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Abstract

Establishing pixel-level matches between image pairs is
vital for a variety of computer vision applications. How-
ever, achieving robust image matching remains challenging
because CNN extracted descriptors usually lack discrim-
inative ability in texture-less regions and keypoint detec-
tors are only good at identifying keypoints with a specific
level of structure. To deal with these issues, a novel im-
age matching method is proposed by Jointly Learning Hier-
archical Detectors and Contextual Descriptors via Agent-
based Transformers (D2Former), including a contextual
feature descriptor learning (CFDL) module and a hierar-
chical keypoint detector learning (HKDL) module. The
proposed D2Former enjoys several merits. First, the pro-
posed CFDL module can model long-range contexts effi-
ciently and effectively with the aid of designed descriptor
agents. Second, the HKDL module can generate keypoint
detectors in a hierarchical way, which is helpful for detect-
ing keypoints with diverse levels of structures. Extensive
experimental results on four challenging benchmarks show
that our proposed method significantly outperforms state-
of-the-art image matching methods.

1. Introduction
Finding pixel-level matches accurately between images

depicting the same scene is a fundamental task with a wide
range of 3D vision applications, such as 3D reconstruc-
tion [35, 53, 55], simultaneous localization and mapping
(SLAM) [15, 25, 39], pose estimation [13, 29], and visual
localization [35,43]. Owing to its broad real-world applica-
tions, the image matching task has received increasing at-
tention in the past decades [9,16,31,33,34]. However, real-
izing robust image matching remains difficult due to various
challenges such as illumination changes, viewpoint trans-
formations, poor textures and scale variations.

To conquer the above challenges, tremendous image
matching approaches have been proposed [7,9,12,16,31,34,
42], among which some dense matching methods [7,16,42]
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Figure 1. Illustration of our motivation. (a) shows the compari-
son between our proposed agent-based attention and full attention,
where full attention would aggregate features from irrelevant ar-
eas. (b) shows the diverse structures contained in the image.

are proposed to consider all possible matches adequately
and have achieved great success. However, because of the
large matching space, these dense matching methods are ex-
pensive in computation cost and memory consumption. To
achieve high efficiency, we notice that the detector-based
matching methods [4, 9, 20, 31] can effectively reduce the
matching space by designing keypoint detectors to extract a
relatively small keypoint set for matching, thus having high
research value. Generally, existing detector-based match-
ing methods can be categorized into two main groups in-
cluding detect-then-describe approaches [18, 37, 40, 41, 54]
and detect-and-describe approaches [12, 20, 31]. Detect-
then-describe approaches refer to first detect repeatable key-
points [3, 5, 18], and then keypoint features [19, 23, 28] are
represented by describing image patches extracted around
these keypoints. In this way, matches can be established
by nearest neighbor search according to the Euclidean dis-
tance between keypoint features. However, since the key-
point detector and descriptor are usually designed sepa-
rately in detect-then-describe approaches, keypoint features
may not be suitable for detected keypoints, resulting in
poor performance under extreme appearance changes. Dif-
ferently, detect-and-describe approaches [12, 31] are pro-
posed to tightly couple the keypoint detector learning with
the descriptor learning. For example, both D2-Net [12]
and R2D2 [31] use a single convolutional neural network
(CNN) for joint detection and description. These methods
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have achieved great performance mainly benefiting from the
superiority of joint learning. However, the receptive field
of features extracted by CNN is limited, and keypoint de-
tectors are usually learned at a single feature scale, which
restricts further progress.

Based on the above discussions, we find that both the
descriptor and detector learning are crucial for detector-
based matching methods. To make image matching more
robust to real-world challenges, the following two issues
should be taken into consideration carefully. (1) How to
learn feature descriptors with long-range dependencies.
Current detector-based matching methods [9, 12, 31] usu-
ally use CNN to extract image features. Due to the limited
receptive field of CNN, the extracted features would lack
discriminative ability in texture-less regions. Although sev-
eral works [11, 48] leverage full attention to capture long-
range dependencies, as shown in Figure 1 (a), full attention
may aggregate irrelevant noise, which is harmful to learn
discriminative features. Besides, the computation cost of
full attention is rather expensive. Therefore, an effective
and efficient attention mechanism needs to be proposed ur-
gently to capture long-range contexts of features. (2) How
to learn keypoint detectors suitable for various struc-
tures. As shown in Figure 1 (b), there are diverse levels of
structures in an image, from simple corner points (low-level
structures) to complex object parts (high-level structures).
However, existing keypoint detectors are usually good at
identifying keypoints with a specific level of structure, such
as corners (or edges) [14,49], and blobs [18,21]. Thus, it is
necessary to learn hierarchical keypoint detectors to detect
keypoints with different structures.

