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Abstract

The goal of multimodal summarization is to extract
the most important information from different modalities
to form summaries. Unlike unimodal summarization, the
multimodal summarization task explicitly leverages cross-
modal information to help generate more reliable and high-
quality summaries. However, existing methods fail to lever-
age the temporal correspondence between different modal-
ities and ignore the intrinsic correlation between differ-
ent samples. To address this issue, we introduce Align
and Attend Multimodal Summarization (A2Summ), a uni-
fied multimodal transformer-based model which can ef-
fectively align and attend the multimodal input. In ad-
dition, we propose two novel contrastive losses to model
both inter-sample and intra-sample correlations. Exten-
sive experiments on two standard video summarization
datasets (TVSum and SumMe) and two multimodal sum-
marization datasets (Daily Mail and CNN) demonstrate the
superiority of A2Summ, achieving state-of-the-art perfor-
mances on all datasets. Moreover, we collected a large-scale
multimodal summarization dataset BLiSS, which contains
livestream videos and transcribed texts with annotated sum-
maries. Our code and dataset are publicly available at
https://boheumd.github.io/A2Summ/.

1. Introduction
With the development in multimodal learning, multi-

modal summarization has drawn increasing attention [1–9].
Different from traditional unimodal summarization tasks,
such as video summarization [10–17] and text summariza-
tion [18–22], multimodal summarization aims at generating
summaries by utilizing the information from different modal-
ities. With the explosive growing amount of online content
(e.g., news, livestreams, vlogs, etc.), multimodal summa-
rization can be applied in many real-world applications. It
provides summarized information to the users, which is es-
pecially useful for redundant long videos such as livestream
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Figure 1. A2Summ is a unified multimodal summarization frame-
work, which aligns and attends multimodality inputs while lever-
aging time correspondence (e.g., video and transcript) and outputs
the selected important frames and sentences as summaries.

and product review videos.
Previous multimodal summarization methods [2,4,23,24]

leverage the additional modality information but can only
generate the main modality summary, i.e., either a video
summary or a text summary, severely limiting the use of
complementary benefits in the additional modality. Recently,
multimodal summarization with multimodal output (MSMO)
has been explored in several studies [1, 6, 25, 26], which
aim at generating both video and text summaries using a
joint model. Compared to previous methods, which only
produce a unimodal summary, MSMO provides a better
user experience with an easier and faster way to get useful
information. However, we find that the existing MSMO
methods still have the following limitations. First, even if
both modalities are learned together, the correspondence
between different modalities is not exploited. For example,
given a video and its transcripts, which are automatically
matched along the time axis, no existing method utilizes the
mutual temporal alignment information and treats the two
modalities separately. Second, previous works adopt simple
strategies to model the cross-modal correlation by sequence
modeling and attention operation [1, 4, 25, 25, 26, 26], which
requires a large number of annotated multimodal data which
is hard to obtain.

Motivated by the above observations, we propose a novel
architecture for multimodal summarization based on a uni-
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fied transformer model, as shown in Figure 1. First, to
leverage the alignment information between different modal-
ities, we propose alignment-guided self-attention module to
align the temporal correspondence between video and text
modalities and fuse cross-modal information in a unified
manner. Second, inspired by the success of self-supervised
training [27–29], which utilizes the intrinsic cross-modality
correlation within the same video and between different
videos, we propose dual contrastive losses with the combi-
nation of an inter-sample and an intra-sample contrastive
loss, to model the cross-modal correlation at different gran-
ularities. Specifically, the inter-sample contrastive loss is
applied across different sample pairs within a batch, which
leverages the intrinsic correlation between each video-text
pair and contrasts them against remaining unmatched sam-
ples to provide more training supervision. Meanwhile, the
intra-sample contrastive loss operates within each sample
pair, which exploits the mutual similarities between ground-
truth video and text summaries and contrasts the positive
features against hard-negative features.

