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Abstract

The DETR-like segmentors have underpinned the most
recent breakthroughs in semantic segmentation, which end-
to-end train a set of queries representing the class proto-
types or target segments. Recently, masked attention [8] is
proposed to restrict each query to only attend to the fore-
ground regions predicted by the preceding decoder block
for easier optimization. Although promising, it relies on the
learnable parameterized positional queries which tend to
encode the dataset statistics, leading to inaccurate local-
ization for distinct individual queries. In this paper, we pro-
pose a simple yet effective query design for semantic seg-
mentation termed Dynamic Focus-aware Positional Queries
(DFPQ), which dynamically generates positional queries
conditioned on the cross-attention scores from the preced-
ing decoder block and the positional encodings for the cor-
responding image features, simultaneously. Therefore, our
DFPQ preserves rich localization information for the tar-
get segments and provides accurate and fine-grained posi-
tional priors. In addition, we propose to efficiently deal with
high-resolution cross-attention by only aggregating the con-
textual tokens based on the low-resolution cross-attention
scores to perform local relation aggregation. Extensive ex-
periments on ADE20K and Cityscapes show that with the
two modifications on Mask2former, our framework achieves
SOTA performance and outperforms Mask2former by clear
margins of 1.1%, 1.9%, and 1.1% single-scale mIoU with
ResNet-50, Swin-T, and Swin-B backbones on the ADE20K
validation set, respectively. Source code is available at
https://github.com/ziplab/FASeg.

1. Introduction
Semantic segmentation aims at assigning each pixel in

an image with a semantic class label. As the end-to-end De-
tection Transfomer (DETR) [3,42,49,58] is revolutionizing
the paradigm of the object detection task, recent segmen-
tors [2,8,9,54] follow DETR to learn a set of queries repre-
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senting the class prototypes or target segments and achieve
state-of-the-art performance on semantic segmentation.

In DETR-like frameworks, providing the queries with
meaningful positional priors and encourage each query to
concentrate on specific regions is essential to learn repre-
sentative queries [28, 43, 49, 58]. In this spirit, masked at-
tention [8] is proposed, which restricts each query to only
attend to a foreground region predicted by the previous de-
coder block with binary masks. Although promising, the
positional priors in masked attention may be inaccurate and
deteriorate performance for two reasons. First, each query
comprises a content query that contains semantic informa-
tion and a positional query that provides positional infor-
mation for the likely locations of the target segments. How-
ever, masked attention still relies on positional queries that
are randomly initialized learnable parameters [3, 40] (Fig-
ure 1 (a)), which tend to encode the average statistics across
the dataset and cannot reflect the segments with large lo-
cation variances. Second, since each query only attends
to the predicted foreground regions, inaccurate predictions
lead to error accumulation across the decoder blocks, espe-
cially during an early training stage.

To this end, recent detectors propose to dynamically en-
code the anchor points into the positional queries to guide
queries concentrating around the anchor positions [28, 30,
43] (Figure 1 (b)). The anchor-based query design miti-
gates the mentioned issues as the positional queries are dy-
namically generated for each target object, thus providing
more accurate positional priors. In addition, it avoids re-
stricting the queries to only attend to the foreground regions
with binary masks to mitigate the error accumulation issue.
However, the anchor-based queries cannot describe the fine-
grained positional priors for semantic segmentation, which
has details, edges, and boundaries [5, 6].

Motivated by the observations that attention scores im-
ply the salient regions for token pruning [24, 26], self-
supervised learning [4], and semantic segmentation [34,56],
in this paper, we propose a simple yet effective query design
for semantic segmentation, dubbed Dynamic Focus-aware
Positional Queries (DFPQ), which dynamically generates
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Figure 1. (a) The original randomly initialized positional queries [3] as learnable network parameters, where the positional queries are
shared among the Transformer decoder blocks and tend to encode dataset statistics modelling the likely positions for the semantic regions,
which leads to inaccurate localization. (b) The anchor-based positional queries [43] are conditional on the bounding box coordinates to
give each query positional priors around the anchor. However, the anchor points cannot describe semantic regions, thus still sub-optimal
for semantic segmentation. (c) Our dynamic focus-aware queries for semantic segmentation are dynamically generated from the cross-
attention scores of the preceding decoder block to provide accurate and fine-grained positional priors, facilitating locating and refining the
target segments progressively.

the positional queries conditioned on the cross-attention
scores of the preceding decoder block and the positional
encodings for the corresponding image features, simulta-
neously (Figure 1 (c)). In this way, our DFPQ preserves
the localization information of the target segments, thereby
providing accurate and fine-grained positional priors and fa-
cilitating progressively locating and refining the target seg-
ments. When implementing the positional encodings with
more powerful ones like [10], our DFPQ is further empow-
ered with higher capacity to encode the neighbourhood in-
formation for the target segments. Compared to the anchor-
based positional queries [28, 43], our DFPQ can cover fine-
grained locations for the segmentation details, edges, and
boundaries which include rich segmentation cues.

