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Abstract

Learning inter-image similarity is crucial for 3D medi-
cal images self-supervised pre-training, due to their sharing
of numerous same semantic regions. However, the lack of
the semantic prior in metrics and the semantic-independent
variation in 3D medical images make it challenging to get
a reliable measurement for the inter-image similarity, hin-
dering the learning of consistent representation for same
semantics. We investigate the challenging problem of this
task, i.e., learning a consistent representation between im-
ages for a clustering effect of same semantic features. We
propose a novel visual similarity learning paradigm, Geo-
metric Visual Similarity Learning, which embeds the prior
of topological invariance into the measurement of the inter-
image similarity for consistent representation of semantic
regions. To drive this paradigm, we further construct a
novel geometric matching head, the Z-matching head, to
collaboratively learn the global and local similarity of se-
mantic regions, guiding the efficient representation learn-
ing for different scale-level inter-image semantic features.
Our experiments demonstrate that the pre-training with
our learning of inter-image similarity yields more power-
ful inner-scene, inter-scene, and global-local transferring
ability on four challenging 3D medical image tasks. Our
codes and pre-trained models will be publicly available1.

1. Introduction
Learning inter-image similarity [26, 33, 44, 47] is crucial

for 3D medical image (e.g., CT, MR) self-supervised pre-

training (SSP) [20]. As shown in Fig.1, different from nat-

ural images which are widely researched in SSP, 3D med-

ical images share numerous same semantic regions due to

the consistency of human anatomies [28] and the complete

spatial information in 3D vision [35], bringing a strong

prior for effective SSP. Therefore, it targets on constrain-

∗Corresponding author: yang.list@seu.edu.cn
1https://github.com/YutingHe-list/GVSL
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Figure 1. Learning inter-image similarity is crucial for 3D medical

image SSP. a) Natural images have large semantic difference be-

tween images whose inter-image similarity is weak. b) 3D medical

images share numerous same semantic regions between images

due to the consistent human anatomies and the complete spatial

information in 3D vision, having large inter-image similarity.

ing the pre-training network for a consistent representation

of these same semantic regions between images without an-

notations. Once successful, it will bring great clustering

effect for same semantic features, powerful representability

of pre-trained network, and effective transferring for poten-

tial downstream tasks.

Although the existing SSP works have achieved promis-

ing results in their tasks, they are limited in the learning of

inter-image similarity in 3D medical images. 1) Clustering-

based SSP methods [2, 24] measure the features’ similarity

between images for their clustering pattern in an embedding

space, and learn to aggregate same cluster’s features. How-

ever, they simply employ the Mahalanobis or Euclidean dis-

tance as the measurement function which is extremely inter-

fered by images’ semantics-independent variations (Fig.2).

2) Contrastive learning works [3, 4] directly learn to sep-

arate their features for inter-image dissimilarity. This vi-

olates the learning inter-image similarity which is crucial

in 3D images and will make the network represent distinct

features for same semantic regions. Although some other

contrastive learning works [4, 7, 41] have removed the sep-
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Figure 2. It is challenging to measure a reliable inter-image simi-

larity. a) There is a large similarity between the Myo and the RA

regions between images A and B. b) Due to the variation of the

scanning protocol, RA regions are different in images B and C.

aration learning, they are still unable to learn the consis-

tency of inter-image same semantics. 3) Generation-based

methods [23,25,40,48] construct pretext labels via designed

transformation methods (e.g., rotation [23]) and train net-

works to predict these labels. These methods implicitly im-

pose a bias into SSP via manually designing the transfor-

mation methods. However, the bias extremely relies on the

manual design which makes pre-training networks focus on

the biased features of pretext labels and become sensitive to

the change of scenario [25].

Thinking the limitations in above existing works, the

large-scale mis-measurement for inter-image similarity is

the key challenge in 3D medical SSP, interfering the dis-

covery of semantics’ correspondence and hindering the

learning of consistent representation for same semantic re-

gions. Semantic-independent variations (Fig.2) make the

3D medical images have different appearance. Different

semantic regions have similar appearances and same se-

mantic regions have different appearances between images.

