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Abstract

Supervised keypoint localization methods rely on large
manually labeled image datasets, where objects can deform,
articulate, or occlude. However, creating such large keypoint
labels is time-consuming and costly, and is often error-prone
due to inconsistent labeling. Thus, we desire an approach
that can learn keypoint localization with fewer yet consis-
tently annotated images. To this end, we present a novel
formulation that learns to localize semantically consistent
keypoint definitions, even for occluded regions, for varying
object categories. We use a few user-labeled 2D images as
input examples, which are extended via self-supervision us-
ing a larger unlabeled dataset. Unlike unsupervised methods,
the few-shot images act as semantic shape constraints for
object localization. Furthermore, we introduce 3D geometry-
aware constraints to uplift keypoints, achieving more ac-
curate 2D localization. Our general-purpose formulation
paves the way for semantically conditioned generative mod-
eling and attains competitive or state-of-the-art accuracy
on several datasets, including human faces, eyes, animals,
cars, and never-before-seen mouth interior (teeth) localiza-
tion tasks, not attempted by the previous few-shot methods.
Project page: https://xingzhehe.github.io/FewShot3DKP/

1. Introduction
Keypoint localization is a long-standing problem in com-

puter vision with applications in classification [7, 8], image
generation [45, 66], character animation [64, 65], 3D model-
ing [15,55], and anti-spoofing [9], among others. Traditional
supervised keypoint localization approaches require a large
dataset of annotated images with balanced data distributions
to train robust models that generalize to unseen observa-
tions [18, 84, 87]. However, annotating keypoints in images
and videos is expensive, and usually requires several annota-
tors with domain expertise [44, 80, 83]. Manual annotations
can be inaccurate due to low resolution imagery [5] and tem-
poral variations in illumination and appearance [29, 79], or
even subjective, especially in presence of external occlusions
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Figure 1. All results are obtained by 10-shot learning except Tigers
where 20 examples are used. The left/right/middle keypoints are
marked in red/blue/green. Using only a few shots, the model learns
semantically consistent and human interpretable keypoints. Un-
certainty modeling helps us identify occlusions and ambiguous
boundaries, as shown in the mouth, eye, and car example.

[38, 89] and image blur effects [68, 96]. Besides, modeling
self-occluded object parts is proven to be an ambiguous task
since 3D consistent keypoint annotations are needed [97]. As
a consequence, supervised approaches are prone to learning
suboptimal models from noisy training data.

Unsupervised keypoint detection methods can predict con-
sistent keypoint structures [19–21, 27, 43, 98], but they lack
human interpretability or may be insufficient, e.g., for editing
tasks requiring detailed manipulation of object parts. Jakab
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et al. [28] pioneered adding interpretability with a cycle loss
between unsupervised images and unpaired pose examples.
However, their focus is different and the proposed cycleGAN
struggles in a few-shot setting as it does not exploit paired ex-
amples. Unsupervised methods can be extended to few-shot
setups either by learning a mapping that regresses detected
keypoints to human-labeled annotations [73], which requires
hundreds or thousands of examples, or by attaching few-
shot annotated examples to the unsupervised training batch
as weak supervision [51]. However, we show that neither
approach produces competitive predictions when added to
state-of-the-art unsupervised keypoint localization methods.
Our contributions focus on making the latter approach work,
building upon the unsupervised reconstruction in [20] and
the skeleton formulation in [28].

Recent advances in semi-supervised keypoint localization
has shown significant progress in the field. Still, most ex-
isting methods are specialized for a single object category
such as faces [3,57,85] and X-rays [6,94,95,100], or require
hundreds or thousands of annotated examples to achieve
competitive performance [51, 56, 81]. Our approach, how-
ever, only needs a few dozens of examples. In an orthogonal
direction, Honari et al. [24] assist keypoint localization via
equivariance transforms and classification labels, though the
latter are not always available. Generative image labeling
has also shown great promise [69, 90, 99]. However, an-
notating StyleGAN-generated images is prone to artifacts
and noise. Besides, generative approaches are limited to the
underlying data distribution biases [53, 71], thus decreasing
overall keypoint localization performance.

