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Abstract

We present Pose Integrated Gradient (PoseIG), the first in-
terpretability technique designed for pose estimation. We ex-
tend the concept of integrated gradients for pose estimation
to generate pixel-level attribution maps. To enable compari-
son across different pose frameworks, we unify different pose
outputs into a common output space, along with a likelihood
approximation function for gradient back-propagation.

To complement the qualitative insight from the attribution
maps, we propose three indices for quantitative analysis.
With these tools, we systematically compare different pose
estimation frameworks to understand the impacts of network
design, backbone and auxiliary tasks. Our analysis reveals
an interesting shortcut of the knuckles (MCP joints) for hand
pose estimation and an under-explored inversion error for
keypoints in body pose estimation. Project page and code:
https://qy-h00.github.io/poseig/.

1. Introduction

Human pose estimation of both the body and the hand
is a critical vision task for augmented and virtual reality
applications. State-of-the-art methods [12, 15, 19, 20, 33,
36] perform impressively on benchmarks but are difficult
to compare beyond differences in average end-point-error
(EPE). Averaged results on large-scale benchmarks depend
on the underlying data distribution and tend to obscure the
behaviour of pose estimation systems [10]. As such, we are
motivated to find alternative ways to interpret and compare
pose estimates across different methods. To that end, we
present the first method for estimating pixel-level attribution
maps designed specifically for pose estimation.

Integrated Gradients (IG) [35] is a commonly used attri-
bution technique. IG and its derived variants [21, 35, 40] can
produce pixel-level attribution maps for various image and
natural language classification tasks. IG computes gradients
to measure the relationship between changes to an input and
changes to the target likelihood. However, IG is not directly
applicable to pose estimation. Unlike in classification, where

*Equal contribution

Likelihood

Joint 
Selection

Forward Backward

Visualization

Prediction Ground truth

FI:3.6, LI:22.5, DI:11.5

Indices

Common 
Output

Figure 1. Pose Integrated Gradients (PoseIG) generates spatial
attribution maps for pose estimation. Based on the attribution maps,
we propose numerical indices to quantitatively characterize the
attributions throughout the scene.

models always directly output a class likelihood, pose es-
timation models vary in their output, ranging from spatial
likelihoods to regressed coordinates. Therefore, we must in-
troduce a likelihood approximation function between the pre-
dicted outputs and their targets to approximate the target like-
lihood. Based on these likelihoods, we can back-propagate
the gradients and generate attribution maps. Moreover, to
enable meaningful comparison across frameworks, we pro-
pose unifying the different outputs into a common output
space and use the same likelihood approximation function
S(·) for back-propagation. Fig. 1 shows our interpretability
pipeline for generating pixel-level attribution maps that can
be compared across different pose frameworks.

Existing works [35] and [21] focus on qualitative attri-
butions and produce visualizations for single inputs. We
are interested in these visualizations for pose estimation;
however, we additionally target quantitative analysis of the
attributions. As such, we have designed attribution-based
indices to help analyze and diagnose pose estimation frame-
works. Based on PoseIG’s attribution maps, we introduce
three indices to numerically characterize the attributions.
The Foreground Index (FI) measures the extent to which the
foreground is considered in the attributions. The Locality
Index (LI) measures the amount of attribution around an im-
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age coordinate, and the Diffusion Index (DI) measures how
concentrated or dispersed the attributions are in the scene.

Armed with PoseIG’s attribution maps and the associated
indices, we study existing body and hand pose estimation
frameworks and provide insights on their design and archi-
tectures. Finally, we diagnose existing models and find two
overlooked issues in pose estimation. First, we reveal an
artifically high performance of MCP1 or knuckle joints in
the hand, likely from shortcut learning as a result of data
preprocessing. Secondly, we observe an under-explored
phenomenon of keypoint inversion [27], where keypoints
are mistakenly predicted at the location of other keypoints.
Accordingly, we introduce simple mitigating solutions and
recommend these be incorporated into future protocols to
improve hand and body pose estimation.

Our main contributions can be summarized as follows:

• We introduce PoseIG, the first interpretability technique
designed for pose estimation. PoseIG provides pixel-
level attributions and can be applied to compare differ-
ent pose estimation works based on a unified output
space and a likelihood approximation function.