In addition, we propose an efficient method named High-
Resolution Cross-Attention (HRCA) to mine details for
segmenting small regions from the high-resolution feature
maps (1/4 × 1/4 of the original image size). Considering
performing cross-attention on high-resolution feature maps
requires a formidable amount of memory footprints and
computational complexity, e.g., 11G extra floating-point
operations with an input resolution of 512 × 512, we pro-
pose to encode token affinity only on the informative areas
of high-resolution feature maps that are indicated important
in the low-resolution counterparts. In this way, fine-grained
details are learned efficiently with affordable memory and
computations.

Our main contributions can be summarized as follows:
• We make the pioneering attempt to present a simple yet

effective query formulation for semantic segmentation,
which provides accurate and fine-grained positional
priors to localize the target segments, and mitigates the
error accumulation problem while being lightweight
with little extra computation.

• We propose an efficient high-resolution cross-attention
layer to enrich the segmentation details, which dis-

cards the semantically unimportant regions for any tar-
get segments in the high-resolution feature maps with
affordable memory footprint and computational cost.

• Extensive experiments on ADE20K and Cityscapes
datasets demonstrate that simply incorporating our
DFPQ and HRCA into Mask2former [8] achieves sig-
nificant performance gain and outperforms the SOTA
methods. For instance, our FASeg outperforms SOTA
methods by 1.1%, 1.3%, and 0.9% single-scale mIoU
on the ADE20K [57] validation set with ResNet-50,
Swin-T, and Swin-B backbones, respectively.

2. Related Work
Semantic segmentation with Transformers. The recent
segmentors with Transformers [25, 36, 50, 54] have pushed
the horizon for semantic segmentation. In general, these
segmentors consist of three modules: a backbone, a neck,
and a head. Correspondingly, the recent advances can be
roughly split into three orthogonal categories. The first cat-
egory [14, 46, 48, 50, 52, 53] aims at learning more repre-
sentative features by improving the backbone, mostly by
improving the self-attention mechanism in Transformers.
For example, focal self-attention [48] combines both fine-
grained and coarse-grained features in a backbone self-
attention layer. To provide better multi-scale features with
neck, the second category [22, 23, 34, 34, 45] improves the
feature pyramid network (FPN) [27] or pyramid scene pars-
ing (PSP) [55] structure. For instance, SegFormer [45] sim-
plifies FPN under the Transformer backbone to achieve a
better accuracy-efficiency trade-off, and SegDeformer [34]
adds external memory tokens to preserve the global infor-
mation. The third category implements the head with Trans-
former and conduct set prediction following the DETR-like
end-to-end framework [3]. In DETR-like framework, tar-
get segments are represented by a set of queries. Con-
sidering the importance of providing positional priors for
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the queries [28, 30, 43], masked attention [8] is proposed
to restrict the cross-attention only to the local features.
Our work also aims at providing better positional priors.
In contrast to [8], we follow the recent detectors [28, 43]
to provide accurate positional priors with dynamic posi-
tional queries rather than the learnable parameterized po-
sitional queries [3]. Differently, our DFPQ provides fine-
grained positional priors that can cover the locations for fine
segmentation details, edges, and boundaries. Very recent
work [25] proposes a versatile multi-task head structure to
share the mutual information among the segmentation and
detection tasks, which however, is not directly comparable
to our work.
Positional encodings for Transformers. Both self-
attention and cross-attention for Transformers are
permutation-equivalent. Therefore, Positional Encod-
ings (PE) play an essential role in introducing the order
of the sequence. In general, the positional encodings
include: absolute PE that is generated with sinusoidal
functions [35, 40] or being entirely learnable parame-
ters [19, 29]; relative PE that encodes distances between
the input tokens [12, 32]; and conditional PE, which is
dynamically generated, e.g., PEG [10] generates positional
encodings with depth-wise convolution conditioned on the
local neighbourhood information. In the same spirit, our
DFPQ is also dynamically generated by exploring the idea
of conditional encoding [38, 47], thus delivering higher
segmentation accuracy. Differently, our DFPQ is tailored
specifically for DETR-style semantic segmentation to learn
positional priors for each target segment. In addition, since
our DFPQ is conditional on the PE for the image features,
implementing it with the more powerful PEs [10, 19] can
further boost the representational capability of our DFPQ.
We investigate the effect of different PE strategies in
Section 4.2.

When solely pre-training Transformer backbones, the
positional encodings are generally seen as a part of the fea-
ture embeddings and directly be combined with patch fea-
tures after patchifying the image [15,39]. Differently, in the
cross-attention layers of DETR-like frameworks, both the
image features and the object queries require additional po-
sitional information to provide positional priors for aggre-
gating the query-specific context, which we refer the read-
ers to Section 3.1 for details. Recent detectors [28, 43] en-
code anchor positions into positional queries. In contrast,
we design a novel positional query formulation for semantic
segmentation to reflect regions of interest instead of anchor
points to preserve fine segmentation details.