Current limitations create the need for an approach that
can leverage a smaller yet semantically consistent corpus
of human labeled annotations while generalizing to a much
larger unlabelled image set. This paper presents a novel
formulation that learns to localize semantically consistent
keypoint definitions, even for occluded regions, for various
object categories with complex geometry using only a few
user-labeled images. We use as input a few example-based
user-labeled 2D images with predefined keypoint definitions
and their linkages to learn to localize keypoints. Unlike un-
supervised methods, the user-selected few-shot images act
as semantic shape constraints for human-interpretable key-
point localization. To enable generalization to the target data
distribution, we extend our approach via self-supervision
using a larger unlabeled dataset. In addition, we introduce
3D geometry-aware constraints to model depth and uplift 2D
keypoints in 3D with viewpoint consistency, thus achieving
more accurate 2D localization.

Experimental results demonstrate that our proposed ap-
proach competes with or outperforms state-of-the-art meth-
ods in few-shot keypoint localization for human faces, eyes,
animals, and cars using a only few user-defined semantic
examples. We also show the capabilities of our keypoint

localization approach on a novel data distribution, specifi-
cally the mouth interior, which has not been attempted with
previous few-shot localization approaches. Thus, our novel
general-purposed formulation paves the way for semantically
conditional generative modeling with a few user-labeled ex-
amples. We hope it will enable a broader set of downstream
applications, including fast dataset labeling, and in-the-wild
modeling and tracking of complex objects, among others.
Our key contributions are summarized as follows:

1. A novel formulation for few-shot 3D geometry-aware
keypoint localization that works on diverse data distributions.

2. We introduce keypoint uncertainty and local 3D aware
geometry constraints for better keypoint localization.

3. We adapt techniques of transformation equivariance
and image reconstruction from unsupervised methods.

4. Our approach enables flexible modeling of complex
deformable objects and geometric parts, such as mouth inte-
rior, faces, eyes, cars, and animals via a few user examples
with consistent semantic definitions.

2. Related Work
Supervised keypoint localization Supervised methods

learn keypoint localization by leveraging a large corpus of
human-labeled images for standard object categories [42]
or domain-specific classes, such as faces [4, 36, 89, 97],
eyes [37], teeth [80], human bodies [2, 26, 29, 48], ani-
mals [41], and vehicles [58, 91], among others. Anno-
tating images and videos is not only expensive but also
prone to labeling errors [23, 47, 61] due to image downsam-
pling [5], object occlusions [38,89], image blur [68,96], and
harsh appearance and lighting variations especially in video
datasets [29, 79]. As such, supervised models render inaccu-
rate for downstream tasks, often requiring statistical uncer-
tainty modeling [16, 40] or robust regressors [10] to achieve
state-of-the-art performance. A recent line of work resorts to
problem-specific high-quality synthetic datasets, mainly for
human bodies [54], faces [86], eyes [52, 88] and teeth [87]
to produce perfect semantic annotations, even for partially
occluded object parts. Despite these efforts, creating a syn-
thetic dataset with real-world data distribution remains a
challenging and very laborious task, and methods trained on
them still achieve near-competitive performance [52, 86, 87].
On the other hand, our approach can learn a general model
that preserves semantic definitions from limited annotations
and user constraints while still generalizing well to an unseen
distribution via self-supervision.

Semi-supervised keypoint localization We draw a line
between semi-supervised keypoint localization, where hun-
dreds or thousands of image annotations are needed, and few-
shot keypoint localization, where the number is restricted
to dozens. Qian et al. [57] transfer style of labeled images
to augment the face appearance distribution of the training
set. Dong and Yang [11] propose a teacher network to select
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pseudo labels generated by student networks. The methods
above handle limited head pose variations. Wang et al. [81]
extend the pseudo label idea to general image distribution
by exploiting reinforcement learning, which can be unstable
and computationally expensive. Extra information, such as
classification labels [24, 76], multiview constraints [14], and
video frames [56] can help in semi-supervised learning, but
it is not always available for all datasets. Mathis et al. [46]
fine-tune a pose estimation network [25] on hundreds of
labeled images for constrained animal pose detection tasks
under simple laboratory conditions. Moskvyak et al. [51]
directly learn from unlabeled images, akin to our method.
They impose equivariance constraints between images and
keypoints such that features extracted at keypoints remain
invariant to linear transformations. These semi-supervised
methods still require a labeled dataset that is one or two
orders of magnitude higher than that of our approach.