The direct measurement in the embedding space, like the

clustering-based SSP methods [2, 24], is sensitive due to

lack of semantic prior in their metrics. Therefore, in the

non-supervision situation, once the features changed caused

by the variations, these metrics will make mis-measurement

of similarities for large-scale semantics, bringing their mis-

correspondence. It will train network to aggregate the fea-

tures with different semantic but similar appearance, caus-

ing mis-representation.

Topological invariance [18,27] of the visual semantics in

3D medical images provides a motivation to construct a re-

liable measurement for inter-image similarity (Fig.3). Due

to the consistency of human anatomies [28], 3D medical

images have consistent context topology between the visual

semantics in image space (e.g., the four chambers of human

hearts have a fixed space relationship), and the same seman-

tic regions have similar shapes in different images (e.g., the

vessels (AO) have a stable tubular structure), constructing

an invariant topology for the visual semantics. Therefore,
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Figure 3. The topological invariance of the visual semantics be-

tween the 3D medical images provides a motivation to discover

their inter-image correspondence.

according to the semantic prior of topological invariance,

the semantic regions are able to be transformed to align in

the image space via a topology-invariant mapping [10], thus

discovering their reliable inter-image correspondence even

with large variations in appearance. An intuitive strategy is

to use the registration or geometric matching (GM) meth-

ods [11, 13, 15, 16, 32] to discover correspondence indexes

between images, and use these indexes to constrain the con-

sistent representation for corresponding regions. However,

the errors in these indexes will bring mis-correspondence.

In this paper, we propose a novel SSP paradigm, Ge-

ometric Visual Similarity Learning (GVSL), to learn the

inter-image similarity in 3D medical images. It embeds the

prior of topological invariance into the measurement of the

similarities, and train network to estimate semantics’ cor-

respondence from the represented features in GM. Due to

this effective semantic prior, the measurement will consider

the semantic-related topology similarity avoiding the large

interference of semantic-independent variation. Therefore,

when learning to enlarge this similarity between two images

for more accurate estimation of correspondence, the gradi-

ent in backpropagation will constrain the network to clus-

ter the corresponding features in embedding space for more

consistent representation. To drive the GM learning, we fur-

ther propose a Z-Matching head to explore the global and

local collaborative representation learning of inter-image

similarity in our GVSL paradigm. It constructs a collab-

orative learning head with affine (global matching) and de-

formable (local matching) transformations [13], thus em-

bedding the pre-trained model with a powerful transferring

ability for potential downstream tasks.

Our contributions are summarized as follows: 1) Our

work advances the learning of inter-image similarity in 3D

medical image SSP, and pre-trains the network to learn a

consistent representation for same visual semantics between

images without annotation, pushing the representability of

pre-trained models. 2) We propose the Geometric Visual

Similarity Learning (GVSL) that embeds the prior of topo-
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logical invariance into the metric for a reliable measure-

ment of inter-image similarity, learning a consistent repre-

sentation for same semantic regions between images. 3) We

present a novel GM head, Z-Matching head, for simultane-

ously powerful global and local representation. It collabora-

tively learns the affine and deformable matching, realizing

an effective optimization for the representation of different

semantic granularity in our GVSL, and finally achieving a

powerful transferring ability.

2. Related work

Learning similarity in self-supervised pre-training:
Learning similarity [26, 43, 46] targets on learning con-

sistent representation for similar visual objects and distin-

guished representation for dissimilarity objects, which is

a fundamental task in visual SSP [20]. As illustrated in

Sec.1, it has three main paradigms. Contrastive learning

[3, 4, 14, 39, 44, 45] which constrains the representation of

same image to be consistent and different images to be sep-

arated. However, they are unable to learn the inter-images

similarity, and the learning of separation will extremely

interfere the representation of the 3D medical images.

Clustering-based methods [2, 24] are able to learn inter-

image similarity, but their large-scale mis-measurement for

similarities interferes the learning for consistent representa-

tion. Generation-based methods [8,9,23,25,40,48] generate

pretext labels manually and constrain networks to predict

these labels. However, it implicitly embeds bias from man-

ual design into the learning which will make network ig-

nore some potential aspects and limit in the representation

in some specific scenario.