3. Method
3.1. Preliminary: Cross-attention in DETR

Before introducing our DFPQ, we first revisit the cross-
attention layers in DETR-like frameworks [3]. Cross-

attention layer is a basic module that updates the object
queries by aggregating the image context. Since the cross-
attention layer is permutation-invariant, both queries and
keys require positional information, which introduces the
order and provides positional priors to encourage high at-
tention scores for positionally important regions. Specif-
ically, with N , D, H and W respectively denoting the
number of queries, the hidden dimensions, the height, and
the width of the image features, we have the image fea-
tures Kc and their positional encodings Kp and get keys
K = Kc + Kp, where K ∈ RHW×D. We also have the
object queries Q ∈ RN×D, where each query consists of a
content query Qc and a positional query Qp.

Then, the cross-attention operation can be formulated as

Crs-Attention(Q,K,V ) = softmax

(
QKT

√
D

)
V , (1)

where V ∈ RHW×D is also the image features in the
DETR-like frameworks [3, 9, 54] and we omit all the linear
projections and bias terms for simplicity. From Eq. (1), we
can interpret the cross-attention as aggregating image con-
text based on the dot-product similarity between Q and K.
Since both the content parts and the positional parts for Q
and K contribute to calculating the attention scores, sim-
ilarities for both parts are considered. Therefore, content
similarity contributes to mining the correlation between the
object queries and the image features, while positional sim-
ilarity provides positional priors for each target segment.

3.2. Dynamic Focus-aware Positional Queries

In this work, we aim to develop positional queries that
provide effective positional priors under DETR-like frame-
works for semantic segmentation. We argue that gen-
erating positional queries conditioned on cross-attention
scores has three good properties. First, the cross-attention
scores indicate the areas with rich context and may di-
rectly reflect the localization information for the target seg-
ments [4, 56]. Therefore, when stacking several decoder
blocks with cross-attention layers in DETR-like frame-
works, the localization information in the preceding block
is helpful for progressively locating the target segments in
the later blocks, especially when the blocks handle features
at different scales [8,23]. Second, cross-attention scores are
dynamically generated. In contrast to the content-agnostic
positional queries as learnable parameters in [3], which tend
to encode statistics across the dataset and limit models’
generalization capability, cross-attention scores are condi-
tional on each target segment reflecting the specific con-
textual locations, thereby being more accurate. Finally, the
cross-attention scores can cover fine-grained segmentation
details, edges, and boundaries instead of encoding only a
single center or anchor point alike [28, 43].
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Figure 2. (a) Cross-attention with our dynamic focus-aware positional queries (DFPQ). “pos” is short for positional. We show generating
DFPQ in the dashed box, where we multiply the positional encodings for the image features with the cross-attention scores of the preceding
decoder block followed by a projection function h to get DFPQ. Here we omit the bias terms for simplicity. (b) The overall framework
for our FASeg is built upon Mask2former [8], which employs a Backbone to encode images, a Pixel Decoder to fuse the features under
different resolutions, and a Transformer Decoder to learn the representation for each target segment. We first apply our DFPQ in each
decoder block to provide more accurate positional priors (marked with blue arrows). Then, we further propose to incorporate our high-
resolution cross-attention (HRCA) layers to model the cross-attention between the queries and the high-resolution feature maps (marked
with red arrows). Here “Top-k” selects the top-k pixels indicated by the cross-attention scores of the previous Transformer decoder block.

Therefore, we propose to generate the positional queries
conditional on the cross-attention scores of the preceding
decoder block and the positional encodings for the corre-
sponding image features, simultaneously, as shown in Fig-
ure 2 (a). Specifically, since the positional encodings Kp

for the image features preserve the positional information,
we form our DFPQ by aggregating Kp as indicated by the
cross-attention scores A in the cross-attention layer of the
preceding decoder block, which can be formulated as

Qt
p = h(At−1Kt−1

p +B), (2)

where t is the index of the t-th Transformer decoder block,
At−1 ∈ RN×HW is the cross-attention scores from the
(t− 1)-th Transformer decoder block, B ∈ RN×D is learn-
able network parameters, and h is a two-layered MLP with
ReLU non-linearity in between. Note that the bias term
B is the original randomly initialized learnable positional
queries, which we employ to stable the training in an early
training stage. In this way, we dynamically generate DFPQ
to provide positional priors for the target segments. It can
also cover the fine-grained segmentation cues that are not
restricted by anchor points.

Note that as our DFPQ directly aggregates the positional
information, implementing DFPQ with different Kp leads
to distinct behaviours. When implementing Kp with the
absolute sinusoidal function, the resulting DFPQ reflects an
anchor point alike [28,43] instead of the target areas. In this
case, we implement Kp with conditional positional encod-
ings [10] to further encode the neighbourhood information

and preserve the implicit positional priors for localizing the
target segments. We empirically investigate the effect of
different positional encodings in Section 4.2.