To facilitate the research of long video summarization
with multimodal information, we also collected a large-scale
livestream video dataset from the web. Livestream broadcast-
ing is growing rapidly, and the summarization of livestream
videos is still an unexplored area with great potential. Pre-
vious video summarization datasets consist of short videos
with great variations in scene transitions. On the contrary,
livestream videos are significantly longer (in hours as op-
posed to minutes) and the video content changes much more
slowly over time, which makes it even harder for the sum-
marization task. Besides, there has been a lack of annotated
datasets with focus on transcript summarization, which can
be a great complement to the livestream video summariza-
tion. Therefore, we collect a large-scale multimodal sum-
marization dataset with livestream videos and transcripts,
which are both annotated with ground-truth summaries by
selecting important frames and sentences.

To summarize, our contributions include:
• We propose A2Summ, a unified transformer-based ar-

chitecture for multimodal summarization. It can handle
multimodal input with time correspondences which pre-
vious work neglects.

• We present dual contrastive losses that account for mod-
eling cross-modal information at different levels. Ex-
tensive experiments on multiple datasets demonstrate
the effectiveness and superiority of our design.

• A large-scale Behance LiveStream Summarization
(BLiSS) dataset is collected containing livestream
videos and transcripts with multimodal summaries.

2. Related Work
Video Summarization. Current techniques for video sum-
marization can be divided into two categories, unsuper-

vised and supervised. Unsupervised learning approaches,
including [11, 30–33, 33–39] utilize different hand-crafted
features to score and select the video frames without the
human-annotated summaries. DR-DSN [11] explores an
unsupervised reward function to tackle video summariza-
tion. GLRPE [39] attempts to apply self-attention with rela-
tive position representation for unsupervised video summa-
rization. With the help of the annotated video summariza-
tion datasets [40, 41], numerous supervised learning meth-
ods [14,16,17,17,42–45] have been proposed in recent years
to summarize videos. Among them, DSNet [14] formulates
supervised video summarization as a temporal interest detec-
tion process. RSGN [16] utilizes LSTM and GCN to model
frame-level and shot-level dependencies. iPTNet [17] jointly
trains the video summarization task and correlated moment
localization task to utilize additional moment localization
data samples to boost the video summarization performance.

Text Summarization. In general, text summarization can
be categorized into two groups: (i) Extractive summariza-
tion [19–22,46] generates output summary by identifying the
salient parts of the input document. NN-SE [19] develops a
neural attention model to select sentences or words of the in-
put document as the output summary. SummaRuNNer [20]
employs RNN for extractive summarization. Miller [21]
adopts clustering algorithm in the feature space to select im-
portant sentences. (ii) Abstractive summarization [18,47–50]
performs the summarization by paraphrasing the important
parts of the input document. Lead3 [18] applies the atten-
tional encoder-decoder RNN for the task of abstractive text
summarization. However, those approaches are designed for
pure unimodal summarization that doesn’t consider cross-
modal alignment and fusion. Recently, StreamHover [51]
presents an unsupervised model for transcript summarization
and collects a livestream transcript summarization dataset.
Inspired by it, we collect a new livestream dataset with a
much larger scale and richer multimodal annotations for the
multimodal summarization task.

Multimodal Summarization. Existing work [2, 4, 23, 24,
52] commonly utilize additional complementary modalities
to enhance the feature representation for the primary modal-
ity, however, they typically generate summaries from a sin-
gle modality. For example, CLIP-It [2] builds a language-
guided framework to obtain a summary video conditioned
on the text. MMS [23] learns joint representations of text
and images and outputs text summaries. Recently, multi-
modal summarization with multimodal output (MSMO) has
been explored in several studies. Zhu et al. [1] propose the
first MSMO model and collect a multimodal summarization
dataset with text and image modalities. Li et al. [25] extend
it with video-based news articles and adopt conditional self-
attention for text and video fusion. Recently, Fu et al. [6]
collect a multimodal dataset with more modalities included
such as audio and transcript.
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Figure 2. (a) The overview of A2Summ framework. Given N video frames and M text sequences as input, A2Summ predicts the important
frames and sentences as multimodal summaries. (b) Alignment-guided self-attention module is applied to align and fuse each video and text
pair. (c) Inter-sample contrastive loss is calculated by maximizing the similarity of [CLSV] and [CLST] tokens from the same pair while
minimizing the similarity of tokens from different pairs. B is the batch size. Best viewed in color.