• We propose three numerical indices to quantitatively
characterize the attributions in the scene.

• Using PoseIG’s attributions and indices, we analyze
and compare different body and hand pose estimation
frameworks and provide insight on their design.

• We diagnose a shortcut problem in hand pose estimation
and keypoint inversion errors in human pose estimation
and propose simple solutions to alleviate these issues.

We hope it will serve as a useful tool to the community
for analyzing, diagnosing, and improving pose estimation
frameworks.

2. Related Work
Pose Estimation New architectures [22, 38, 39] and train-
ing strategies [12, 34] for pose estimation have steadily
improved both 2D and 3D keypoint prediction accuracy.
Heatmap methods predict an intermediate heatmap aligned
to the joint coordinates, either explicitly [22,37,39] or implic-
itly [12, 34], while regression pipelines [15, 41] directly pre-
dict the numerical coordinates of keypoints. The preferred
backbones for heatmap methods are fully convolutional, like
Hourglass [22] and HRNet [37]. Regression methods use
more diverse architectures, including transformers [17, 19]
and Graph CNNs [4, 8]. Progress in human and hand pose
estimation has been steady, but the improvements are hard
to interpret beyond sheer accuracy. This naturally begs the

1MCP (metacarpophalangeal) joints are at the base of each finger and
attach the finger to the palm.

question of how to interpret the benefits of new designs and
architectures. To the best of our knowledge, our work is the
first to explore interpretability for pose estimation.

Previously, [27] analyzed errors of pose estimation sys-
tems and highlighted jitters, misses, and keypoint inversions.
With our indices, we further investigate keypoint inversion
errors, in which a keypoint is predicted in the ground truth
location of another keypoint.

Attribution Analysis Methods for attribution analysis
are occlusion-based [25, 43], substitution-based [26, 29] or
gradient-based [5, 30, 31, 40]. We focus on gradient-based
methods because they provide pixel-level attributions. Early
works [5, 21, 31] suffered from gradient saturation [35], but
subsequent methods such as integrated gradients (IG) avoid
saturation by integrating gradient magnitudes along an input
continuum, e.g. , a linear interpolation of image intensities
between a baseline and the original image. IG and IG-based
methods have explored different baseline images [9, 40], in-
tegration paths [13] and gradient smoothing [6, 32]. Most
of them are used for classification frameworks and are not
directly applicable for pose estimation.

Additionally, most existing works only provide visualiza-
tions for qualitative analysis. To date, the only quantitative
measure for attribution is the diffusion index [9], which mea-
sures the dispersion of the attribution. The diffusion index
provides only a limited understanding of pose estimation;
this work proposes additional indices to better characterize
pose estimation frameworks.

3. Method
3.1. Preliminaries

Pose Estimation: For an input image crop of the hand
or human body x ∈ Rm×n, let J ∈ RnJ×d denote the
corresponding pose of nJ keypoints in d-dimensional space,
where d=2 or 3. The pose can be recovered by first encoding
the image with h = En(x) and then decoding the image
representation h into joint coordinates J = De(h).
Heatmap Methods learn a representation h in the form of
a spatial heatmap that serves as a spatial likelihood of the
joint. The heatmaps can be either explicit or implicit. In
explicit heatmaps [22, 37], the joint location Ĵ is decoded by
an argmax operation:

Ĵ = argmax
p

(hp). (1)

For learning, an L2 loss is applied between h and a ground
truth heatmap hgt,

Lex=
∑
p

(hp − hgt
p)

2, (2)

where hgt is generated by centering a Gaussian at the ground
truth Jgt and p denotes the coordinates in the heatmap.
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For implicit heatmaps [12, 34], the joint location is de-
coded by an expectation and a soft-argmax with a learnable
controlling parameter β on h:

Ĵ =
∑
p

eβhp∑
p′ eβhp′

p. (3)

For learning, since the soft-argmax is differentiable, an L2
loss can be applied on the joint locations:

Lim = ∥Ĵ− Jgt∥22. (4)

In the literature, the implicit heatmap method is also referred
to as a latent heatmap [12] or integral regression [34].
Coordinate Regression Methods learn a latent representa-
tion h to directly regress the joint coordinates without any
use of spatial representations such as heatmaps. The loss
applied for learning is also an L2 loss between predicted
joints and ground truth joints, as shown in Eq. 4.
Integrated Gradients [35] measure the contribution of input
elements, i.e. image pixels, towards the prediction of the final
network output. The contribution is defined as the integral
of gradient magnitudes along a path from a given baseline to
the input of interest. Usually, the baseline is a black image
and the path is a linear interpolation of the image intensity
between the baseline and the input image. From the baseline,
the path gradually increases the intensity of the interpolated
image in a specified manner and accumulates the attribution
of the changes.