3.3. Efficient High-resolution Cross-attention

As demonstrated by the prior arts [23, 38], high-
resolution image features are important for segmenting
small regions. However, modelling cross-attention between
object queries and high-resolution image features requires
an unbearable amount of memory footprints and compu-
tational cost. In this case, we propose an efficient High-
Resolution Cross-Attention (HRCA) layer to mine details
from high-resolution feature maps with affordable memory
burden. Specifically, we first select the top-k pixels from
the low-resolution image features with the highest cross-
attention scores for all object queries. We then map these
areas to the high-resolution feature map positions in a top-
down manner and only perform cross-attention on these
positions. Formally, we first get the low-resolution cross-
attention scores Al, and then derive its high-resolution
counterpart Ah = f(Al) with bilinear upsampling oper-
ation f(·). We next include the top-k pixels in Ah with the
highest scores into set Ω, and the efficient HRCA can be
formulated as

HRCA(Q,K,V ,Ω) = softmax

(
QK ′T
√
D

)
V ′, (3)

where K ′ = g (K,Ω), V ′ = g(V ,Ω) and g is the index-
ing operation. In this way, we only perform cross-attention
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on the informative areas for high-resolution feature maps,
thereby saving considerable resource consumption.

Our HRCA is closely related to the previous sparse at-
tention methods [1, 37, 41, 51] that only attend to a part of
the entire sequence. Differently, our HRCA is specialized to
the DETR-like frameworks, which determines the informa-
tive pixels based on their contribution to the target segments
instead of the other pixels. One similar work to our HRCA
is the RCDA module [43], which is a representative sparse
cross-attention method that decouples cross-attention into a
row-wise and column-wise attention to reduce the memory
and computation cost. We include the comparison between
our HRCA and RCDA [43] in Section 4.2.

3.4. Focus-aware Segmentation Framework

We first briefly introduce Mask2former [8], which con-
sists of backbone, neck, and head as introduced in Section 2
with the neck and head named “Pixel Decoder” and “Trans-
former Decoder”, respectively. In Mask2former, Pixel De-
coder fuses the features at multiple scales following [27,58].
Transformer Decoder cascades three blocks which model
the cross-attention between the object queries and the im-
age features of 1/32 × 1/32, 1/16 × 1/16, and 1/8 × 1/8
of the original image resolution, respectively. The Trans-
former Decoder is repeated three times. We refer readers
to [8, 9] for more details.

We develop our FASeg upon the Mask2former [8] frame-
work by simply incorporating our DFPQ and HRCA. The
overview of our FASeg is depicted in Figure 2 (b). We first
provide more accurate and fine-grained positional priors for
Mask2former with DFPQ (Section 3.2). We apply DFPQ in
the cross-attention layers for each decoder block to provide
good positional priors for aggregating the contextual image
features to locate target segments. In this way, we progres-
sively localize the target segments as we go deeper in the
decoder blocks. Since there are no cross-attention scores
before the first Transformer decoder block, we obtain the
DFPQ for the first block by performing average pooling on
the predicted foreground mask from the auxiliary prediction
head as introduced in [8]. Next, we employ HRCA (Sec-
tion 3.3) to enrich the segmentation details with affordable
peak-time memory footprints and computational complex-
ity. We add a fourth decoder block equipped with HRCA to
model cross-attention on the high-resolution feature maps
after the cascaded three decoder blocks that are already in
Mask2former in a top-down manner. With the two simple
modifications, our FASeg achieves solid performance gain
over the original Mask2former (See Section 4.1).

4. Experiments
Implementation details. Unless otherwise specified, we
adopt the same training settings and implementation de-
tails as in Mask2former [8]. For our efficient HRCA in

Table 1. Performance comparisons with the state-of-the-art se-
mantic segmentation methods on ADE20K val [57] with 150
categories. #P and #F indicate the number of parameters (M)
and FLOPs (G). We report both single-scale (s.s.) and multi-scale
(m.s.) inference results.

Method Backbone
mIoU

s.s. (%)
mIoU

m.s. (%) #P #F

UperNet [44] R50 42.1 - 67 238
DeepLab V3+ [6] R50 44.0 44.9 44 177

SenFormer [2] R50 44.7 45.2 144 179
Maskformer [9] R50 44.5 46.7 41 53

PFD [31] R50 45.6 48.3 74 61
Mask2former [8] R50 47.2 49.2 44 71

FASeg (ours) R50 48.3 49.3 51 72
UperNet [44] Swin-T 44.4 46.1 60 236
SenFormer [2] Swin-T 46.0 - 144 179