Geometric matching & Registration: Geometric

matching (GM, or named registration) [11,13,16,17,32,36]

aligns images’ semantic regions to a same spatial coor-

dinate system, thus providing correspondence indexes be-

tween two images. It has two level transformations: 1)

Affine matching [13, 42] aligns images in global. It cal-

culates a transformation matrix that consists of the rotation,

scaling, translation, and shearing operations between im-

ages and transforms the images to align in a global view. 2)

Deformable matching [13,15,16,36] aligns images in local.

It calculates a voxel-wise displacement vector field (DVF)

which indicates the correspondence of the voxels between

two images, and aligns the images via a spatial transforma-

tion operation [19]. Recently, due to the development of

deep learning (DL), the DL-based GM [13, 16, 32] learns

the representation driven by learning correspondence pre-

diction, which provides us a potential solution.

3. Methodology

Our framework (Fig.4) learns from scratch on unlabeled

3D medical images, yielding a common visual representa-

tion with inter-image similarity.

3.1. GVSL for inter-image similarity

The proposed GVSL (Fig.4 a)) models the learning of

inter-image similarity as the estimation of inter-image cor-

respondence from represented features which embeds the

prior of topological invariance into the measurement, thus

utilizing the gradient in backpropagation to train the net-

work to represent consistent features on same semantics.

3.1.1 Description of GVSL GVSL’s goal is to learn a

representation that has a powerful clustering effect of the

same semantic features even in different images. As shown

in Fig.4, it uses two shared-weight neural networks Nθ with

weights θ to represent the features fA, fB from two images

xA, xB . These features are put into a GM head Gξ (our Z-

matching head in our framework, Sec.3.2), to learn the cor-

respondence of the semantic regions between images, thus

driving the consistent representation in Nθ for these same

semantics.

Given a set of 3D medical images D, two images

xA, xB ∼ D are sampled uniformly from D (A and B re-

fer to different images), and one transformation operation

t ∼ T is sampled from a transformation set T . GVSL pro-

duce a transformed view xt
A � t(xA) from xA by apply-

ing the transformation t to improve the diversity of the im-

ages. The network outputs global and local representations

{fg
A, f

l
A} � Nθ(x

t
A), {fg

B , f
l
B} � Nθ(xB) of xt

A and xB .

The head for GM Gξ further outputs a displacement vector

field (DVF) ψAB � Gξ(f
l
A, f

l
B , f

g
A, f

g
B) which indicates the

correspondence of the voxels between two images. The spa-

tial coordinate system of the image xA is transformed to the

image xB for a geometric matched image xAB � ψAB(xA)
via spatial transformation [19]. We utilize the in-painting,

local-shuffling, and non-linear as the transformation set T .

We calculate a normalized cross-correlation (NCC) to

evaluate the alignment degree between two images which

indirectly evaluates the accuracy of the predicted correspon-

dence. We train the framework to minimize this loss LNCC ,

thus driving the learning of correspondence,

LNCC
θ,ξ � (1)

∑

p∈Ω

(
∑

pi
(xB(pi)− x̂B(p))(xAB(pi)− ˆxAB(p)))

2

(
∑

pi
(xB(pi)− x̂B(p))2)(

∑
pi
(xAB(pi)− ˆxAB(p))2)

,

where the p is the position of the voxels in the image space

Ω, and the i is the index of p. The x̂B(p) is the local mean

intensity images: x̂B(p) = 1
n3

∑
pi
xB(pi) (the same as

ˆxAB(p)). To keep the topology invariant in GM, we further

calculate a smooth loss Lsmooth on the DVF, constraining

the network to perceive the correspondence of semantic re-

gions under the condition of their topology,

Lsmooth
θ,ξ �

∑

p∈Ω

‖ � ψAB(p)‖2. (2)
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Figure 4. The framework of our GVSL: a) Our GVSL learns the GM from the representation of the semantics in images, thus driving the

learning of inter-image similarity via the gradient in backpropagation. b) Our Z-Matching head learns affine and deformable matchings

simultaneously for powerful global and local representations. c) For efficient learning, it also takes a fundamental pretext task, the self-

restoration, for a basic representation of semantics, thus giving a warm-up for GM learning.
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Figure 5. Intuitions on GVSL’s behavior: The prior of topological

invariance in GM embeds a topology manifold into the metric, thus

bringing an efficient measurement for inter-image similarity and

guiding the clustering effect of same semantic features.