More specifically, consider function F : Rm×n → [0, 1],
where F is a pretrained deep network that maps an input 2D
image of size m× n to a real-valued output. With a baseline
image z that represents the absence of features from input x,
a straight-line path γl from the baseline z to the input x can
be parameterized as

γl(x, z, α) = z+ α · (x− z), (5)

where α is the coefficient of interpolation. With the straight-
line path, the integrated gradient IG(·) for an input x and its
baseline z can be defined as:

IG(x, z) = (x− z) ·
∫ 1

α=0

∂F (γl(x, z, α))

∂x
dα. (6)

The output of IG(x, z) is an attribution map of size m× n.

3.2. PoseIG

Baseline and Path Function. The original IG method [35]
recommended using black images as baselines. For pose
estimation, we observe that a black image baseline results in
attributions that are biased towards pixels with dark colors,
i.e. darker pixels have a lower attribution.

The baseline image represents the absence of input fea-
tures for prediction. Based on the observation that silhouettes

(a) Input (b) Baseline (c) PoseIG (d) Visualization

Figure 2. PoseIG components. (a) Input image and (b) its blur
baseline, (c)-(d) attribution maps and corresponding kernel density
estimation (KDE) heatmaps based on PoseIG.

and image edges are important for pose estimation [14], we
introduce a Gaussian blur baseline:

I(x, σp) = x ∗K(σp), (7)

where x is convolved with a Gaussian kernel K(σp) with
standard deviation σp. Accordingly, we also define a blurry
path to capture attributions:

γb(x, σp, α) = x ∗K(σp − ασp), (8)

where γb(x, σp, 0)=x ∗K(σp) and γb(x, σp, 1)=x. The
blurry path generates progressively less blurry images from
the baseline I(x, σp) to the final image x progressively. We
set σp = 19 to be relatively large, to ensure that the baseline
has only coarse image evidence, while limiting potential
intensity biases. Fig. 2 (a) shows an input image and its
corresponding Gaussian blur baseline. Alternative baselines
are explored in Supplementary Sec. A.
Likelihood Approximation and Output Space. Eq. 6 aims
to accumulate the change in the target, i.e. class likelihood
with changing inputs. As the outputs of pose estimation mod-
els are not a likelihood scalar but different output modalities
(e.g. , heatmap vs coordinate), we define a differentiable like-
lihood approximation function for back-propagation based
on the distance between prediction and ground truth. With a
predicted pose Ĵ and the corresponding ground truth pose Jgt

in the metric space, we define the likelihood approximation
function for kth joint as:

S(Ĵ,Jgt, k) = e−c||Ĵk−Jgt
k||

2
2 , (9)

where Jgt
k and Ĵk are the kth joint of Jgt and Ĵ, respectively.

The hyper-parameter c is set to 0.3 empirically.
As we are interested in making numerical comparisons

across different frameworks, it is important to determine a
common output space. The exact space may vary depend-
ing on the models compared; what is important is that the
mapping from the model output to common space be differ-
entiable. For example, we can compare 2D heatmaps with
coordinate regression in the 2D pose space by mapping the
heatmaps with soft-argmax function. For convenience, we
prefer to use 2D or 3D pose spaces as the output spaces. We
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define the pose estimation models together with the mapping
to the designated common output space as M(·).

With a common output, the same likelihood approxima-
tion function S(·) can be used for back-propagation. The
influence of different output spaces and likelihood approxi-
mation functions on attribution maps are shown in Supple-
mentary Sec. A.
PoseIG. The attribution map G from PoseIG for kth joint of
Jgt is given as:

G = PoseIG(x,M, σp,J
gt, k)

= (x−I(x, σp))

∫ 1

α=0

∂S(M(γb(x, σp, α)),J
gt, k)

∂x
dα.