Maskformer [9] Swin-T 46.7 48.8 42 55
PFD [31] Swin-T 48.3 49.6 74 65

Mask2former [8] Swin-T 47.7 49.6 47 74
FASeg (ours) Swin-T 49.6 51.3 54 75

SenFormer [2] Swin-B 51.8 - 204 242
Maskformer [9] Swin-B 52.7 53.9 102 195

PFD [31] Swin-B 54.1 55.3 123 206
Mask2former [8] Swin-B 53.9 55.1 107 223

FASeg (ours) Swin-B 55.0 56.0 113 225
UperNet [44] Swin-L 52.1 53.5 234 647
SenFormer [2] Swin-L 53.1 54.2 314 546

Maskformer [9] Swin-L 54.1 55.6 212 375
PFD [31] Swin-L 56.0 57.2 242 385

Mask2former [8] Swin-L 56.1 57.3 215 403
FASeg (ours) Swin-L 56.3 57.7 222 405

Table 2. Performance comparisons with the state-of-the-art se-
mantic segmentation methods on Cityscapes val [11]. We report
single-scale (s.s.) inference results. #P and #F indicate the number
of parameters (M) and FLOPs (G).

Method Backbone mIoU s.s. (%) #P #F
Maskformer [9] R50 78.5 41 405
Senformer [2] R50 78.8 144 1,317

DeepLab V3+ [2] R50 79.0 - -
Mask2former [8] R50 79.4 44 526
Maskformer [9] R101 79.1 60 561
Mask2former [8] R101 80.1 67 628

SenFormer [2] R101 80.3 162 1,473
FASeg (ours) R50 80.5 67 533

Section 3.3, we select |Ω| = ⌊HW/32⌋ from the low-
resolution feature maps (1/32 × 1/32 of the original im-
age size). By default, we train our models with a batch size
of 16 on 8 NVIDIA V100 GPUs. We adopt ResNet [21]
and Swin Transformer [29] pre-trained backbones. For
ResNet [21], we use the ResNet-50 (R50) variant. For Swin
Transformer [29], we use the Swin-T, Swin-B, and Swin-
L backbones where Swin-B and Swin-L are pre-trained on
ImageNet-22k [13]. Unless specified, we adopt all train-
ing settings the same as the default settings of FASeg with
R50 [21] backbone on ADE20K val [57] with 150 cat-
egories for ablation experiments. We conduct the main
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experiments and ablation studies with the same seeds as
Mask2former to seek fair comparisons.
Datasets. We conduct our experiments on ADE20K [57]
and Cityscapes [11]. ADE20K [57] is one of the most
challenging large-scale datasets for semantic segmentation,
which covers 150 fine-grained semantic concepts, where the
training set and validation set contain 20,210 and 2,000 im-
ages, respectively. Cityscapes [11] is an urban street-view
dataset with high-resolution images from 50 cities with 19
semantic classes, which consists of 2,975 images for the
training set and 2,725 images for the validation set.
Evaluation metrics. We use single-scale (s.s.) and multi-
scale (m.s.) mean Intersection over Union (mIoU) [17] as
the evaluation metric. We also compare models in terms
of their model size (number of parameters) and computa-
tional complexity with Floating-point Operations (FLOPs)
to evaluate the efficiency of these models. For ablation stud-
ies on HRCA, we also show the training-time GPU memory
consumption. For ADE20K [57] and Cityscapes [11], we
calculate FLOPs with fixed 512 × 512 and 1024 × 2048
image size, respectively.
Compared methods. We compare our method with the
SOTA semantic segmentation methods, including DeepLab
V3+ [6], UperNet [44], Maskformer [9], SenFormer [2],
PFD [31] and Mask2former [8]. Among them, Sen-
Former [2], PFD [31] and Mask2former [8] are the recent
Transformer-based segmentors, where PFD learns a hierar-
chy of latent queries to enrich the multi-scale information
and SenFormer ensembles the multi-scale predictions. We
refer the readers to Section 2 for more details.

4.1. Main Results
We compare our FASeg with state-of-the-art seman-

tic segmentation methods on ADE20K val [57] and
Cityscapes val [11]. The results are reported in Tables 1
and 2. We observe that on ADE20K val (Table 1), with af-
fordable number of extra parameters and FLOPs, our FASeg
consistently outperforms the SOTA methods. Specifically,
FASeg achieves 48.3%, 49.6%, 55.0%, and 56.3% mIoU for
single-scale inference, outperforming the SOTA methods
by 1.1%, 1.3%, 0.9%, and 0.2% on R50, Swin-T, Swin-B,
and Swin-L backbones, respectively. The solid performance
gain demonstrates the superiority of our FASeg framework.
Our FASeg has more improvements with the smaller back-
bones (e.g., R50, Swin-T, and Swin-B). We conjecture that
localizing the contextural features with smaller backbones
under inferior representational capability is challenging.
Nevertheless, our DFPQ provides more accurate positional
priors, which ease the localization difficulty and lead to bet-
ter results. For the comparisons on Cityscapes val in Ta-
ble 2, we observe that with the R50 backbone, our FASeg
outperforms all the SOTA methods under desirable num-
bers of parameters and FLOPs. Surprisingly, FASeg even

Table 3. Effect of the positional encodings Kp for the image fea-
tures on ADE20K val [57] with 150 categories.