3. Method

3.1. Overview

Given the untrimmed multimodality input (e.g. video,
text, and sound), the multimodal summarization task aims
at selecting the most important parts from each modality.
Figure 2(a) illustrates an overview of our A2Summ frame-
work. The input to our model is the multi-modality (e.g.,
video and transcribed text in our case) with N video frames
and M sentences. Since each transcribed sentence has its
start time and end time, the video and text modalities can be
automatically aligned by the corresponding timestep. The
overall architecture can be divided into three parts: the input
embedding (Sec. 3.2), the multimodal alignment and fusion
(Sec. 3.3), and the loss function (Sec. 3.4).

3.2. Input Embedding

Similar to previous work [10, 14, 17, 53], we use pre-
trained feature extraction models (e.g., GoogleNet [54] and
RoBERTa [55]) to extract deep neural features for each frame
and sentence. After feature extraction, features from differ-
ent modalities are projected into a common C-dimensional
embedding space by a linear fully connected (FC) layer.
Specifically, we denote the generated video and text features
as F ∈ RN×C and S ∈ RM×C, respectively.

For each modality, there is a special token “[CLS]”

prepended at the start of the feature sequences, which en-
ables a holistic representation. Following BERT [56], we add
a learnable position embedding to each feature sequence so
that the order information can be incorporated. To utilize the
time correspondence information between the video frames
and text sentences, we add an additional learnable segment-
based positional embedding at the input stage. More pre-
cisely, each sentence has its own timestep information de-
noted as [ts, te], where ts and te denote the start and the
end time index of each sentence. We note that a single text
sentence usually corresponds to several video frames, mak-
ing M ≤ N . For all frames inside each time index window
{Fi}i∈[ts,te], the segment embedding is shared across these
frames and the corresponding sentence. After adding these
positional embeddings, the input sequences to the multi-
modal transformer from both modalities are concatenated
along the time axis, denoted as X ∈ R(M+N)×C .

3.3. Multimodal Alignment and Fusion

Alignment-Guided Self-Attention. A core component
of A2Summ is the alignment-guided self-attention mod-
ule which allows us to exploit the time correspondence
between video and text modalities. Inspired by the supe-
rior advantages of Transformers [57] in modeling different
modalities (e.g., visual, language, and audio) on various
multimodal tasks (e.g., visual question answering [58–62],
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vision-language pre-training [63–65]), we adopt the trans-
former architecture to align and fuse our multimodal input.
However, for the multimodal summarization task, the inputs
are often untrimmed videos and text sentences, which are
dominated by irrelevant backgrounds. Directly applying
global self-attention across inputs from all modalities may
introduce extra noise to the multimodal fusion process.

Motivated by this observation, we propose the alignment-
guided self-attention module to fuse the input across different
modalities. We formulate this process by using a masked self-
attention operation in Figure 2(b). Specifically, an attention
mask A ∈ R(N+M)×(N+M) initialized with all 0 is defined
to indicate the timestep alignment information, where N and
M denote the length of the video and text feature sequences,
respectively. For the intra-modality modeling, we follow the
standard procedure with global attention operation, where
features from the same modality can attend to each other
such that all entries corresponding to intra-modality attention
are filled with value 1 in the attention mask. For the cross-
modality attention between video and text input, we only fill
in the entries from the same segment with value 1. For exam-
ple, suppose the kth sentence Sk corresponding to the time
index window [ts, te]. We consider the frames which also lie
into the same time window [ts, te] to be the same segment,
denoted as {Fi}i∈[ts,te]. Then, we assign the elements of at-
tention mask as follows A[N +k, ts : te] = 1. The attention
mask is then applied to the attention matrix computed by the
standard self-attention approach [57, 66–68]:

Q = XWQ, K = XWK , V = XWV , (1)

Di,j =
Ai,jexp(QiK

T
j /

√
D)∑

k Ai,kexp(QiKT
k /

√
D)

, (2)

Z = X +DVWO, (3)

where i, j ∈ [1,M +N ] are the entry indices of the matrix,
X is the concatenated input from video and text modalities,
and WQ,WK ,WV ,WO ∈ RC×C are the linear projection
matrices for generating the query, key, value, and the out-
put. Multi-head attention [57] is also adopted to improve
the capacity of the attention module. In this way, we explic-
itly utilize the alignment correspondence between different
modalities, avoiding the negative impacts caused by noisy
background frames or irrelevant sentences.