Few-shot keypoint localization Most existing few-shot
keypoint localization methods focus on specific domains,
mostly faces [3, 85] or medical X-ray images [6, 94, 95, 100].
Browatzki et al. [3] pre-train an auto-encoder on millions of
faces and modify it to generate keypoints. Similarly, Thewlis
et al. [72] pre-train on tens of thousands of faces and toy
roboarms. Wei et al. [85] fine-tune a pre-trained face land-
mark detector for custom keypoint locations. In the medical
domain, X-ray images often share common appearance and
viewpoints. Thus, state-of-the-art methods constrain 2D key-
point deviations [6] and the features extracted at keypoint
locations [94], or resort to unsupervised registration [95] to
adapt the keypoints from the few-shot examples to the unla-
beled images. Although these approaches show effectiveness
for X-ray images, they may not be applicable to images with
larger viewpoint and appearance variations. Instead of target-
ing a single domain, our proposed method addresses more
general object distributions. Jakab et al. [28] used a Cycle-
GAN to transfer unpaired annotations of various objects in
form of skeleton edge maps across domains and showed that
it applies to the few-shot scenario. We use the same skeleton
edge map but use different unsupervised learning techniques
to exploit labeled samples more effectively.

Unsupervised keypoint localization Reconstructing an
image from keypoints [27, 98] and moving keypoints from
known or estimated image transformations [73] are common
approaches in unsupervised keypoint learning. For exam-
ple, keypoints should be consistent across view transforma-
tions in multi-view captures [59, 60, 70] and have consistent
motion transformations in videos [13, 28, 33, 50, 65]. Fur-
thermore, transformations can be created by artificial image
deformations in single static images [27, 43, 73, 98]. An-
other branch is to learn by synthesizing the image without
assuming any pre-defined transformation [19–21]. Here we
adapt the image transformation used in [43, 73] and the im-
age reconstruction technique from [20] into our 3D-aware

framework to boost our model performance.
Generative image labeling Generative models, e.g.,

GANs [31, 32] and diffusion models [22], with rich se-
mantic spatial information, can be serve powerful priors
for solving downstream tasks, e.g., semantic segmentation
[17, 39, 74, 93, 99], video object detection [69], and salient
object detection [90] from a few annotated examples. As
these methods require labeling generated images that are
prone to artifacts and noise, user annotations might be in-
accurate, leading to inaccurate estimated labels [99]. Also,
models trained on generative image-label pairs are limited to
the data distribution and biases of the learned image genera-
tor [53, 71]. Our approach, however, shows better adaptation
to diverse data distributions using a few manual labels.

3. Method
Our goal is to learn semantically meaningful and consis-

tent keypoints by using only dozens of annotated examples
combined with thousands of unlabeled images. Our starting
point is supervised learning on the dozens of labeled exam-
ples. This step is used to define the semantic meaning of
keypoints, but alone would horrendously overfit. Hence, it is
augmented with self-supervision objectives that encourage
meaningful and consistent detection on the additional unla-
beled set. We achieve geometry-aware keypoint localization
via a multi-task learning strategy that first detects keypoints
with edge and uncertainty maps, and then decodes these
maps with randomly masked images to synthesize photo-
realistic images, as shown in Figure 2. The edge linkages
are provided by the user. We train both detection and re-
construction stages in an end-to-end manner to ensure that
the predicted edges and uncertainty maps derived from key-
points encode the correct semantic object shape definition
to synthesize a photo-realistic object. Note that we define
the uncertainty differently from previous work [64] where it
refers to Gaussian shape.