Kp
Mask2former [8]

mIoU s.s. (%)
FASeg

mIoU s.s. (%)
Sinusoidal [3] 47.2 46.9

Learnable absolute [19] 47.0 47.5
Conditional [10] 47.3 48.3

Table 4. Ablation study for FASeg on ADE20K val [57] and
Cityscapes val [11]. #P and #F indicate the number of parameters
(M) and FLOPs (G) evaluated on 512×512 images.

DFPQ HRCA
ADE20K val
mIoU s.s. (%)

Cityscapes val
mIoU s.s. (%) #P #F

47.2 79.4 44 71
✓ 47.7 80.0 44 71

✓ 47.6 79.8 50 72
✓ ✓ 48.3 80.5 51 72

Table 5. Performance comparisons between DFPQ and other posi-
tional queries variants on ADE20K val [57] with 150 categories.

Method mIoU s.s.(%)
Learnable positional queries 46.9

Pre-defined grid anchor positional queries 46.6
Dynamic anchor positional queries 47.0

Dynamic foreground positional queries 47.8
DFPQ 48.3

outperforms the SOTA methods employing the R101 back-
bone, which demonstrates the effectiveness of our FASeg.
To further investigate the flexibility and potential of our
main contribution DFPQ, we show more experiments on in-
stance segmentation in the supplementary material.

We next show some qualitative results in Figure 3 and
find that our FASeg provides more accurate predictions with
finer details. The improved segmentation results again show
the superiority of our DFPQ and HRCA. We include more
qualitative results in the supplementary material.

4.2. Ablation Study

Effect of Kp. We investigate the effect of the positional
encodings Kp for the image features on ADE20k val
with R50 backbone. The results are reported in Table 3.
We observe that different Kp have similar performance for
Mask2former [8]. However, more powerful Kp leads to
much higher performance for our FASeg. For instance,
FASeg with conditional positional encodings [10] outper-
forms Mask2former counterpart and FASeg with sinusoidal
positional encodings [3] by 1.0% and 1.4% mIoU, respec-
tively. The reason is that compared to Mask2former, our
FASeg additionally aggregates Kp to get DFPQ as ex-
plained in Section 3.2. Therefore, more powerful Kp leads
to higher representational capability of DFPQ that boosts
the performance. We also find that with sinusoidal posi-
tional encodings, FASeg has even lower performance than
Mask2former as the DFPQ aggregated from sinusoidal po-
sitional encodings reflects a single anchor point which can-
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not cover the fine-grained segmentation cues.
Effectiveness of DFPQ and HRCA. We investigate the
effectiveness of our DFPQ and HRCA on ADE20k val
and Cityscapes val with the ResNet-50 backbone. The
results are reported in Table 4. We observe that both
DFPQ and HRCA gain clear margins from the vanilla
Mask2former [8]. To be specific, integrating DFPQ on
Mask2former boosts the performance by 0.5% and 0.6%
mIoU on ADE20k val and Cityscapes val, respectively,
with barely any extra parameter and computational cost.
It is indicated that DFPQ is lightweight and contributes
largely on the performance gain. Employing HRCA on
Mask2former leads to 0.4% mIoU gain on both datasets,
which however, has 6M more parameters and 1G higher
FLOPs. The additional parameters and FLOPs are brought
by the extra decoder layers handling high-resolution image
features. Finally, our FASeg with both DFPQ and HRCA
improves 1.1% mIoU for both ADE20k val and Cityscapes
val, demonstrating the superiority of our FASeg.
DFPQ vs. other positional queries. We investigate the
effectiveness of our DFPQ and compare it with other learn-
able query variants on ADE20K val [57]. The results are
presented in Table 5. Here we adopt all the other settings
the same as our FASeg with the R50 backbone and only
differ the positional queries for all the competitors. Specif-
ically, we compare with four settings: 1) learnable parame-
terized positional queries that are randomly initialized [3];
2) positional queries as the pre-defined grid anchor points
akin to [43]; 3) positional queries dynamically generated
from the center of the foreground masks predicted by the
previous layer similar to [28]; 4) positional queries dynami-
cally generated from the entire predicted foreground masks.
We find that our DFPQ outperforms all the competitors by
large margins. For example, our DFPQ achieves 1.7% and
1.3% higher mIoU than the pre-defined grid and dynamic
anchor positional queries, respectively. It is suggested that
our DFPQ better suits semantic segmentation than the other
positional query variants. We also visualize cross-attention
maps among the different positional queries in Figure 4. We
observe that our DFPQ (Figure 4 (c)) helps generate more
compact and consistent cross-attention maps focusing on
the target segments than the learnable parameterized posi-
tional queries (Figure 4 (a)) and dynamic anchor positional
queries (Figure 4 (b)).
HRCA vs. other efficient cross-attention methods. We
investigate the effectiveness of our HRCA and compare it
with other cross-attention methods on ADE20k val. The
results are reported in Table 6. For a fair comparison, we
only replace HRCA for the other efficient cross-attention
methods on our FASeg with the R50 backbone. We com-
pare with three baselines: 1) the vanilla cross-attention that
models the entire high-resolution features; 2) our HRCA
with randomly sampled top-k pixels to form set Ω that |Ω|