(10)
Visualization. Similar to [9], as a complement to the attri-
bution map, we also visualize a heatmap of the attributions
based on kernel density estimation (KDE) [23] to highlight
the important areas2. For more instances of attribution maps,
please refer to the Supplementary.

3.3. Attribution Indices

The attribution maps G from PoseIG(·) in Eq. 10 reveal
the pixels that have the greatest contribution on the estimated
pose. We introduce three indices to quantitatively character-
ize the attribution maps. Let Gs and Gm denote attribution
maps normalized by dividing G by the sum or the max of G,
respectively. Additionally, let gsi and gmi denote the value of
the ith element from Gs and Gm, respectively.
Foreground Index (FI). FI measures the extent to which
the foreground, i.e. the body or the hand, is considered in the
attribution and is defined as

FI =

∑N
i=1 g

s
imi∑N

i=1 mi

×N, (11)

where N is the number of pixels in G and mi represents
the value of the ith pixel of a dilated binary foreground
mask. The dilated mask is obtained from the segmentation
mask provided as part of the annotations. We dilate with
µ = 5 pixels to give some border around the segment edge.
Attributions that are located more on the foreground lead to
a higher FI.
Locality Index (LI). LI quantifies the extent of attributions
surrounding a joint coordinate. Given the normalized attri-
bution Gs for joint A and the ground truth location JX of
joint X , LIA(X) is defined as

LIA(X) =

∑N
i=1 g

s
i h(pi,JX)∑N

i=1 h(pi,JX)
×N, (12)

where h(pi,JX) =
1

2πσl
exp (−||pi − JX ||22

2σ2
l

). (13)

2For implementation, we use the function scipy.stats.gaussian_kde(·)

Here, h(pi,JX) represents the weight of the ith pixel
based on the distance between its location pi in the normal-
ized attribution map Gs and the given joint location JX . The
σl=2 is chosen empirically. A higher LI mean the higher
contribution of pixels close to the designated location p. Ide-
ally, LIA(X) has the maximum value if X = A, i.e. the
attribution of G for joint A is the strongest around ground
truth location JA. By default, we discuss LIA(A) and ab-
breviate it to LI; otherwise we will specify the joints X and
A for LIA(X).
Diffusion Index (DI). DI measures the spatial range of at-
tributions in the image, and indicates how local or global
the information used for the prediction is. We assume that
different keypoints are determined by spatial information
and have different extents of attributions and use the same
DI as [9]:

DI = (1−
∑N

i=1

∑N
j=1|gmi − gmj |

2N2(gm)
)× s, (14)

where gm is the average on gm and s is a constant that scales
the value to a reasonable range. We empirically set s = 100
as default. For attribution, DI reflects the spatial range of
involved pixels; a larger DI indicates that the given model
involves more pixels to make a decision.

4. Experiments
4.1. Datasets and Evaluation Metrics

In this paper, we focus on RGB-based pose estimation
methods for both the hand and the body. We report in the
main paper results on FreiHand [46] and MS COCO [18];
results on additional datasets are given in Supplementary
Sec. E. FreiHand is a real-world hand pose dataset with
RGB images and 21 annotated 3D joints. MS COCO is a
real-world body pose dataset with 250k person instances and
17 annotated 2D keypoints.

For hand pose estimation, we compare CMR [2],
MobRecon [3], I2l-MeshNet [20] and HandAR [36].
For human pose estimation, we compare Simple Base-
line ResNet50/ResNet101 [39], HRNet-W32 [33], Trans-
Pose [42], Integral Heatmap Regression [34] and Residual
Log-likelihood Regression (RLE) [15]. Simple Baseline
ResNet50/ResNet101, HRNet-W32 and TransPose are ex-
plicit heatmap methods. Integral Regression is an implicit
heatmap method, and RLE is a coordinate regression model.

We evaluate the pose accuracy with mean end-point-error
(MEPE) based on the average Euclidean distance between
the predicted and ground truth joints. For calculating our
indices, we follow [30] and select 300 samples with the
greatest performance difference in the respective datasets’
testing set.