In the following sections, we provide details on the differ-
ent stages and our few-shot training strategy.

3.1. Keypoint and Uncertainty Detection
In this section, we introduce how we obtain the key-

points and uncertainty from the images. Given an image
I 2 RH⇥W⇥3, we use a ResNet with upsamplings [92]
to predict K heatmaps Hi 2 RH⇥W , and K uncertainty
maps Vi 2 RH⇥W , where i = 1...,K. The 2D keypoints
ki 2 R 2 [�1, 1]2 are generated as the arg-softmax of the
heatmap, and the uncertainty vi is calculated as the sum of
the map Vi weighted by the heatmap, as follows,

ki =
X

p

w(p)p, vi =
X

p

w(p)Vi(p),

where w(p) =
exp(Hi(p))P
p exp(Hi(p))

.
(1)
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Figure 2. Overview. Given an image, we detect the keypoints and their uncertainty. They are used to generate an edge map, which is
concatenated with a randomly masked image to reconstruct the original image. The keypoints are forced to be semantically meaningful by
few-shot supervision and consistent by reconstruction. In addition, the 2D and 3D geometric constraints increase the robustness of keypoints.

Here, p 2 [�1, 1]2 denotes the normalized pixel coordinate.

3.2. 2D Few-shot Supervision
To leverage the user-provided few-shot 2D keypoint an-

notations, during each training iteration, we randomly select
several image-keypoint pairs, along with a batch of images
without any annotations. We concatenate them and penalize
deviations of the detected keypoints k0 from the ground truth
keypoints k on those with annotations,

Lfew shot =
1

|A|
X

i2A

kki � k
0
i
k1, (2)

where A is the set of annotated examples.

3.3. 2D Geometric Constraints
We force the keypoints to be equivariant to the 2D image

transformations, which benefits the robustness as suggested
in various unsupervised keypoint detection methods [27,
43, 73]. Let denote T as a 2D transformation, which is a
combination of affine transformations, flipping and color
jitter, and k(I) as the keypoints detected on image I. We
force the transformed keypoints T (k(I)) to be close to the
keypoints k(T (I)) detected on the transformed image T (I),

L2d geo =
1

N

NX

i=1

kk(T (Ii))� T (k(Ii))k1. (3)

The keypoints that are out of image boundary after the
transformation are ignored. We notice that this equivariance
loss significantly harms the performance in the first few
iterations during training. Therefore, we linearly increase

the range of image transformation based on the number of
iterations to stabilize training.

3.4. 3D Aware Geometry Constraints and Uplifting
In the domain of multi-view unsupervised 3D keypoint

learning, multi-view consistency is usually used [60,70]. We
would like to use 3D consistency for better robustness but
face the challenge of not having multiple views to lift to 3D.

First, to move from a 2D to a 3D keypoint represen-
tation, we extend the detector to generate K depth maps
Di 2 RH⇥W , i = 1, ...,K and calculate the depth as the
weighted sum of the depth maps,

di =
X

p

w(p)Di(p), (4)

where w(p) is the weight defined in Equation 1. The
3D keypoints are defined as the concatenation of the 2D
keypoints and the corresponding depths, k3D

i
= (ki,di).

Second, we learn these 3D keypoints in the absence of
3D labels and multiple views by exploiting that different in-
stances of the same object are self similar in 3D. It would be
problematic to simply enforce the similarity of all keypoints
on different objects as it would force different instances to
be exactly the same. To address this issue, we propose to
constrain their similarity separately within each part P . Note
that the entire object is also included, but as a soft constraint
with a lower weight, thus enabling local deformation. Parts
are pre-defined by the user, e.g., the connected components
on WFLW face dataset, which are the left/right eye, left/right
brow, nose, mouth, and facial contour. Specifically, for the
keypoints k3D(I) detected on image I, we select another set
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of keypoints k3D(Ic) detected on image Ic. For each part
P , i.e., subsets or the whole set of keypoints, we estimate
a similarity transformation ⌘ between the them [77], and
force the transformed keypoints ⌘(k3D

P (Ic)) to be close to
the keypoints k3D

P (I) of the first example,

L3d geo =
1

N

NX

i=1

X

P

1

|P| min
Ic

kk3D
P (Ii)� ⌘

�
k
3D
P (Ic)

�
k1.