GT FASegMask2former

Figure 3. Qualitative results on the ADE20K val [57]. Compared
to Mask2former [8], our FASeg predicts masks with finer details
and yields more accurate predictions.

Table 6. Performance comparisons between our HRCA and other
efficient cross-attention methods on ADE20K val [57] with 150
categories. #F denotes the number of FLOPs (G). The training
memory footprint (M) and FLOPs are measured under 512×512
image resolutions with a batch size of 4 on a single GPU.

Method mIoU s.s. (%) Training Memory (M) #F
Vanilla 47.3 7,451 83

Random Ω 46.7 6,343 72
RCDA 47.5 6,082 72
HRCA 48.3 6,343 72

Table 7. Effect of |Ω| in our efficient HRCA on ADE20K val [57]
with 150 categories. #F indicates the number of FLOPs (G).

|Ω| mIoU s.s. (%) Training memory (M) #F
HW 47.3 7,451 83

⌊HW/16⌋ 47.7 6,381 72
⌊HW/32⌋ 48.3 6,343 72
⌊HW/64⌋ 48.0 6,317 71

is the same as HRCA; 3) RCDA [43] that the cross-attention
is decoupled to a row-wise and column-wise attention as in-
troduced in Section 3.3. We empirically find that compared
with the vanilla cross-attention, our HRCA achieves 1.0%
mIoU gain while exhibiting 1,108M lower training-time
GPU memory and 11G lower FLOPs. Our HRCA also out-
performs the two efficient cross-attention methods by large
margins. For example, HRCA achieves 0.8% higher mIoU
than RCDA with marginally increased training-time mem-
ory. The results demonstrate the superiority of our HRCA
for efficiently identifying and utilizing contextual tokens in
high-resolution features.
Effect of |Ω| in HRCA. We then investigate how |Ω| affects
the performance, memory consumption and computational
complexity on FASeg with R50 backbone on ADE20k val.
The results are reported in Table 7. |Ω| determines the
number of contextual tokens used in attention as introduced
in Section 3.3. Here we measure the memory consump-
tion by the training-time memory with a batch size of 4 on
a single GPU. In the vanilla cross-attention layers, cross-
attention attends to the entire feature maps from the en-
coder, in which case |Ω| = HW . We observe that our
HRCA outperforms the vanilla cross-attention by a signifi-
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Block 6 Block 7 Block 8 Block 6 Block 7 Block 8 Block 6 Block 7 Block 8

(c) DFPQ(a) Learnable Parameterized Positional Queries (b) Dynamic Anchor Positional Queries

Figure 4. Visualizations of the cross-attention maps for learnable positional queries ( [3,8]), dynamic anchor positional queries (alike [28])
and our DFPQ. We show the visualizations for the normalized cross-attention maps in the last three decoder blocks and indicate the target
segments in the red boxes. The cross-attention maps with the learnable positional queries and the dynamic anchor positional queries are
often scattered without a clear focus and mix up different segments, while the cross-attention maps with DFPQ are more compact and
consistent to reflect the target segments.

Table 8. Effect of applying HRCA to other high-resolution feature
scales for FASeg with Swin-B Backbone on ADE20K val [57]
with 150 categories.

1/4× 1/4 1/8× 1/8 mIoU s.s. (%) Training Memory (M)
✓ 55.0 20,418
✓ ✓ 54.9 19,898

✓ 54.8 17,817

cant margin. We conjecture that the sparse property [16,18]
has reduced the redundancy in high-resolution feature maps
in our HRCA and leads to higher performance and effi-
ciency. Since our HRCA achieves the highest performance
when |Ω| = ⌊HW/32⌋, we set |Ω| = ⌊HW/32⌋ by default
for all the other experiments.
Effect of applying HRCA to other high-resolution fea-
ture scales. By default, HRCA is applied only to the high-
resolution 1/4 × 1/4 feature scale. We explore applying
HRCA to 1/8×1/8 and both 1/4×1/4 and 1/8×1/8 fea-
ture scales for FASeg with Swin-B backbone on ADE20k
val. We measure the training-time memory consumption
with a batch size of 4 on a single GPU and report the re-
sults in Table 8. We find that the performance only fluctu-
ates within 0.2% mIoU. In particular, modeling the cross-
attention only on the 1/8 × 1/8 feature scale with HRCA
saves more than 2,000M training-time memory, suggesting
the potential for extending HRCA to more high-resolution
features to alleviate the memory burden.