Mixture-of-Modality-Experts. Based on the mixture-of-
modality-experts transformer [61] in the multimodal tasks,
after the self-attention layer, we introduce two different ex-
perts to jointly model features from different modalities
including the video expert (Video-FFN), and text expert
(Text-FFN) rather than the standard shared FFN [57].

Score Prediction. Finally, on top of the cascaded trans-
former blocks, two separate score prediction branches assign
relevance scores to each frame and each sentence. Based

on predicted scores, two different procedures are followed
to generate the final summary. For the standard video sum-
marization datasets (e.g., SumMe [41] and TVSum [40]),
based on the pre-processed KTS [69] segmentation results,
segment-level scores are computed from frame-level scores,
and the final video summary is generated by selecting top
15% of video durations by Knapsack algorithm. For the mul-
timodal summarization datasets (e.g., Daily Mail [6]), the
frames and sentences with the top highest scores are selected
to generate the final summary prediction for the video and
text modalities separately.

3.4. Loss Function

We employ three different loss functions to train our
model, including the classification loss and the novel dual
contrastive losses, which consist of the inter-sample con-
trastive loss and the intra-sample contrastive loss.

Classification Loss. We apply the focal loss [70] for the
importance score classification, which handles the class im-
balance issue by down-weighting losses for well-classified
samples. The details are shown below:

Lclsm = − 1

N

N∑
i=1

{
−α(1−pi)

γ log(pi), if yi=1
−(1−α)pγi log(1− pi), if yi=0

(4)
Lcls = Lclsvideo + Lclstext (5)

where m could be either video or text, and pi is the predicted
score for each frame/sentence while yi is the ground-truth
label. If yi=1, it indicates the ith frame/sentence is the key-
frame/key-sentence. The final classification loss is the sum
of the two single modality losses.

Inter-Sample Contrastive Loss. Driven by the success
of contrastive learning in the image-language pre-training
tasks [71–73], we want to utilize the intrinsic relationships
between each input video and text pair. As shown in Fig-
ure 2(c), given a batch of B sample pairs, we design an auxil-
iary inter-sample contrastive loss to predict which of the B2

possible video-text pairs across a batch correctly matches
and belongs to the same sample. Specifically, we use the
pre-pended [CLS] token as a holistic representation for each
video and text sample. Similar to CLIP [71], we maximize
the cosine similarity of the video embedding [CLSV] and
the text embedding [CLST] from B real pairs in the batch
while minimizing the cosine similarity of embeddings from
the B2 − B incorrect pairs. Specifically, the inter-sample
contrastive loss is calculated as

Linter = Ez∼[CLSV]j ,z+∼[CLST]j ,z−∼Ik ̸=j [CLST]kℓ(z, z
+, z−)

+ Ez∼[CLST]j ,z+∼[CLSV]j ,z−∼Ik ̸=j [CLSV]kℓ(z, z
+, z−)

(6)
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Figure 3. (a) Contrastive pair selection process for selecting positive and hard-negative video frame features. The same procedure is applied
to the text modality. The crossed red boxes denote the top predicted time steps masked out by the expanded key-frame label. (b) Intra-sample
contrastive loss is applied between the selected video and text pairs. Best viewed in color.

where ℓ(z, z+, z−) is the standard contrastive loss [72] with
the following equation:

ℓ(z, z+, z−)

= − log

(
exp (zT · z+/τ)

exp (zT · z+/τ) +
∑

k exp (z
T · z−k /τ)

)
(7)

and τ is a learnable temperature parameter.