(5)
To prevent early overfitting, for the first 200 iterations,

we randomly pair the parts in the batch. Afterwards, we pair
each part with the one in the same batch that minimizes the
mean L2 distances as shown in Equation 5.

3.5. Geometry-aware Image Reconstruction
Finally, we exploit that the keypoints should be seman-

tically meaningful enough to reconstruct the original im-
age [20, 27, 28, 43, 98]. Specifically, we reconstruct from a
largely masked image [20]. Similar to [20], we introduce
an objective to reconstruct the original image from the edge
map, with appearance provided by a masked image (90%
of pixels removed). We take the keypoint uncertainty into
consideration instead of simply assuming all keypoints are
certain as in [20, 28]. Given two keypoints ki,kj defined
as “linked” by users, we draw a differentiable edge map Sij ,
where edge is a Gaussian extended along the line [20,28,49].
The values decrease exponentially based on the distance to
the line, and are smaller for the uncertain keypoints. For-
mally, the edge map Sij of keypoints (ki,kj) is defined as

Sij(p) = exp
�
vij(p)d

2
ij
(p)/�2

�
, (6)

where � is a learnable parameter controlling the thickness of
the edge, dij(p) is the L2 distance between the pixel p and
the edge drawn by keypoints ki and kj , and vij(p) is the
uncertainty propagated to pixel p along the edge ki to kj ,

vij(p) =

8
><

>:

sigmoid(vi) if t  0,

sigmoid((1� t)vi + tvj) if 0 < t < 1,

sigmoid(vj) if t � 1,

where t =
(p� ki) · (kj � ki)

kki � kjk22
(7)

is the normalized distance between ki and the projection
of p onto the edge. We assign a learnable weight ↵ to edges,
which is enforced to be positive by SoftPlus [12]. This
weight is learned during training and shared across all edges
and all object instances in a dataset. Finally, we take the
maximum at each pixel of the heatmaps to obtain the edge
map S 2 RH⇥W ,

S(p) = ↵max
ij

Sij(p). (8)

Taking the maximum at each pixel avoids the entanglement
of the uncertainty and the convolution kernel weights [20].

The edge map is concatenated with the masked image and
fed into a UNet [62] to reconstruct the original image. We
minimize the L1 loss and ViT perceptual loss [75] between
the reconstructed images I0 and the original images I,

Lrecon =
1

N

NX

i=1

kIi � I
0
i
k1 + k�(Ii)� �(I0

i
)k1, (9)

where � is the feature extractor.

3.6. Coefficients and Few-shot Examples Chosen
The coefficient for Lfew shot,Lrecon,L2d geo,L3d geo are (1,

1, 1, 0.1), which is decided by the validation sets. There is no
other hyperparameters. Note that the validation sets are not
used to choose the best model during training but only used
to find the loss coefficients, which are shared by all datasets.
We believe that using the validation sets for model selection
in practice is not available in few-shot learning. The few-shot
examples are chosen by the centers of k-means clustering
on the features of the 3nd last layer of VGG [67]. More
implementation details can be found in the Supplement A.

4. Results
We test our model on 6 diverse datasets, including rigid,

soft, and articulated objects, which may contain various ap-
pearance and severe occlusion. Notably the mouth interior
is extremely challenging due to the large occlusions and had
not been attempted before. We compare with three base-
lines methods: supervised [92], semi-supervised [51], and
unsupervised [20]. We adapt the latter to few-shot learning
using the strategy in Section 3.2. Unless otherwise stated, all
results are obtained by 10-shot learning except Tigers where
20 examples are used. See Supplement B for comparisons
with DatasetGAN [99].