Motivated by the above observations, we propose a
novel model by Jointly Learning Hierarchical Detectors
and Contextual Descriptors via Agent-based Transformers
(D2Former) for image matching, which mainly consists of
a contextual feature descriptor learning (CFDL) module and
a hierarchical keypoint detector learning (HKDL) module.
In the contextual feature descriptor learning module, it is
proposed to capture reliable long-range contexts efficiently.
Specifically, original image features are first extracted by a
standard CNN. Then, we design a set of descriptor agents
to aggregate contextual information by interacting with im-
age features via attention mechanisms. Finally, contex-
tual features are obtained by fusing the updated descriptor
agents into original features. In the hierarchical keypoint
detector learning module, it is proposed to detect key-
points with different structures, which can achieve robust
keypoint detection. Specifically, we design a set of detec-
tor agents, which can interact with contextual features via
attention mechanisms to obtain low-level keypoint detec-
tors. Then, we aggregate these low-level keypoint detectors
to form high-level keypoint detectors in a hierarchical way.
Finally, the hierarchical keypoint detectors are obtained by

gathering keypoint detectors from different levels.
The main contributions of this work can be summarized

as follows. (1) A novel image matching method is proposed
by jointly learning hierarchical detectors and contextual de-
scriptors via agent-based Transformers, which can extract
discriminative feature description and realize robust key-
point detection under some extremely challenging scenar-
ios. (2) The proposed CFDL module can model long-range
dependencies effectively and efficiently with the aid of de-
signed descriptor agents. And the HKDL module can gen-
erate keypoint detectors in a hierarchically aggregated man-
ner, so that keypoints with diverse levels of structures can be
detected. (3) Extensive experimental results on four chal-
lenging benchmarks show that our proposed method per-
forms favorably against state-of-the-art detector-based im-
age matching methods.

2. Related Work
In this section, we briefly overview detect-then-describe

image matching, detect-and-describe image matching and
applications of Transformers in vision-related tasks.
Detect-then-describe image matching. Detect-then-
describe methods [18, 37, 40, 41, 54] generally consist of
three stages: detection, description, and matching. First,
a set of salient and repeatable keypoints are first detected
by a keypoint detector [3, 14, 46], then keypoint descriptors
are computed based on a patch centered around each key-
point [19, 23, 28, 45], and finally, keypoints and feature de-
scriptors are paired together to form a candidate matching
space from which matches with high confidence can be re-
trieved through the mutual nearest neighbour criterion [24].
Traditional methods utilize handcrafted keypoint detectors
and descriptors [18], which makes them limited by the pri-
ori knowledge. To alleviate the problem, several learning-
based methods have been proposed, which can learn the
keypoint detector [37, 54] or the feature descriptor [40, 41]
in a data-driven manner. For example, LIFT [51] designs
three differentiable branches, where keypoints are first de-
tected by a convolutional branch, and cropped regions are
then fed to the second branch to estimate the orientation.
Finally, the third convolutional branch is used to perform
description. However, detect-then-describe methods typi-
cally perform poorly under extreme appearance changes be-
cause repeatable keypoints are hard to detect. Besides, due
to the separate design of keypoint detectors and feature de-
scriptors, keypoint features may not be suitable for detected
keypoints. Thus, in our work, we propose to learn keypoint
detection and description jointly in a unified framework.
Detect-and-describe image matching. Recently, several
methods [9, 12, 20, 26, 31] propose to tightly couple key-
point detection and description. Among these methods, D2-
Net [12] proposes to utilize a single CNN for jointly op-
timizing detection and description, and demonstrates that
the describe-and-detect strategy performs significantly bet-
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ter under challenging conditions. Further, R2D2 [31] is
proposed to extract feature descriptors from the standard
CNN backbone and learn a keypoint detector (1× 1 con-
volutional kernel) by constraining the detector to be both
repeatable and reliable. However, the detector is learned
and output from a fixed feature resolution, which limits the
detection of keypoints with diverse levels of structures. Al-
though ASLFeat [20] proposes keypoint detection on image
features with different resolutions, the features are directly
obtained from the CNN backbone, which may lack discrim-
inative ability in texture-less regions. Besides, keypoint de-
tectors of ASLFeat are learned independently on features at
different resolutions without interaction, which limits the
detector to perceive various levels of structures. Differ-
ently, our proposed contextual feature descriptor learning
module can model long-range dependencies effectively and
efficiently. And the designed hierarchical keypoint detector
learning module can generate keypoint detectors in a hier-
archically aggregated manner to identify keypoints with di-
verse levels of structures, which is vital for detector-based
image matching approaches.
Transformers in vision-related tasks. Transformers [48]
were initially widely used in the natural language process-
ing field, which has achieved great success [10]. Due to
their powerful global interaction capabilities, Transform-
ers have gained increasing attention to a variety of com-
puter vision tasks, such as object detection [6, 22] and im-
age classification [11]. As a representative work, DETR [6]
innovatively views object detection as a direct set prediction
problem, and adopts an encoder-decoder architecture based
on Transformers. Thanks to the attention mechanisms [1]
which can model long-range dependencies, DETR [6] has
successfully achieved state-of-the-art performance. Re-
cently, attention mechanisms have been also introduced to
the image matching task, where LoFTR [42] and ASpan-
Former [7] are representative works. As can be seen, the
global interaction ability of attention mechanism is useful
for vision-based tasks. Thus, in this paper, we introduce the
attention mechanisms to the detector-based image matching
task, which can help learn discriminative feature descriptors
with long-range dependencies. And hierarchical keypoint
detectors can be learned by exploiting the global interac-
tion ability of the attention mechanism, which is helpful for
detecting keypoints from different structures.