At each training step, we perform a stochastic op-

timization step to minimize LGV SL
θ,ξ = LNCC

θ,ξ +

Lsmooth
θ,ξ with the weights of θ and ξ. Therefore, the

framework’s dynamics are summarized as {θ, ξ} ←
optimizer({θ, ξ},∇θ,ξLGV SL

θ,ξ , η), where the optimizer is

an optimizer in training and η is a learning rate.

3.1.2 Intuitions on GVSL’s behavior The GM head to-

gether with the loss for similarity (LNCC) and the loss for

topology-preservation (Lsmooth) in our GVSL is an im-

plicit metric [1] with the prior of topological invariance. As

shown in Fig.5 a), metrics determine the similarity between

images. The GM limits the measurement of inter-image vi-

sual similarity under the condition of the invariant topology

in the image space, avoiding mis-measurement caused by

the appearance (Fig.2).

min
θ,ξ

L(Gξ(Nθ(xA),Nθ(xB)); {xA, xB}) (3)

It implicitly embeds a topology manifold inner the images

{xA, xB} into the measurement process, and measure the

similarity (LNCC) on this topology manifold (Fig.5 b),

Equ.3). The xRA
A , xRA

B and xMyo
A are the potential RA re-

gions on images xA, xB and the potential Myo region on

image xA. In embedding space, due to the similarity in ap-

pearance, the distance between the features of RA in image

B Nθ(x
RA
B ) and the features of Myo in image A Nθ(x

Myo
A )

is closer than that between the features of RA regions in

image A Nθ(x
RA
A ) and B Nθ(x

RA
B ). This will bring mis-

correspondence via some direct metrics, e.g., Euclidean dis-

tance. The GM Gξ in our GVSL maps these represented fea-

tures (Nθ(x
RA
A ),Nθ(x

RA
B ),Nθ(x

Myo
A )) in the embedding

space to the topology manifold inner the images {xA, xB}
in image space. Therefore, due to the prior of the topolog-

ical invariance, the distance between the RA regions will

be closer than that between the xRA
B and xMyo

A and bring

efficient learning of inter-image similarity via the gradient,

thus learning efficient clustering effect.

Throughout the whole training process, the learning of

representation for inter-image similarity in the network Nθ

and the correspondence in the GM head Gξ is a two-player

game [34]. The GM head Gξ learns to estimate the cor-

respondence of semantic regions from the represented fea-

tures fA, fB and measure their voxel displacement in image

space. The network Nθ learns to provide features of visual

semantic regions to the GM head Gξ for their correspon-

dence. To achieve more accurate correspondence, the GM

head has to drive the pre-training network to output more

consistent and representative features in turn for same se-

mantic regions via the gradient in backpropagation. There-

fore, under this interaction, the network Nθ will provide

more representative features for the GM head for better cor-

respondence estimation, and the GM head Gξ will have a

more powerful ability to learn the inter-image similarity.

3.2. Z-Matching for Global-Local Representations

The proposed Z-Matching Gξ (Fig.4 b)) is a novel

GM head that collaboratively learns affine and deformable

matching for simultaneous global and local representation.

It has two sub-head including the affine head Gg
ξ for global

similarity and the deformable head Gl
ξ for local similarity.
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3.2.1 Affine head for global visual similarity It con-

catenates the global features (fg
A, f

g
B) of two images from

the encoder part of the network Nθ, and puts these fea-

tures into the affine head Gg
ξ to predict the affine val-

ues. 15 values (3 for rotation (θx, θy, θz), 3 for transla-

tion (tx, ty, tz), 3 for scaling (sx, sy, sz), and 6 for shear-

ing (shxy, shxz, shyx, shyz, shzx, shzy)) are estimated to

calculate the affine matrix ψg
AB � Gg

ξ (f
g
A, f

g
B) which in-

dicates the global transformation target in the spatial coor-

dinate system of xA to align the xB in global. Therefore, to

percept the global correspondence, the optimizer will con-

strain the encoder to extract consistent and representative

features for same global semantic regions.