4.1. Datasets
MEAD Part0 [82] contains high resolution audio-visual

clips of 12 actors. We use the first actor and crop around the
mouth. We label 10 images with the lip landmarks from [16]
and manual annotations on 4 top and 5 bottom teeth.

SynthesEyes [88] contains 11382 synthesized eye images
from 5 male and 5 female subjects. We use the first 4 males
and 4 females as our training set and the rest for testing.

CUB [78] contains 200 categories of birds. We use the
first 100 for training (5864 images), the next 50 for validation
(2958 images), and the last 50 for testing (2966 images). This
dataset is to quantitatively evaluate the ability of detecting
keypoints on objects of highly various appearance.

CarFusion [58] contains various car images captured
in Pittsburgh, PA. We use Fifth Street Part 2 (2794 images)
and Part 1 (1597 images) as training and testing sets.
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Figure 3. Qualitative Results. With only few shots, the model learns semantically consistent and meaningful keypoints.
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Figure 4. Qualitative Comparison. We qualitatively compare our results with the baselines and the ground truth. The invisible keypoints
are not shown in the ground truth if they are not provided. Our performance is significantly better than the other baselines. In the difficult
cases, such as tigers and cars, our model still generates good shapes while others fail.
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WFLW [89] contains 10k faces with a 7500/2500
train/test split. This dataset is more challenging than most
face datasets as images have a significant portion of occlu-
sions, make-up, and extreme poses.

ARTW [41] contains 5159 tiger images captured from
multiple wild zoos in unconstrained settings, with a
3610/516/1033 train/val/test split.

SynthesisAI/Faces [1] contains 10k images of 100 di-
verse identities with ground truth 3D facial landmarks, in-
cluding the occluded ones. We split the dataset into 7500
images for training and 2500 images for testing. We use
this dataset to quantitatively measure how good the 3D land-
marks that our 3D geometry constraint yields are.

4.2. Qualitative Comparisons
We show the qualitative results in Figure 3 and compar-

isons in Figure 4. When the number of annotations are
limited, the baselines tend to overfit and fail to detect on the
difficult cases. For example, only our model successfully de-
tects the keypoints of the bus in the last column of Figure 4.

4.3. Quantitative Comparisons
We quantitatively compare our model on 5 benchmarks:

WFLW, SynthesEyes, CUB, ATRW, and CarFusion.
Evaluation Metrics are Normalized L2 error (NME) for

SynthesEyes and WFLW, and percentage of correct key-
points (PCK) for CUB, ATRW, and CarFusion. The NME
is normalized by distance of eye corners and inter-ocular
distances for SynthesEyes and WFLW, respectively. The
PCK@0.1 is the ratio of keypoints within a range of 10%
largest bounding box length centered by the GT keypoints.
To benefit future research, we also report the other metrics
on these datasets in Supplemental F.

Table 1 shows that our model significantly outperforms
other methods when only 10-50 annotated examples are
available. Furthermore, our model is more robust to the
number of annotated examples than other methods. For
instance, on ATRW, the accuracy of the baselines decrease
(58%/61%/40%) if only 50 out of 3610 examples are used,
while our performance only decreases 16%. Supplemental D
provides comparisons with unsupervised methods [20,28] on
their commonly used datasets: 300W [63] and H36M [26].

5. Analysis
We test the effects and the necessity of our designed

modules. Quantitative comparisons are implemented on
WFLW and ATRW, with the same settings and the same
few-shot examples as in Section 4.

Image Reconstruction. Table 3 shows that without the
image Reconstruction constraint, the error increases dramat-
ically for low numbers of annotated examples. It is believed
that reconstructing from edge maps aligns the edges with