3. Our Approach
In this section, we present our proposed method by

Jointly Learning Hierarchical Detectors and Contextual De-
scriptors via agent-based Transformers for image matching.
The overall architecture is illustrated in Figure 2.

3.1. Overview
As shown in Figure 2, our proposed model mainly con-

sists of a contextual feature descriptor learning (CFDL)

module and a hierarchical keypoint detector learning
(HKDL) module. Given an input image I, we first extract
its original image features F̂ via a feature extractor inspired
by R2D2 [31]. Then, the image features F̂ are flattened to
Rd×hw and are sent into the proposed CFDL module to gen-
erate contextual feature descriptors. Specifically, we first
define a set of descriptor agents Â ∈ Rd×M in the CFDL
module, which can interact with flattened features F̂ via an
attention operation to obtain updated descriptor agents A.
The similarity S between features F̂ and updated descriptor
agents A is then calculated. And the final contextual fea-
ture descriptors F ∈ Rd×h×w are obtained by a weighted
sum of A based on the calculated similarity. After obtaining
the contextual feature descriptors, we aim to produce hier-
archical keypoint detectors in the HKDL module. Specifi-
cally, we first down-sample the contextual features F with
convolutions (Convs) and obtain features Fl with different
resolutions. A set of detector agents D̂l is then defined by
leveraging the agent initialization strategy. Next, for each
level, the detector agents D̂l are used to interact with the
low-level keypoint detectors Dl−1 via the detector decoder
to produce high-level keypoint detectors Dl. Finally, we
can generate hierarchical keypoint detectors D by concate-
nating keypoint detectors Dl at different levels.

3.2. Contextual Feature Descriptor Learning

In order to capture long-range contexts efficiently and ef-
fectively, we adopt an agent-based attention mechanism in
the proposed contextual feature descriptor learning (CFDL)
module. Given flattened image features F̂ ∈ Rd×hw, we
first design M descriptor agents Â ∈ Rd×M to interact with
F̂ via the attention operation, where descriptor agents are
initialized with a set of learnable parameters [50]. Specif-
ically, keys and values arise from image features F̂, and
queries arise from the descriptor agents Â. Formally,

Q = WQÂ,K = WKF̂,V = WV F̂, (1)

where WQ ∈ Rdk×d,WK ∈ Rdk×d,WV ∈ Rd×d are
linear projections. Then, the descriptor agents are updated
to obtain A in the following way,

A = Attention (Q,K,V) = V · Softmax(K⊤Q). (2)

Motivated by [48], Eq. (2) is implemented with the multi-
head attention. In this way, A can effectively capture long-
range contexts. Thus, we update original features F̂ by fus-
ing A to obtain contextual feature descriptors. To this end,
we calculate similarity scores S between F̂ and updated de-
scriptor agents A. And original features F̂ are updated as
follows,

F = F̂+AS, where S = A⊤F̂. (3)
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Figure 2. The architecture of our D2Former consists of two major components, including a contextual feature descriptor learning (CFDL)
module and a hierarchical keypoint detector learning (HKDL) module. The image I is first sent into a feature extractor to obtain features
F̂. Then, in the CFDL module, we define a set of descriptor agents Â to interact with flattened features F̂, and use updated agents A to
produce contextual descriptors F. Next, in the HKDL module, for each level l ∈ {1, 2, 3}, we leverage an agent initialization (Agent Init.)
strategy to generate detector agents D̂l, which are used to interact with Dl−1 via the detector decoder to produce detectors Dl. Finally, we
can generate hierarchical detectors D by concatenating detectors Dl at different levels. For more details, please refer to the text.

