity and gravity vectors without
estimating 3D point clouds is proposed. Extensive experi-
ments demonstrate that our method is computationally effi-
cient while achieving significant improvements in accuracy
and robustness. However, our method ignores the effect of
accelerometer bias, and modeling the accelerometer bias in
translation constraints is our future work.
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