NME (%) on WFLW dataset #
Method Training set size

1 10 20 50 5% 20% 100%

SA [24] - - - - - 6.00† 4.39
Xiao et al. [92] 43.0 21.9 19.3 17.6 10.6 7.08 5.62
Moskvyak et al. [51] 137 133 76.6 21.9 10.27 6.84 6.65
AutoLink (few) [20] 14.9 13.5 13.3 11.2 7.68 7.31 6.35
3FabRec [3] 15.8† 9.66† - 8.39† 7.68† 6.51† 5.62

ours 12.4 9.19 8.62 7.90 6.22 5.61 5.38

NME (%) on SynthesEyes dataset #
Method Training set size

1 10 20 50 5% 20% 100%

Xiao et al. [92] 25.1 15.9 10.6 8.11 4.07 3.12 2.65
Moskvyak et al. [51] 91.1 86.8 45.8 18.5 4.52 3.24 2.49
AutoLink (few) [20] 26.4 14.2 8.78 7.80 4.28 3.32 2.86

ours 24.0 6.93 6.83 5.50 3.69 3.13 2.96

PCK@0.1 (%) on CUB-200-2011 dataset "
Method Training set size

1 10 20 50 5% 20% 100%

Xiao et al. [92] 6.01 31.2 35.3 42.8 60.5 73.9 90.5
Moskvyak et al. [51] 7.38 20.9 28.3 63.2 91.1† 92.4† 93.8
AutoLink (few) [20] 26.2 35.1 41.2 51.8 67.2 75.9 87.6

ours 16.3 70.7 73.1 75.1 84.2 88.3 90.1

PCK@0.1 (%) on ATRW dataset "
Method Training set size

1 10 20 50 5% 20% 100%

Xiao et al. [92] 13.2 21.5 22.5 23.9 51.6 86.1 96.1
Moskvyak et al. [51] 3.38 17.9 27.5 57.1 92.6† 94.5† 95.3
AutoLink (few) [20] 20.8 22.1 33.8 37.4 77.8 89.4 97.1

ours 14.4 36.3 78.8 81.4 92.7 96.5 96.9

PCK@0.1 (%) on CarFusion dataset "
Method Training set size

1 10 20 50 5% 20% 100%

Xiao et al. [92] 11.7 23.4 30.0 37.5 51.1 77.9 89.7
Moskvyak et al. [51] 3.84 5.38 22.4 34.7 64.7 87.3 92.5
AutoLink (few) [20] 14.5 31.9 42.3 62.2 69.9 83.5 90.8

ours 13.8 66.7 68.8 75.5 81.6 93.5 93.8

Table 1. Quantitative Comparison. In the few-shot scenario,
where only 10-50 annotated examples are available, our model
significantly outperforms the baselines. The sign † means the
number is reported in another set of examples used in their papers.

Methods Training set size
1 10 20 50 5% 20% 100%

Xiao et al. [92] 36.5 22.5 22.1 17.8 8.33 5.37 4.19

Full 15.6 11.2 9.25 8.46 7.07 6.44 5.99

Table 2. NME(%) on SynthesisAI 3D Faces. We compare our
approach with a supervised baseline. Note that the latter uses
ground truth 3D keypoints, while ours only needs 2D keypoints.

the object edges [20], which stabilize the keypoints in the
few-shot learning. Note that with more than 20% annotated
examples, the image reconstruction harms the performance,
probably because the reconstruction task drifts the gradient
from accurate keypoint supervision gradient.

Geometric Constraint. While both 2D and 3D geometric
constraints increase accuracy, their insights differ slightly.
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Figure 5. Detection on 2D and 3D-projected Face Landmarks.
If the model is trained on the 2D face dataset WFLW, the learned
jaw landmarks are not 3D consistent. However, if it is trained on
the synthetic 3D-projected landmarks, the jaw contours are 3D
consistent, though the projection is still on the 2D facial contour.

The 2D constraint is at the image level, which is accurate. It
works as data augmentation on learned keypoints, which is
expected to increase the robustness. Interestingly, the variant
without 2D geometric constraint has better performance on
Tigers (10-shots). We believe it is due to the symmetric shape
of the tigers, as explained in the limitations. On the other
hand, the 3D constraint is an approximation and enforces
similarity between two different examples. This constraint
is expected to prevent the model from generating extreme
outliers. Its effects on articulated objects, e.g., tigers, are not
as significant as they are on soft and rigid objects, e.g., faces.