The above operations (Eq. (1) to Eq. (3)) constitute the
agent-based attention mechanism. And the final contextual
descriptors are obtained by reshaping F to Rd×h×w.
Discussions. Here, we discuss differences between our pro-
posed agent-based attention mechanism and the full atten-
tion mechanism [11,48] to model long-range dependencies.
In terms of efficiency, it is well known that the complexity
of full attention [11] is O((hw)2), where (h,w) is the res-
olution of features. Differently, by analyzing Eq. (2) and
Eq. (3), our agent-based attention has the complexity of
O((hw) ·M), where M is the number of descriptor agents.
Since M is far smaller than hw, the agent-based attention
is more efficient than the full attention. Besides, as shown
in Figure 1, the agent-based attention can focus more on
valid regions than full attention. Therefore, with the aid of
proposed agent-based attention mechanism, we can capture
long-range contexts efficiently and effectively to produce
contextual descriptors.

3.3. Hierarchical Keypoint Detector Learning

After obtaining the contextual feature descriptors F, we
aim to learn hierarchical keypoint detectors, which is suit-
able for detecting keypoints with various structures. To
this end, we aggregate low-level keypoint detectors to form
high-level keypoint detectors in a hierarchical way. Specif-
ically, we first leverage an agent initialization strategy to
generate detector agents D̂l at the lth level, where l ∈
{1, 2, 3}. Then, these detector agents are interacted with
the (l−1)th level keypoint detectors Dl−1 via the designed
detector decoder to produce the lth level keypoint detectors
Dl. Finally, we can generate hierarchical keypoint detectors

D by concatenating keypoint detectors Dl at different lev-
els. Below, we introduce the designs of agent initialization
and detector decoder in detail.
Agent initialization. For the first level (l = 1), the detec-
tor agents D̂1 are simply initialized with a set of learnable
parameters. For other levels (l ≥ 2), we generate detector
agents by using contextual features F. Specifically, we first
use convolutional operations to down-sample F, and obtain
Fl ∈ Rd×hl×wl . Here, hl = h/2l−1 and wl = w/2l−1.
Then, a 1 × 1 convolutional layer is applied on Fl to pro-
duce Nl = N/2l−1 agent masks Ml ∈ RNl×hl×wl . Finally,
Fl and Ml are flattened and the detector agents D̂l are ini-
tialized as follows,

D̂l = Fl ⊗ [Ml]⊤, (4)

where ⊗ represents the matrix multiplication operator.
Detector decoder. As shown in the right of Figure 2, we
aim to utilize detector agents D̂l to aggregate information
from the (l− 1)th keypoint detectors Dl−1. In this way, we
can obtain the lth keypoint detectors Dl, which is formu-
lated as follows,

Q = WQD̂l,K = WKDl−1,V = WVDl−1, (5)

D̄l = LN(D̂l +V · Softmax(K⊤Q)), (6)

Dl = LN(D̄l +MLP(D̄l)). (7)

Here, LN is layer normalization and MLP denotes the
multi-layer perception. For the first level (l = 1), there is
no definition of D0. Thus, we simply replace D0 with the
flattened F, which means that keypoint detectors D1 at the
first level are generated according to image features F.
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3.4. Objective Function

After obtaining the contextual descriptors F ∈ Rd×h×w

and hierarchical detectors D ∈ Rd×Na , multiple score
maps SN ∈ RNa×h×w is generated by a dot product op-
eration between them, i.e. SN = D⊤F. Here, we denote
Na = N1 + N2 + N3, which is the number of hierar-
chical detectors. The final keypoint detection score map
Sc ∈ R1×h×w is obtained by averaging SN on the first
channel. Then three major objective functions are intro-
duced to guide our model learning. For keypoint repeata-
bility, the cosine similarity loss Lcosim is used to enforce
detection score maps between two images to have high sim-
ilarity in corresponding local patches. For the goal of en-
forcing the proposed detectors to focus on the salient posi-
tion, we use the peaky loss Lpeaky to maximize the local
peakiness of the detection score map Sc. Both Lcosim and
Lpeaky are inspired from R2D2 [31], and the details of these
two losses can be referred to R2D2. Additionally, to expand
the discrepancy among updated descriptor agents A, we im-
pose the diversity loss as follows,