Intra-Sample Contrastive Loss. While the above inter-
sample contrastive loss only considers the relationship across
different samples, however, for the summarization task, to
correctly detect the key-frames and key-sentences from each
untrimmed video and text input, more fine-grained infor-
mation modeling, in particular, is crucial. It would require
the model to accurately distinguish the key-frames and key-
sentences from the background frames and less-related sen-
tences. Intuitively, the human-annotated key-frames and key-
sentences share mutual information with each other. Mean-
while, they both should reveal the most salient parts from the
original untrimmed video and text sequences. For instance,
for a cooking recipe video with transcribed text, the anno-
tated key-frames and key-sentences should clearly reveal
the instructions for each step. More importantly, these key-
frames and key-sentences should be deeply correlated with
each other and share similar high-level semantic meanings.
Motivated by this observation, we propose the intra-sample
contrastive loss which is calculated within each video and
text pair sample rather than across different sample pairs.

Specifically, we assign features associated with the pre-
defined ground-truth key timesteps as positive pairs for both
modalities. To form the contrastive pairs, as pointed out
by [74, 75], the quality of the negative samples is of vital im-
portance for the effectiveness of contrastive learning. There-
fore, we need to select the hard negative samples for video
and text separately. Specifically, since the pre-annotated

non-key timesteps are negative samples, based on the pre-
diction scores for each frame (piNi=1) and sentence (qiMi=1),
we argue that the wrongly classified timesteps with high-
est prediction scores are hard-negative samples. Intuitively,
for a long untrimmed video, due to the time dependencies,
the frames adjacent to the key-frames have very similar vi-
sual contents and should also be treated as the key-frames.
However, if these frames are selected as the hard-negative
samples, it tends to confuse the model and may hurt the final
performance. Therefore, we exclude those timesteps before
selecting the hard-negative samples.

As shown in Figure 3(a), given the ground truth (GT) key-
frame label, we first expand the key-frame segments on both
sides to include more adjacent frames as dummy key-frames.
Then, based on the predicted scores for each timestep, we
select timesteps with top-k highest scores but not in the ex-
panded GT key-frame labels as hard-negative samples. Here,
kvideo = ⌊N

r ⌋, ktext = ⌊M
r ⌋, r is a hyper-parameter con-

trolling the total number of selected hard-negative samples.
In this way, we form contrastive pairs for both video and
text modalities. Formally, we denote the positive frames,
hard-negative frames, positive sentences, and hard-negative
sentences as IPF, IHNF, IPS, and IHNS, respectively. As
shown in Figure 3(b), the proposed intra-sample contrastive
loss is applied as follows:

Lintra = Ez∼IPF,z+∼IPS,z−∼IHNFℓ(z, z
+, z−)

+ Ez∼IPS,z+∼IPF,z−∼IHNSℓ(z, z
+, z−)

(8)

where ℓ follows the same contrastive equation as Eq. 7.
Overall Loss. The final loss is the combination of the
above three losses,

L = Lcls + β · Linter + λ · Lintra (9)

where β and λ are hyper-parameters controlling the trade-off
between three loss components.
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4. Experiments

4.1. Datasets and Implementation Details

Datasets. We evaluate A2Summ on two standard video
summarization datasets (SumMe [41] and TVSum [40]),
two multimodal summarization datasets (Daily Mail [6] and
CNN [6]), and a new Behance LiveStream Summarization
(BLiSS) dataset. TVSum dataset consists of 50 videos per-
taining to 10 categories. SumMe dataset consists of 25
videos capturing multiple events. Daily Mail dataset con-
tains 1,970 samples and CNN dataset contains 203 samples,
which are crawled from the news website including video,
images, text articles, and captions. We follow the same data
split as [6]. The BLiSS dataset consists of 13,303 pairs
of livestream videos and transcribed text, with annotated
summaries for both modalities.