To further explore the attributions, we group the joints
based on the kinematic chain. The hand is divided into wrist
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(a) (b)

Figure 3. Attribution KDE heatmaps with 2D EPE for human pose estimation models. (a) Comparison of trunk joint and leaf joint. All
models prefer local image evidence on the leaf joint compared to the trunk joint; (b) Comparison of occluded cases and un-occluded cases.
The coordinate regression RLE and implicit heatmap-based methods Integral Regression have lower EPE than explicit heatmap-based
methods HRNet and TransPose on occluded joints.

Figure 4. Attribution KDE heatmaps with 3D EPE for four hand
pose estimation models. HandAR with hand segmentation as an
auxiliary task prefers utilizing more image evidence from the hand
area instead of the background.

joints, MCPs, PIPs, DIPs and fingertips; the body is divided
into trunk joints (shoulder and hip), branch joints (elbow and
knee) and leaf joints (head, ear, eye, ankle and wrist). Please
see Supplementary Sec. B for a figure of the grouping).

4.2. Validation of Attributions

We verify the faithfulness of PoseIG’s attributions with
two commonly used techniques in the interpretability liter-
ature: model randomization and image perturbation. For
Model Randomization, we follow the cascading random-
ization of [1] by corrupting more convolution parameters
of successive layers to random values. The attributions of
PoseIG have successively more changes in the scene as more
layers are randomized. This confirms that PoseIG is sensi-
tive to network parameters. For Image Perturbation, we
follow [6,7,11,24,28] and perturb the pixels with the highest
attribution magnitudes. The pose accuracy is more impacted
when pixels with higher attributions are perturbed compared
to random perturbation. Please see Supplementary Sec. A
for more details.

4.3. Quantitative Analysis

We use PoseIG to explore the common characteristics
over different pose estimation models, including the rela-
tionship between attribution and MEPE, the attribution of
different joints and influencing factors.

Attribution vs MEPE. We begin by analyzing the correla-
tion of our indices and MEPE based on the statistics of MCPs
for human hand and leaf joints. Fig. 5 shows the MEPE with
respect to FI in (a)-(b) for two different hand pose estimation
approaches. One observation is that most keypoints with 3D
EPE larger than 15 mm have extremely low FI. Additionally,
for tested hand models, it also illustrated that the range of
EPE rapidly shrinks as FI increases.

As for LI, Figs. 5 (c)-(d) correspond to Simple Baseline
with ResNet50 [39] and RLE [15] on body pose estimation.
Both plots show that the predictions with EPE > 10 pixels
mostly have low LI. This trend is more significant with the
heatmap method but also exists with coordinate regression.
We refer the reader to the Supplementary Sec. B for the
exploration of other models and the comparison between the
body and the hand.
Different Joints. At the joint level, Fig. 6 (a)-(b) shows
that as we progress down the kinematic chain away from
the trunk joint, the attributions of all the models decrease
in dispersion (a) and increase in localization (b), i.e. more
image evidence comes from the local area around the ground
truth location. On the other hand, the trunk joints and branch
joints require more dispersed sets of pixels to determine
their locations. This trend can be observed in the attributions
in Figs. 3 (a) right hip versus right ankle. Similarly, hand
pose estimation also shows the trend that PIPs, DIPs and
TIPs further from the root of the kinematic chain require
more local image evidence to make predictions. We refer the
reader to Supplementary Sec. B for the exploration of hand
pose estimation.
Influencing Factors. Same as [10,27], we divide MS COCO
into easy, medium and hard cases by considering three fac-
tors, i.e. , the amount of joints or keypoints present (11-17,
6-10, 1-5), the percentage of occlusion (<10%, 10-50%,
> 50%), and the largest dimension of the bounding box
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(a) (b) (c) (d)

Figure 5. The MEPE of joints related to the corresponding FI and LI on the FreiHand dataset and the MS COCO dataset. (a)-(b) The
box-plots of MEPE and FI with respect to MCPs for I2L-MeshNet [20] and HandAR [36]. (c)-(d) The box-plots of MEPE and FI with
respect to leaf joints for Simple Baseline [39] and RLE [15].