Ldiv =
1

M(M − 1)

M∑
j=1

M∑
k=1,k ̸=j

⟨Aj ,Ak⟩
∥Aj∥2 ∥Ak∥2

. (8)

Finally, we combine these loss functions by a weighted sum
to train our model, i.e.,

Ltotal = Lcosim + α1Lpeaky + α2Ldiv, (9)

where α1 and α2 are weight terms to balance these losses.

4. Experiments
In this section, we first introduce implementation details.

Then, we show experimental results and some visualiza-
tions on four public benchmarks. Finally, we conduct a se-
ries of ablation studies to verify the effectiveness of each
component. Please refer to the Supplementary Material
for some discussions and more visulization results.

4.1. Implementation Details

In this work, we implement the proposed model in Py-
torch [27]. We adopt the same backbone as [31] to extract
original image features. In the contextual feature descrip-
tor learning module, the number of descriptor agents M is
set to 32. The dimension of image features d = 128. And
dk (the dimension of Q and K) in Eq. (1) is equal to d.
In the hierarchical keypoint detector learning module, the
number of detector agents N for the first level is set to 16.
The detector decoder is composed of Ld = 4 layers, and
cross-attention heads are set to 8. The weight terms α1 and
α2 in the objective function are set to 0.6 and 0.8. After ob-
taining the keypoint detection score map Sc, keypoints can

be obtained by applying the local maxima filtering and the
threshold constraint [31] on the score map Sc. The model
runs about 0.32s for a 1600×1200 image pair on an RTX
3090 GPU. For training, we adopt the same outdoor train-
ing dataset [30, 35, 36] as R2D2, and the indoor training
dataset [8]. All parameters in the feature extractor back-
bone, the contextual feature descriptor learning module and
the hierarchical keypoint detector learning module are ran-
domly initialized, and trained from scratch. We train our
model using the Adam optimizer. The learning rate is set to
10−4, and the weight decay is 3 × 10−4. It converges after
24 hours of training on a single RTX 3090 GPU.

4.2. Datasets and Evaluation Metrics

HPatches. The HPatches [2] dataset is a widely adopted
matching benchmark containing 116 image sequences un-
der significant illumination and viewpoint changes. Here,
each sequence includes a reference image and five query
images, and the ground-truth homography is provided for
each image pair. We follow the evaluation procedure
of [12,31,42] to exclude 8 high-resolution sequences, leav-
ing 108 image sequences, where 52 sequences are under
strong illumination changes and 56 sequences are under ex-
treme viewpoint variations. As for the evaluation metric,
we use the same definition as in [42], and report the area
under the cumulative curve (AUC) of the corner error.
ScanNet. The ScanNet [8] is a large-scale indoor dataset
with ground truth poses and depth maps, which is used to
target the task of indoor pose estimation. This dataset is
challenging since it contains image pairs with wide base-
lines and extensive texture-less regions. We follow the same
procedure as [34, 42] and use 1500 image pairs from [34]
to evaluate our method. And the evaluation metric follows
previous work [42], where the AUC of the indoor pose error
at thresholds (5◦, 10◦, 20◦) is reported.
YFCC100M. The YFCC100M dataset [44] is usually used
to validate the performance of outdoor pose estimation, in-
cluding a diverse collection of complex real-world scenes
ranging from 200,000 street-life-blogged photos to snap-
shots of daily life, holidays, and events. The main challeng-
ing factors for YFCC100M are extreme scale and illumina-
tion variations. We adopt the same test pairs as [34, 53] to
evaluate, i.e. on 4 scenes of this dataset, where each scene
is composed of 1000 image pairs. As for the evaluation
metric, we report the AUC of the pose error at thresholds
(5◦, 10◦, 20◦), similar to [34,52,53]. Here, the pose error is
defined as the maximum of angular error in rotation and
translation, which is computed between the ground truth
pose and the predicted pose vectors.
MegaDepth. The MegaDepth [17] is composed of 1M in-
ternet images of 196 scenes. In addition, the sparse 3D
point clouds of these images constructed by COLMAP [38]
and depth maps are also provided. The main challenge of
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Table 1. Evaluation results for homography estimation on the
HPatches. We report the AUC of the corner error in percentage.