Evaluation Metrics. For SumMe and TVSum datasets,
following previous work [2, 10, 12, 14, 17, 33], we evalu-
ate the video summarization dataset by the F1 score metric.
However, as pointed out by [76], the performance of F1
evaluation is mostly determined by the pre-processing seg-
mentation step, and a random method is able to reach similar
performance scores. As a result, they propose to utilize rank
order statics (Kendall’s τ [77] and Spearman’s ρ [78]) as
alternative evaluation metrics which are more reliable com-
pared to F1 score. For multimodal summarization datasets,
we evaluate the generated text summary by ROUGE [79] fol-
lowing previous works [6, 26, 47, 80]. Specifically, R-1, R-2,
and R-L represent ROUGE-1, ROUGE-2, and ROUGE-L F1
scores, respectively, which are widely used to calculate the
n-grams overlapping between the output text summary and
ground truth text summary. Same as [6, 25, 26], the cosine
image similarity is measured between the features of the
predicted video summary and ground-truth video summary.

Implementation Details. For standard video summarization
datasets (SumMe and TVSum), we follow previous work [10,
14, 17, 53] and use the pre-extracted GoogLeNet [54] feature
as the video input. To collect the corresponding text modality,
we adopt the pre-trained image caption model GPT-2 [81]1

to generate the caption for each frame. Next, for all the text
modality input, we apply the pre-trained RoBERTa [55]2 to
extract textual features for each sentence. For multimodal
summarization datasets (Daily Mail and CNN), we use the
same feature extractor as [6, 26]. For the BLiSS dataset,
pre-trained CLIP [71] and RoBERTa [55] are adopted to
extract features for each frame and each sentence. The focal
loss [70] with α = 0.25 and γ = 2.0 is adopted for the
classification loss. More dataset-specific training/testing
details and hyper-parameter choosing are described in the
supplementary material.

1https://huggingface.co/nlpconnect/vit-gpt2-image-captioning
2https://huggingface.co/distilroberta-base

4.2. BLiSS Dataset

Behance3 is a public website with a large amount of
livestream videos created by artists showing their work pro-
cess. The videos are generally hours long and accompanied
with transcripts of streamers’ speeches. We follow previous
work StreamHover [51] to expand their dataset to a much
larger scale with more modalities.

Data Collection. We collected 674 livestream videos with
transcripts and other metadata. Each video was further di-
vided into 5-minute long clips for human annotation. An-
notators were instructed to select the key sentences from
transcripts, and write the text summary and key phrases in
their own words for the entire clip. For each video, we also
obtained its thumbnail animation from the website, and se-
lected the most similar frame to the thumbnail from each clip
as ground truth key-frames. More details about the collection
process are elaborated in the supplementary material.

Comparison with Existing Multimodal Datasets. The
BLiSS dataset is much larger than the standard video sum-
marization datasets (SumMe and TVSum) and multimodal
summarization datasets (Daily Mail and CNN). BLiSS has
13,303 data samples and 1,109 total video hours, which is
much longer than TVSum (3.5 hours) and Daily Mail (44.2
hours). For the text modality, the total number of text to-
kens is 5.4M (BLiSS), greater than 1.3M (Daily Mail) and
0.2M (CNN). There are other multimodal summarization
datasets for the abstractive text summarization task with ad-
ditional image or video modalities. For example, MSMO [1],
MMSS [24], VMSMO [25] and How2 [83]. However, none
of them have aligned video and text modalities. Furthermore,
we keep some metadata, including the title, streamer infor-
mation, and audio modality for further potential research.

4.3. Results

SumMe and TVSum Datasets. We compare the proposed
method A2Summ with the previous state-of-the-art (SOTA)
methods on SumMe [41] and TVSum [40] datasets in Ta-
ble 2. We first observe that A2Summ achieves the best
performance on both datasets. Except for the F1 score met-
ric, our A2Summ is slightly worse than CLIP-It [2] but
still higher than it for the other two metrics on the TVSum
dataset. CLIP-It also adopts transformer architecture to fuse
different modalities by cross-attention, which takes in the
generated video caption as text modality. However, it ignores
the time correspondence between video and text modalities.
Instead, our A2Summ aligns cross-modality information
and exploits the intrinsic correlation between the video and
text at different granularities by our inter-sample and intra-
sample contrastive losses. In addition, the state-of-the-art
method iPTNet [17] utilizes an additional moment local-
ization dataset Charades-STA [85] to help address the data

3http://behance.net/
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Table 1. Comparison with state-of-the-art methods on the CNN [6] and and Daily Mail [6] datasets.