(a) Human Joints DI (b) Human Joints LI

(c) Human Models DI (d) Human Models LI

(e) Hand Models DI (f) Hand Models FI

Figure 6. Index distributions estimated based on histogram. (a)-(b)
correspond to DI and LI of different joints in the MS COCO dataset
predicted by Simple Baseline ResNet50 [39]. (c)-(d) correspond
to DI and LI of different body pose estimation methods, where
regression methods is drawn as dashed line and implicit heatmap
methods is drawn as dotted line. [15,33,39,42]. (e)-(f) are DI and FI,
respectively, of various hand pose estimation methods [2, 3, 20, 36].

input (>128px, 96-128px, 64-96px, 32-64px).
For the various models, on the hard cases, LI and FI both

decrease significantly while DI and EPE increase compared
to the easy cases. In other words, models use less local image
evidence and more background information for predicting
the poses of challenging cases where only parts of the body
are present and or visible. Comparing in Fig. 3 (b) the

occluded left knee versus the visible right knee, it becomes
clear that each model uses more dispersed image evidence
for the occluded case. Additionally, we also find a reduction
in FI from easy cases to hard cases. We refer the reader to
Supplementary Sec. B for detailed statistics.

4.4. Exploration with PoseIG

We use PoseIG as a tool to study existing hand or body
pose estimation frameworks [2, 3, 15, 16, 20, 36, 39, 41, 44].
Heatmap versus Coordinate Regression. Previous
works [10] have postulated that implicit heatmaps use more
global image evidence than explicit heatmaps. As Fig. 6 (d)
shows, the models vary. The LI of implicit heatmaps [34]
and coordinate regression (RLE [15]) is significantly lower
than for explicit heatmaps [33, 39, 42]. Fig. 6 (d) clearly
shows two different types of distributions, indicating that the
loss (L2 on joint coordinate vs. heatmap) is likely the most
important factor influencing the use of local image evidence.

Fig. 3 (a) shows that under occlusion, the implicit
heatmap (Integral Regression) and coordinate regression
(RLE) have lower EPE and use more information from the
rest of the body than the explicit heatmap methods. This
echoes the fact that explicit heatmap methods struggle with
hard cases with occlusions, as stated in [10]. See Supple-
mentary Sec. C for more details.
Architecture Differences. One of the claimed advantages
of HRNet is that it can leverage features from different reso-
lutions and capture more spatial information [33]. Fig. 6 (c)
confirms that the attribution of HRNet is more dispersed than
ResNet50 or ResNet101, i.e. it has a higher DI. However,
it also has high LI, suggesting that it locates joints more
precisely. As Fig. 3 (a) shows, for the trunk joint right hip,
HRNet utilizes more global image evidence, including the
head and leg area, compared to Simple Baseline ResNet50.
In terms of the leaf joint right ankle, HRNet prefers more
local spatial information than Simple Baseline ResNet50.
See Supplementary Sec. C for more details.
Backbone Differences. Fig. 6 (c) shows that the DI of
TransPose [42], a transformer backbone, is higher than all
other heatmap-based CNN models but lower than coordi-
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nate regression models RLE [15]. This observation echoes
the intuitive conjecture that transformers gather more global
image evidence than CNNs [42]. Intuitively, more global
information can help predict occluded joints more precisely.
However, comparing the model performance with respect
to the left knee in Fig. 3 (b), we find that TransPose even
performs worse than other heatmap-based CNN-based meth-
ods, even though it utilizes more image evidence from the
human body instead of the foreground, where the occluded
joint locates, since it wrongly estimates the right knee as the
left knee. More discussion on this can be found in Supple-
mentary Sec. C.
Model Size. Comparing Simple Baseline [39] with
ResNet50 versus ResNet101 backbones, it appears that
model size has a limited effect on attribution. The most
apparent difference is in the MS COCO dataset, where the
larger model has lower EPE and higher DI, as shown in
Fig. 6 (c). It is likely that the deeper model has a larger
receptive field and therefore captures more dispersed image
evidence. From the visualized examples in Fig. 3 (a), we
speculate that increasing model size leads to a higher DI in
trunk joints and a higher LI in leaf joints.
Auxiliary Task. Fig. 6 (e)-(f) shows that for hand pose esti-
mation, adding hand segmentation as an auxiliary task [36]
leads to higher FI and lower DI compared to the works with-
out auxiliary tasks. This means that the model has a higher
preference for using the pixels in the hand area to estimate
the pose. As auxiliary hand segmentation is [36]’s main
difference, we conjecture that a focus on foreground pixels
is beneficial for lowering MEPE. An instance is visualized
in Fig. 4, and it illustrates that HandAR prefers utilizing the
image evidence on the hand area over the other models.
Human Body versus Hand. As stated, human body poses
exhibit different characteristics from hand poses. We found
that the performance of the human model is influenced by
LI, while the performance of the hand model is influenced
by FI. This difference is likely due to the inherent differ-
ences in the two tasks. Aside from the underlying pose, the
appearance variations of body pose estimation arise from
different clothing and partial presence in the scene. As such,
body pose models need both local and background infor-
mation. However, hands are always presented in full, with
appearance variations from self-occlusion and object interac-
tions [45, 46]. As such, more information on the hand mask
area is required, and not only on the area around the joint
itself, i.e. , global foreground information.