3.2.2 Deformable head for local visual similarity It

takes the affine matrix ψg
AB to transform the global spatial

coordinate system of the local features (from the decoder of

the network Nθ) f l
A to the f l

B for a global matching, thus the

local features are globally aligned. It further concatenates

the local features and puts them into the deformable head

Gl
ξ to predict a deformable map ψl

AB � Gl
ξ(ψ

g
AB(f

l
A), f

l
B)

that will deform the voxels in the image A to align their

corresponding voxels in image B. Therefore, to achieve

this voxel-wise alignment, the optimizer will constrain the

whole network to extract consistent and representative fea-

tures for same local visual semantic regions. Finally, the

affine matrix ψg
AB and the deformable map ψl

AB are fused

(�) for the DVF ψAB � ψl
AB � ψg

AB . (Details of � are in

Supplementary Material.)
Therefore, the correspondence of the visual semantic re-

gions between two images is predicted in ψAB , and the

learning of correspondence will constrain the network Nθ

to extract more consistent and representative features for

same visual semantics, thus driving the head Gξ to have

more powerful ability to discover their correspondence.

3.3. Fundamental pretext task for warm-up

The initial basic representation for visual semantics is

important in our GVSL, so that we utilize self-restoration

[48] as the fundamental pretext task (fundament) in our

framework. During the learning of GM, the learning of cor-

respondence Gξ relies on the represented features of two

images from the network Nθ. The initial network Nθ with

weak representability will limit the discovery of the corre-

spondence between potential visual semantics, making it

challenging to find a reliable optimization target to align

same semantic regions, hindering the inter-image similarity

learning. Therefore we construct a self-restoration [48] task

in the framework for a warm-up of the GVSL.

As shown in Fig.4 c), it randomly transforms the ap-

pearance of an image (xA) via a sampled transforma-

tion operation (t′ ∼ T ) for a transformed image (xt′
A �

t′(xA)) and put it into the network Nθ to represent its lo-

cal feature f l′
A from the decoder. (To save computing re-

sources, we share this operation with GVSL in our ex-

periment, i.e., Nθ(x
t′
A) = Nθ(x

t
A).) Then, the feature

f l′
A is put into a restoration head Rι for a restored image

(x′
A), and calculates mean sequence error losses LMSE

θ,ι =

‖Rι(Nθ(t
′(xA))) − xA‖2 [48] with the original image xA

to learn the restoration of the visual semantics from a trans-

formed context. Therefore, the network will learn a basic

representation of semantics for warm-up in dynamics, i.e.,

{θ, ι} ← optimizer({θ, ι},∇θ,ιLMSE
θ,ι , η), avoiding the

weak optimization in GVSL.

4. Experiments and Results
4.1. Experiment protocol

1) Materials: Five datasets are used in our experiments.

a) Pre-training dataset: Cardiac CT images from 302 pa-

tients are used as the self-supervised pre-training dataset

without annotations. These images were acquired on a SO-

MATOM Definition Flash and the contrast media was in-

jected during the CT image acquisition. The x/y-resolution

of these CT images is between 0.25 to 0.57 mm/voxel and

the slice thickness is between 0.75 to 3 mm/voxel. The

x/y-size of the images is 512 voxels and the z-size is be-

tween 128 to 994 voxels. b) Downstream datasets: Four

public available datasets (MM-WHS-CT [49], ASOCA [6],

CANDI [21], STOIC [31]) are used to demonstrate the su-

periorities of our framework. According to their data kinds,

we use them for inner-scene and inter-scene evaluations.