Methods AUC@3px AUC@5px AUC@10px #matches
Sparse-NCNet [32] 48.9 54.2 67.1 1.0K
DRC-Net [16] 50.6 56.2 68.3 1.0K
LoFTR [42] 65 .9 75.6 84.6 1.0K
D2-Net [12] + NN 23.2 35.9 53.6 0.2K
R2D2 [31] + NN 50.6 63.9 76.8 0.5K
DISK [47] + NN 52.3 64.9 78.9 1.1K
SuperPoint [9] + SuperGlue [34] 53.9 68.3 81.7 0.6K
D2Former + NN (ours) 71.6 81.3 89.7 0.6K

1

Figure 3. Qualitative results on HPatches. The images in each
column form a pair for image matching. Green and red dots denote
correct and incorrect matches respectively. (The threshold is 3px).

MegaDepth is strong viewpoint changes and repetitive pat-
terns. We take the same 1500 image pairs as [42] to evaluate
the proposed model. Here, the evaluation metric we adopt
is the same as [42], where the AUC of the pose error at
thresholds (5◦, 10◦, 20◦) is reported.

4.3. Comparison with State-of-the-art Methods

Results on HPatches dataset. We compare our model with
previous state-of-the-art image matching methods [9, 12,
16, 31, 32, 34, 42, 47]. As shown in Table 1, our method
achieves 71.6% in AUC@3px, 81.3 % in AUC@5px and
89.7% in AUC@10px, outperforming all other methods
significantly. Compared with LoFTR [42], our D2Former
improves by 5.7% in AUC@3px, 5.7% in AUC@5px and
5.1% in AUC@10px, respectively. Finally, we show some
qualitative results in Figure 3. Our model can achieve robust
keypoint detection and establish accurate matches when
facing challenges like extreme illumination (the first col-
umn) and viewpoint changes (the last column), which fully
proves the effectiveness of our proposed contextual feature
descriptor learning module and hierarchical keypoint detec-
tor learning module.
Results on ScanNet dataset. Here, we present the perfor-
mance comparison of the indoor pose estimation between
our method and other state-of-the-art methods. As shown
in Table 2, our proposed method outperforms other state-of-
the-art methods favorably at all 3 thresholds. Specifically,
compared with ASpanFormer [42], our method improves
by 5.43% in AUC@5◦, 5.69% in AUC@10◦ and 5.87%
in AUC@20◦, which demonstrate that our model is able to

Table 2. Evaluation results on the ScanNet dataset. We report the
AUC of the pose error at thresholds (5◦, 10◦, 20◦).

Methods AUC@5◦ AUC@10◦ AUC@20◦

DRC-Net [16] 7.69 17.93 30.49
LoFTR [42] 22.06 40.80 57.62
ASpanFormer [7] 25.60 46.00 63.30
D2-Net [12] + NN 5.25 14.53 27.96
R2D2 [31] + NN 7.43 17.45 28.64
SuperPoint [9] + NN 9.43 21.53 36.40
SuperPoint [9] + PointCN [52] 11.40 25.47 41.41
SuperPoint [9] + OANet [53] 11.76 26.90 43.85
SuperPoint [9] + SuperGlue [34] 16.16 33.81 51.84
D2Former + NN (ours) 31.03 51.69 69.17

1

Figure 4. Qualitative results on the ScanNet dataset. The images in
each column form a pair for image matching. Green and red dots
denote correct and incorrect matches respectively. (The epipolar
error threshold is 5× 10−4).

Table 3. Evaluation results on the YFCC100M dataset. We report
the AUC of the pose error at thresholds (5◦, 10◦, 20◦).

Methods AUC@5◦ AUC@10◦ AUC@20◦

LoFTR [42] 40.28 61.17 77.80
SIFT [18] + SuperGlue [34] 30.49 51.29 69.72
R2D2 [31] + NN 33.85 52.44 68.53
SuperPoint [9] + NN 16.94 30.39 45.72
SuperPoint [9] + OANet [53] 26.82 45.04 62.17
SuperPoint [9] + SuperGlue [34] 38.72 59.13 75.81
D2Former + NN (ours) 56.78 73.71 85.37