5. Conclusion
In this paper, we have explored providing positional pri-

ors with positional queries for the DETR-style semantic

segmentation. Specifically, we have proposed to dynam-
ically generate the positional queries conditioned on the
cross-attention scores of the preceding decoder block and
the positional encodings for the corresponding image fea-
tures, simultaneously. We have found that our novel query
design delivers more accurate and fine-grained positional
priors facilitating localizing the target segments progres-
sively. To mitigate the training-time memory cost when
modeling cross-attention on high-resolution feature maps,
we have presented an efficient approach to only aggre-
gate the contextual tokens from the high-resolution feature
maps, which is shown to learn low-level details with afford-
able memory and computations. Finally, we have conducted
extensive experiments to demonstrate the effectiveness of
our proposed framework on the semantic segmentation task
and its potential to be extended to other segmentation tasks.
Limitations and societal impact. Although our HRCA
enriches the segmentation details with affordable memory
and computations, it still requires more parameters. To this
end, we will explore slimming [7, 20] or reusing [33] these
blocks to save parameters. Another potential future direc-
tion is to explore the explainability of the positional pri-
ors generated by our DFPQ. Our technical innovations do
not appear to have any negative societal impacts. However,
the trained model may deliver unstable or biased predictions
with training data that is not reviewed properly.
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data-efficient image transformers & distillation through at-
tention. In ICML, pages 10347–10357, 2021. 3

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, pages
5998–6008, 2017. 1, 3

[41] Pichao Wang, Xue Wang, Fan Wang, Ming Lin, Shuning
Chang, Hao Li, and Rong Jin. Kvt: k-nn attention for boost-
ing vision transformers. In ECCV, pages 285–302, 2022. 5

[42] Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and
Dacheng Tao. Towards data-efficient detection transformers.
In ECCV, pages 88–105, 2022. 1

[43] Yingming Wang, Xiangyu Zhang, Tong Yang, and Jian Sun.
Anchor detr: Query design for transformer-based detector.
In AAAI, 2022. 1, 2, 3, 4, 5, 7

[44] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified perceptual parsing for scene understand-
ing. In ECCV, pages 418–434, 2018. 5, 6

[45] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. Segformer: Simple and ef-
ficient design for semantic segmentation with transformers.
In NeurIPS, volume 34, 2021. 2

[46] Yufei Xu, Qiming Zhang, Jing Zhang, and Dacheng Tao. Vi-
tae: Vision transformer advanced by exploring intrinsic in-
ductive bias. NeurIPS, 34:28522–28535, 2021. 2

[47] Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan
Ngiam. Condconv: Conditionally parameterized convolu-
tions for efficient inference. In NeurIPS, volume 32, 2019.
3

[48] Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang
Dai, Bin Xiao, Lu Yuan, and Jianfeng Gao. Focal self-
attention for local-global interactions in vision transformers.
In NeurIPS, 2021. 2

[49] Zhuyu Yao, Jiangbo Ai, Boxun Li, and Chi Zhang. Efficient
detr: improving end-to-end object detector with dense prior.
arXiv preprint arXiv:2104.01318, 2021. 1

[50] Li Yuan, Qibin Hou, Zihang Jiang, Jiashi Feng, and
Shuicheng Yan. Volo: Vision outlooker for visual recog-
nition. TPAMI, 2022. 2

[51] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey,
Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip
Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird:
Transformers for longer sequences. In NeurIPS, volume 33,
pages 17283–17297, 2020. 5

[52] Qiming Zhang, Yufei Xu, Jing Zhang, and Dacheng Tao.
Vsa: learning varied-size window attention in vision trans-
formers. In ECCV, pages 466–483, 2022. 2

[53] Qiming Zhang, Yufei Xu, Jing Zhang, and Dacheng Tao. Vi-
taev2: Vision transformer advanced by exploring inductive
bias for image recognition and beyond. IJCV, pages 1–22,
2023. 2

[54] Wenwei Zhang, Jiangmiao Pang, Kai Chen, and
Chen Change Loy. K-net: Towards unified image seg-
mentation. In NeurIPS, volume 34, 2021. 1, 2, 3

[55] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In
CVPR, pages 2881–2890, 2017. 2

[56] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu,
Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng Feng, Tao
Xiang, Philip HS Torr, et al. Rethinking semantic segmen-
tation from a sequence-to-sequence perspective with trans-
formers. In CVPR, pages 6881–6890, 2021. 1, 3

[57] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene parsing through
ade20k dataset. In CVPR, pages 633–641, 2017. 2, 5, 6,
7, 8

[58] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable detr: Deformable transformers
for end-to-end object detection. In ICLR, 2021. 1, 5

11308