Category Method
CNN Daily Mail

R-1 R-2 R-L R-1 R-2 R-L Cos(%)

Video
VSUMM [30] – – – – – – 68.74
DR-DSN [11] – – – – – – 68.69
CLIP-It [2] – – – – – – 69.25

Text
Lead3 [18] – – – 41.07 17.87 30.90 –
SummaRuNNer [20] – – – 41.12 17.92 30.94 –
NN-SE [19] – – – 41.22 18.15 31.22 –

Multimodal

MM-ATG [1] 26.83 8.11 18.34 35.38 14.79 25.41 69.17
Img+Trans [5] 27.04 8.29 18.54 39.28 16.64 28.53 –
TFN [82] 27.68 8.69 18.71 39.37 16.38 28.09 –
HNNattTI [4] 27.61 8.74 18.64 39.58 16.71 29.04 68.76
M2SM [6] 27.81 8.87 18.73 41.73 18.59 31.68 69.22

Ours
Video-only – – – – – – 69.30
Text-only 29.39 10.85 26.11 42.77 19.19 34.60 –
A2Summ 30.82 11.40 27.40 44.11 20.31 35.92 70.20

Table 2. Comparison with state-of-the-art methods on the
SumMe [41] and TVSum [40] datasets with F1 scores, Kendall’s
τ [77] and Spearman’s ρ [78] metrics. We include the results of
methods using GoogleNet [54] features for a fair comparison. Bold
and underline represent the top-1 and top-2 results.

Method
SumMe TVSum

F1 τ ρ F1 τ ρ

Random [76] 41.0 0.000 0.000 57.0 0.000 0.000

Human [76] 54.0 0.205 0.213 54.0 0.177 0.204

DR-DSN [11] 42.1 – – 58.1 0.020 0.026

HSA-RNN [45] 42.5 0.064 0.066 44.1 0.082 0.088

CSNet [33] 48.6 – – 58.5 0.025 0.034

VASNet [84] 49.7 – – 61.4 – –

DSNet-AB [14] 50.2 0.051 0.059 62.1 0.108 0.129

DSNet-AF [14] 51.2 0.037 0.046 61.9 0.113 0.138

RSGN [16] 45.0 0.083 0.085 60.1 0.083 0.090

CLIP-It [2] 51.6 – – 64.2 0.108 0.147

iPTNet [17] 54.5 0.101 0.119 63.4 0.134 0.163

A2Summ 55.0 0.108 0.129 63.4 0.137 0.165

scarcity problem but results in a much longer training time,
however, without utilizing extra datasets, our A2Summ can
still outperform it on all the metrics, which strongly justifies
the superiority of our design.

Daily Mail and CNN Datasets. As shown in Table 1,
we also compare our A2Summ with previous methods on
the CNN [6] and Daily Mail [6] datasets. Since the text
modality of CNN and Daily Mail datasets do not have

time information, we only apply the inter-sample and intra-
sample contrastive losses without the alignment-guided self-
attention module. We first observe that A2Summ can indeed
greatly benefit from leveraging the multimodal information,
which boosts the text summary metric by 1-2% ROUGE F1
score and increases the video summary cosine similarity by
0.9%. Compared to the state-of-the-art multimodal method
M2SM [6], which utilizes additional transcript extracted
from videos as the bridge between video and text modality,
A2Summ is better by 3% and 2.4% in ROUGE-1 F1 score
on two datasets respectively. For the video summarization,
our transformer-based A2Summ can outperform multimodal
summarization method M2SM [6] and state-of-the-art video
summarization model CLIP-It [11] by 1%.