establish accurate correspondences for indoor pose estima-
tion. Finally, we show some qualitative results in Figure 4.
It can be seen that our proposed method can realize image
matching robust to the existence of texture-less regions in
the ScanNet. The reason may be that our designed con-
textual feature descriptor learning module can generate dis-
criminative descriptors with a large receptive field. More-
over, the designed hierarchical keypoint detector learning
module can perceive high-level structures, which is help-
ful for detecting repeatable keypoints in texture-less regions
and achieving robust matching.
Results on YFCC100M dataset. As shown in Table 3, we
attempt to compare our method with previous state-of-the-
art approaches to validate the effectiveness of our D2Former
for outdoor pose estimation. The results show that our pro-
posed method can surpass the other image matching meth-
ods by a large margin, gaining by 16.50% in AUC@5◦,
12.54% in AUC@10◦ and 7.57% in AUC@20◦ compared
to LoFTR [42]. Furthermore, as shown in Figure 5, our pro-
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Figure 5. Qualitative results on the YFCC100M (the first two
columns) and MegaDepth datasets (the last two columns). The im-
ages in each column form a pair for image matching. Green and
red dots denote correct and incorrect matches respectively. (The
epipolar error threshold is 5× 10−4).

Table 4. Evaluation results on the MegaDepth dataset. We report
the AUC of the pose error at thresholds (5◦, 10◦, 20◦).

Methods AUC@5◦ AUC@10◦ AUC@20◦

DRC-Net [16] 27.01 42.96 58.31
LoFTR [42] 52.80 69.19 81.18
ASpanFormer [7] 55.30 71.50 83.10
R2D2 [31] + NN 37.14 55.09 69.65
SuperPoint [9] + SuperGlue [34] 42.18 61.16 75.96
D2Former + NN (ours) 66.27 78.44 86.81

posed D2Former can establish reliable matches when facing
extreme scale and viewpoint variations, demonstrating the
effectiveness of our designed two modules.
Results on MegaDepth dataset. Here, we attempt to com-
pare our proposed method with other state-of-the-art image
matching methods on the Megadepth dataset. As shown in
Table 4, our proposed method obtains the best performance
in pose accuracy among all image matching methods. As
for the comparison with ASpanFormer [7] which performs
the best on this dataset, our model improves by 10.97% in
AUC@5◦, 6.94% in AUC@10◦ and 3.71% in AUC@20◦.
The visualization results are also shown in Figure 5, and our
model can establish accurate correspondences when facing
extreme viewpoint changes and repetitive patterns.

4.4. Ablation Studies

To analyze the effects of each component in D2Former,
we perform detailed ablation studies on the ScanNet dataset.
In Table 5, the model [A] is the same as R2D2. We first ex-
tract original features F̂ using the same backbone as R2D2.
Then, for model [B], F̂ are processed by CFDL to obtain
contextual descriptors, while the keypoint detector is im-
plemented with a 1×1 convolutional kernel. For model [C],
F̂ are not processed by CFDL, and hierarchical detectors
are learnt by sending F̂ into the HKDL. The model [D] is
the full model of our D2Former.
Effects of the contextual feature descriptor learning
(CFDL) module. As shown in Table 5, with the proposed
CFDL module, the performance on the ScanNet is improved
notably. In specific, the performance of model [B] is im-
proved by 11.25% in AUC@5◦, 19.04% in AUC@10◦ and

Table 5. Effectiveness of each component on the ScanNet. We
report the AUC of the pose error at thresholds (5◦, 10◦, 20◦).

Models HKDL CFDL AUC@5◦ AUC@10◦ AUC@20◦

[A] ✗ ✗ 7.43 17.45 28.64
[B] ✗ ✓ 18.68 36.49 55.17
[C] ✓ ✗ 27.64 48.34 67.05
[D] ✓ ✓ 31.03 51.69 69.17

1

Figure 6. Qualitative comparisons between our proposed agent-
based attention mechanism (the first column) and the standard full
attention (the second column).

26.53% in AUC@20◦, compared to the model [A]. And
the model [D] also performs better than the model [C]. The
main reason is that our CFDL module can model long-range
dependencies for feature descriptors, which is beneficial to
handling texture-less regions for robust image matching.