5. Model Diagnosis

5.1. MCP Shortcut

When exploring 2D hand pose estimation with PoseIG,
we find that the MCP joints (the base of each finger) are the
most accurate with the lowest EPE, yet they also have the

Index Joint baseline w/ AC w/ crop noise
NON-MCP 15.23/41.04 16.49/17.27 14.93/15.14

MEPE MCP 12.46/43.89 12.56/12.87 12.3/11.68
NON-MCP 1.81/2.46 1.77/2.73 1.77/2.83

FI MCP 1.75/2.28 1.8/2.87 1.85/3.01
LIR MMCP 16.25% 10.00% 6.56%

Table 1. Indices of attribution generated by the models tested on
original/toy testing sets. With ’augment-then-crop’ or crop noise,
the reduction of performance on toy testing sets is much less.

(a) input (b) baseline (c) w/ AC (d) w/crop noise

Figure 7. (a) input image, with the target joint marked as a red
square; (b)-(d) attribution KDE heatmaps for baseline, w/ crop
noise and w/ AC respectively. We can see that w/ crop noise and w/
AC alleviate the unusual phenomenon effectively.

lowest FI and the highest DI, i.e. they are mainly predicted
based on pixels from the background.

To further investigate, we filter the samples with low inter-
pretability - a sample is considered low-interpretable if both
its MEPE and FI fall in the first quartile over all the joints
during testing. This criteria suggests that the prediction is
relatively accurate but uses little foreground spatial informa-
tion. We further define the Low-Interpretablity Rate (LIR)
as the proportion of low-interpretable samples for a given
type of joint, e.g. MCP or PIP, and check for joints with high
LIR, i.e. low interpretability. In coordinate regression, the
LIR of MCP is 7.44% while the LIR of other joints is 2.7%;
the LIR of MMCP (MCP of the mid finger) reaches 16.25%.

A visualization of a low-interpretability case (see Fig.. 7
(a)) reveals that the attribution concentrates on the back-
ground of the image. We speculate that some shortcut learn-
ing is occurring, likely due to the pre-processing strategy
used in the data augmentation. The default used by most
works is a ‘crop-then-augment’ [16, 41, 44, 45] strategy, ver-
sus the less common ‘augment-then-crop’ [20, 36].

‘Crop-then-augment’ sometimes introduces black bor-
ders; these borders are likely a shortcut for the MCP joints
since the MCP joints are commonly located near the image
center. On the contrary, ‘augment-then-crop’ does not pro-
duce such borders. To verify, we create a toy dataset with
hand bounding boxes that have perturbed cropping centers
and cropping scales. We take coordinate regression as an
example and train models with different settings. Specifi-
cally, we use the default training setting, i.e. , ‘crop-then-
augment’ and translation augmentation of [-20,20] pixels,
as baseline. We further investigate the training with an ad-
ditional crop center noise of [-20,20] pixels (w/ crop noise)
and using ‘augment-then-crop’ (w/ AC) instead of ‘crop-
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(a) (b)

Figure 8. Keypoint inversion confusion matrices, where the
row/column combination denotes the ground truth/predicted joint
ID. It annotates frequency of inversion for (a) Simple Baseline
ResNet50 and (b) Simple Baseline ResNet50 refined with GCN.
The frequency for predicting left ankle as left knee decreases from
101 to 14, indicating refinement makes the model suffer less from
child-as-parent inversion.