BLiSS Dataset. We validate A2Summ on the livestream
videos from the BLiSS dataset by comparing it with existing
video and text summarization methods. As shown in Ta-
ble 3, when comparing with video summarization methods
DSNet-AF [14] and CLIP-It [2], our A2Summ achieves the
best results on the video cosine similarity metric. Although
CLIP-It also utilizes the additional text modalities by the
cross-attention operation, A2Summ can still outperform it by
1%. Compared to the extractive text summarization method
SummaRuNNer [20] and the abstractive text summarization
method BART [86], A2Summ outperforms both of them by
at least 3% on all the ROUGE scores. It further demonstrates
the superior effectiveness of A2Summ on livestream videos.

4.4. Ablation Studies

To further investigate the contribution of each compo-
nent in A2Summ, we conduct ablation studies in Table 4.
We first observe that adding the text modality input can en-
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Table 3. Comparison results on the BLiSS dataset. Note that
BART [86] is abstractive summarization based method, and the rest
are extractive summarization based.

Method R-1 R-2 R-L Cos(%)

DSNet-AF [14] – – – 62.70
CLIP-It [2] – – – 63.58
Miller [21] 40.90 26.48 39.14 –
BART [86] 49.11 38.59 48.08 –
SummaRuNNer [20] 49.70 38.00 48.51 –

A2Summ 52.50 41.65 51.44 64.57

Table 4. Contribution of each component on the SumMe dataset.
“Align.”, “Inter.”, and “Intra.” represent the alignment-guided self-
attention, inter-sample and intra-sample contrastive loss, respectively.

Inputs Align. Inter. Intra. F1 τ ρ

Video-Only 49.8 0.070 0.084

Multimodal

50.5 0.083 0.096
✓ 51.5 0.089 0.104
✓ ✓ 52.5 0.905 0.110
✓ ✓ 54.0 0.102 0.121
✓ ✓ ✓ 55.0 0.108 0.129

Baseline

GT

Ours

(a) video_23. “Singapore Parkour Free Running | JC Boy Late for School”

Baseline
GT

Ours

(b) video_37. “A Year of Beekeeping”

Figure 4. Example summarization results for the TVSum dataset. Titles are shown for each video. “Baseline” denotes our A2Summ without
the alignment module and dual contrastive losses. The gray histogram shows the ground-truth importance scores for each frame.

hance the final results of video summarization. However,
as we mentioned before, without alignment of video and
text modalities, directly applying global attention between
untrimmed video and text input tends to introduce too much
noise and result in inferior performance. After we align
and attend the video and text modalities with the proposed
alignment-guided self-attention module, we can improve the
F1 score by 1%. Furthermore, for the dual contrastive losses,
it is obvious that a consistent gain can be achieved by adding
either one of these two losses. In particular, introducing
the intra-sample contrastive loss significantly increases the
performance by 2.5%. It proves that exploring the intrinsic
mutual correlation between video and text and mining hard
negative samples can greatly enhance the ability to local-
ize the important frames and sentences. In addition, two
contrastive losses are complementary to each other. When
incorporating all three proposed components together, our
approach boosts the final performance from 50.5% to 55.0%.

4.5. Visualization

Figure 4 shows the visual comparison between baseline
and A2Summ. We observe that the typical errors of the

baseline model can be addressed by the proposed alignment
module and dual contrastive losses, such as missing detection
of important segments and inaccurate summary boundary
prediction. It further verifies the effectiveness of A2Summ.
More visualizations on the BLiSS dataset are provided in the
supplementary material.

5. Conclusion
In this paper, we present A2Summ, a novel unified

transformer-based framework for multimodal summariza-
tion. A2Summ is designed to align and attend different
modalities by leveraging time correspondences that previous
methods neglect. Also, we introduce dual contrastive losses
to exploit the inter-sample and intra-sample cross-modality
information. Extensive experiments on multiple datasets
validate the effectiveness of our A2Summ. In addition, we
collect a large-scale multimodal summarization dataset fo-
cusing on livestream videos and transcripts. We hope it can
be beneficial for further research in this area.
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