Furthermore, we show some qualitative comparisons be-
tween the agent-based attention mechanism in the CFDL
module and the standard full attention [1], which can vali-
date the effects of the designed agent-based attention mech-
anism. As shown in Figure 6, we can find that standard full
attention introduces extra noise when conducting global in-
teractions. For example, in the first row, when selecting a
pixel from the mountain to conduct interaction with other
pixels, pixels from backgrounds also have a high attention
score for the standard full attention. By contrast, our pro-
posed agent-based attention mechanism has a clear atten-
tion score map as shown in Figure 6, which can effectively
reduce noise and generate robust contextual descriptors.
Impacts about the number of descriptor agents in the
CFDL module. Here, we study the performance with dif-
ferent numbers of descriptor agents (M ) in the CFDL mod-
ule. M is picked from the set {2, 4, 8, 16, 32, 64}, and we
evaluate the performance on the ScanNet. As shown in Ta-
ble 6, we find that the overall performance of the model
improves with the increase of M , and the model can get the
best performance when M = 32. There is no performance
gain when M continues to increase. The reason may be
that the setting M = 32 is able to adequately capture differ-
ent contexts in the input images, and more descriptor agents
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Table 6. Impacts of the number of descriptor agents on ScanNet.
Models AUC@5◦ AUC@10◦ AUC@20◦

M=2 27.56 48.08 66.81
M=4 28.12 48.91 67.39
M=8 28.98 49.33 67.92
M=16 29.83 50.49 68.67
M=32 31.03 51.69 69.17
M=64 30.87 51.31 69.07

Table 7. Impacts of the number of detector agents on ScanNet.
Models AUC@5◦ AUC@10◦ AUC@20◦

N=4 25.59 45.49 64.66
N=8 29.19 50.11 68.29
N=12 30.24 50.75 68.74
N=16 31.03 51.69 69.17
N=20 30.75 50.99 68.65

may have an adverse influence on the model training due to
lack of sufficient explicit constraints.
Effects of the hierarchical keypoint detector learning
(HKDL) module. As shown in Table 5, when adding our
proposed HKDL module, the performance on the Scan-
Net can achieve great improvement. Specifically, the per-
formance of model [C] is gained by 20.21% in AUC@5◦,
30.89% in AUC@10◦ and 38.41% in AUC@20◦, compared
to the model [A]. Besides, the model [D] also performs
much better than the model [B]. The main reason is that our
proposed HKDL module can generate keypoint detectors in
a hierarchically aggregated manner, so that keypoints with
diverse levels of structures can be detected, which is vital
for robust image matching.
Impacts about the number of detector agents in the
HKDL module. To investigate the influences of the num-
ber of detector agents (N ) in the HKDL module, we pick
N from the set {4, 8, 12, 16, 20} and evaluate the perfor-
mance on the ScanNet dataset. As shown in Table 7, we
find that when N is set to 16, the model can get the best
performance. When N continues to increase from 16, the
performance is no longer improved, which reflects that the
model with N = 16 is sufficient to perceive different levels
of structures on the ScanNet dataset.
Visualization about keypoint detection results for differ-
ent levels. To further validate the effects of our proposed
HKDL module, as shown in Figure 7, we show keypoint de-
tection results for different levels. And the detection results
from the first row to the third row are obtained by leveraging
detectors D1, D2, and D3, respectively. For the first row,
keypoints with low-level structures like standard corners or
edges are commonly extracted, such as the edge of a refrig-
erator door in the first column, and the corner of wall in the
second column (marked with a red circle). In the second and
the third row, we find that detected keypoints are usually far
away from simple structures like corners and edges. And
keypoints can be detected in texture-less regions. We think

1

Figure 7. Keypoint detection results for an image (each column).
From the first row to the third row, we sequentially show the detec-
tion results from low-level detectors to high-level detectors. And
the fourth row shows the combined detection results.

the reason is that high-level detectors usually have larger
perceived radii, and can perceive some high-level seman-
tics of detected keypoints. For example, given a detected
keypoint (the center of red circle), our generated high-level
detectors may understand this keypoint is from a refrigera-
tor and can sense how far this keypoint is from the edge of
a refrigerator door in the first column. In conclusion, with
our well-designed HKDL module, the generated hierarchi-
cal detectors can capture keypoints with diverse levels of
structures, making our model robust to various challenges
such as viewpoint transformations and poor textures, which
greatly improves the performance of our method.

5. Conclusion

In this work, we propose a novel image matching model
by Jointly Learning Hierarchical Detectors and Contextual
Descriptors via Agent-based Transformers (D2Former), in-
cluding a CFDL module and a HKDL module. With these
two well-designed modules, our proposed method can learn
more discriminative feature description and realize repeat-
able keypoint detection under some extremely challenging
factors, which is vital for robust image matching. Exten-
sive experimental results on four challenging benchmarks
demonstrate the superiority of our proposed method.
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