Category Symmetric Child-as-Parent Parent-as-Child Other
w/ Keypoint Inversion 5.37/4.71 4.91/4.63 4.88/4.15 3.97/3.71

Table 2. LIA(B) for an ordered pair of joints (A,B). The figure
shows the average value of ResNet50/ResNet50 refined with GCN,
where the keypoint inversion is detected on the original model’s pre-
diction. And refinement with GCN significantly decreases LIA(B)
of the ordered pairs with keypoint inversion.

then-augment’.
As shown in Tab. 1, the baseline seemingly has a lower

MEPE due to the contribution of the MCP. However, it also
has a high LIR and its performance decreases significantly if
testing on the toy dataset. When training with w/ AC or w/
crop noise, this phenomenon is significantly alleviated. The
KDE heatmaps in Fig. 7 (b)-(d) also verify that the model
training with w/ AC or w/ crop noise will make predictions
based on pixels around MMCP. We therefore conclude that
the shortcut is due to the combination of the black borders
and the relatively static crop centers.

5.2. Keypoint Inversion

Keypoint inversion [27] is an error in pose estimation
where the model predicts a keypoint A near the ground truth
location of keypoint B, e.g. when the left knee is predicted at
the location of the right knee or vice versa. Formally, [27] de-
fines keypoint inversion for an ordered pair of joints (A,B)

if ||ĴA − JB || < ϵ and ||ĴA − JA|| > ϵ. Here, ĴA is the
model prediction on joint A, JA and JB is the ground truth
location of joint A and joint B, ϵ is the error threshold. In
our experiments, we use ϵ = 5. For example, on Simple
Baseline ResNet50 [39], we observe that about 16.7% of the
cases of keypoints with EPE > 10pxs are keypoint inversions.

For a more detailed characterization, we define four cat-
egories of inversions and note their frequency: symmetric
pair (e.g. left wrist as right wrist, 21.2%), child-as-parent
(e.g. left ankle as left knee 28.7%), parent-as-child (e.g. right

elbow as right wrist, 10.7%) and others (3.4%). For details
on the groupings, please see Supplementary Sec. B. Fig. 8
(a) shows, taking the lower body as the instance, that the
most common inversions occur on symmetric pairs of trunk
joints and predicting leaf joints as branch joints.

To further investigate, we analyze keypoint inversion with
the LI index. For each ordered pair of joints (A,B), we
compute LIA(B), and average on each pairs of a group, as
shown in Tab. 2. We find that LIA(B) of keypoint pairs
with inversions are significantly larger than non-problematic
pairs. This reveals that the keypoint inversion commonly
occurs with utilizing the image evidence near the incorrect
keypoint.

To alleviate this, we add a Graph Convolutional Network
(GCN) [44] as a refinement block after the output of the
network to establish an explicit topology for poses. The
refinement block takes the predictions of Simple Baseline
as input and outputs refined predictions. See Supplementary
Sec. D for details.

After refinement, three kinds of inversions decrease sig-
nificantly and we note their percentage change as follows:
child-as-parent (-68.6%), parent-as-child (-49.5%), others (-
38.2%). We postulate tat this is related to the attribution map.
As Tab. 2 shows, refinement with GCN decreases LIA(B)
on the pairs with keypoint inversion predicted by the original
baseline, which means that the prediction depends less on the
spatial information near other joints. In terms of symmetric
keypoint inversion, although the mean of LIA(B) decreases
over the original error, it increases over the symmetric key-
point inversion detected in the refined model from 4.26 to
4.30. In other words, this refinement makes it depend more
on the symmetric joint. As Fig. 8 (b) shows, it introduces
additional symmetric keypoint inversion (+12.2%).

6. Discussion

In this paper, we introduce the gradient-based inter-
pretability technique PoseIG, as well as three indices to
analyze pose estimation. Using PoseIG and these interpreta-
tive tools, we provide insight to understand the attributions
for existing pose estimation works. Moreover, we show the
approach’s potential to diagnose and improve pose estima-
tion frameworks. In the future, we would like to perfect the
details (e.g. , hyper-parameters, baselines) of PoseIG, ex-
plore PoseIG for multi-person pose estimation and provide
more interpretative tools to the pose estimation community.
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