Uncertainty. Uncertainty models occluded and ambigu-
ous edges in image reconstruction by making the uncertain
edges lighter. Without it, the model may be confused in the
reconstruction stage about whether occluded edges should be
drawn. As a result, it harms performance. Figure 6(a) shows
an example of a largely occluded face. The model without
uncertainty gives an average face. On ATRW, the difference
is less obvious as the keypoints are visible in most cases.

How good are the 3D keypoints? We train on the Syn-
thesisAI/Faces [1] using only 2D landmarks and compare
the 3D landmarks quality with the supervised baseline [92],
where depth is additionally learned. We evaluate the learned
3D landmarks qualitatively in Figure 5 and quantitatively in
Table 2. Figure 5 also shows the difference between the jaw
landmarks learned from a 2D and 3D-projected facial land-
mark dataset. The signal provided by the latter gives a better
3D jaw shape since the few-shot landmarks do not follow
visible image boundaries as those in the 2D facial dataset.

Few-shot Example Selection. We tested replacing the
KMeans with random selection. Table 3 reports the average
error over 3 runs. When only dozens of annotated examples
are available, it is important to pick the most representative
ones, especially for articulated objects, such as ATRW tigers.

Limitations. There are two limitations especially when
the annotated dataset is very small. First, if the object’s
keypoints are highly symmetric, there may be left-right or
front-back ambiguity. Second, if the object is highly ar-
ticulated, e.g., humans in LSP dataset [30], the estimated
keypoints are less accurate. Figure 6(b) illustrates both cases.

NME (%) on WFLW dataset #
Variants Training set size

1 10 20 50 5% 20% 100%

- image reconstruction 27.4 24.8 20.2 12.4 6.49 5.32 4.69
- 2D geometry 16.7 14.2 13.7 12.6 9.24 7.81 6.83
- 3D geometry 15.5 12.4 12.1 11.3 7.67 6.47 6.37
- uncertainty 13.5 12.6 11.8 10.4 7.28 6.75 6.42
- kmeans selection 24.2 14.5 12.6 10.8 6.81 5.54 -

Full 12.4 9.19 8.62 7.90 6.22 5.61 5.38

PCK@0.1 (%) on ATRW dataset "
Variants Training set size

1 10 20 50 5% 20% 100%

- image reconstruction 20.2 22.1 22.8 56.5 91.0 96.8 97.6
- 2D geometry 24.7 40.6 39.3 39.6 87.4 93.7 96.1
- 3D geometry 16.7 36.2 75.8 81.2 92.1 96.1 96.4
- uncertainty 20.8 31.9 78.7 81.2 92.3 95.9 95.4
- kmeans selection 8.2 10.1 15.1 40.7 90.9 96.1 -

Full 14.4 36.3 78.8 81.4 92.7 96.5 96.9

Table 3. Ablation Tests on WFLW and ATRW. Each of our
design choices plays an important role in the few-shot scenario.
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(a) Effects of Uncertainty (b) Failure cases

Figure 6. (a) Effects of Uncertainty. Modeling uncertainty im-
proves keypoint localization on objects with occlusion (see for
instance the nose and eyebrows). (b) Failure Cases. The model
fails if the objects are highly symmetric or articulated.

However, neither problem is observed when we increase the
dataset to hundreds of annotations (instead of dozens).

6. Conclusion & Discussion
We presented a few-shot keypoint localization method

that is formed by combining keypoint detection with
uncertainty, 2D/3D geometric constraints, and image
reconstruction. These components prevent the detector from
overfitting to the few-shot examples and utilize unlabelled
images. Our experiment results demonstrate that, with
only dozens of annotations, our model works on various
datasets, including rigid, soft, articulated objects, and even
the very difficult mouth interior which has not been tried
before. In the few-shot scenario, our model significantly
outperforms the baselines and works on those datasets
where others fail with 10 or 20 annotated examples. It opens
the path for conditional generative modeling and image
editing with a few annotated examples. Our future work will
focus on leveraging 3D-aware image synthesis for better
generalization to extreme poses, solving the symmetry
problem, and testing on broader object categories.
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