For inner-scene evaluation, it utilizes the Segmentation of

seven Heart structures on cardiac CT images (SHC) [49],

Segmentation of coronary Artery on cardiac CT images

(SAC) [6], and diagnosis (Classification) of COVID-19 on

chest CT images (CCC) [31] to evaluate the adaptability for

same scenes (Cardiac or chest CT) as the source dataset.

For inter-scene evaluation, it utilizes the Segmentation of

28 Brain tissues on MR images (SBM) [21] to evaluate the

adaptability for different scenes (Brain MR) as the source

dataset. More details are in our Supplementary Material.
2) Comparisons: We take eight works to benchmark

our framework, including the generation-based methods

[23, 30, 40, 48] and contrast-based methods [2–4, 7]. There-

fore, the superiority of our GVSL will be demonstrated. We

take 3D U-Net [5] as the backbone network for all methods

(the global prediction methods use the encoder part of the

backbone) for a fair comparison and use both fine-tuning

and linear evaluations for a comprehensive demonstration.

3) Evaluation metrics: We use the mean Dice coef-

ficient (DSC) to evaluate the segmentation tasks, and the

Area Under the Curve (AUC) to evaluate the classification

task following [37].

4) Implementation: All tasks are implemented by Py-

Torch [29] on NVIDIA GeForce RTX 3090 GPUs with 24

GB memory, optimized by Adam [22] whose learning rate
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Table 1. The linear (a) and fine-tuning (b) evaluations demonstrate our powerful representation and great transferring ability. The cells with

a pink background are the top value in the columns. The red or blue values are the improvement or reduction compared with the “Scratch”.

Pre-training
a) Linear: powerful representation b) Fine-tuning: great transferring

SHCDSC% SACDSC% CCCAUC% SBMDSC% SHCDSC% SACDSC% CCCAUC% SBMDSC%

Inner scene Inter scene Inner scene Inter scene
Scratch 21.9 10.0 52.7 56.4 87.8 80.4 74.4 89.7

Denosing [40] 31.4(+9.5) 9.3(−0.7) 57.9(+5.2) 28.3(−28.1) 90.3(+2.5) 80.5 (+0.1) 75.6(+1.2) 89.7

In-painting [30] 32.3(+10.4) 5.9(−4.1) 57.1(+4.4) 25.0(−31.4) 90.4(+2.6) 80.3 (−0.1) 79.9(+5.5) 89.9(+0.2)

Models Genesis [48] 47.4(+25.5) 22.5(+12.5) 60.4(+7.7) 44.9(−11.5) 90.3(+2.5) 79.9 (−0.5) 80.7(+6.3) 89.4(−0.3)

Rotation [23] 56.1(+34.2) 21.9(+11.9) 62.1(+9.4) 54.1(−2.3) 90.6(+2.8) 81.1(+0.7) 77.1(+2.7) 89.6(−0.1)

DeepCluster [2] 55.9(+34.0) 4.4(−5.6) 57.9(+5.2) 67.5(+11.1) 85.4(−2.4) 80.5(+0.1) 59.9(−14.5) 89.1(−0.6)

SimSiam [4] 56.5(+34.6) 9.7(−0.3) 61.0(+8.3) 66.2(+9.8) 87.5(−0.3) 80.1 (−0.3) 73.6(−0.8) 89.8(+0.1)

BYOL [7] 46.9(+25.0) 8.6(−1.4) 53.7(+1.0) 52.7(−3.7) 88.6(+0.8) 80.7 (+0.3) 76.5(+2.1) 89.5(−0.2)

SimCLR [3] 48.7(+26.8) 15.5(+5.5) 61.3(+8.6) 58.7(+2.3) 86.9 (−0.9) 79.9(−0.5) 74.3(−0.1) 89.3(−0.4)

w/o Z-Matching 49.1(+27.2) 21.1(+11.1) 55.8(+3.4) 45.1(−11.3) 88.3(+0.5) 81.2(+0.8) 81.3(+6.9) 89.7

w/o Fundament 45.3(+23.4) 0.0(−10.0) 58.8(+6.4) 48.5(−7.9) 87.0(−0.8) 79.5 (−0.9) 76.6(+2.2) 89.0(−0.7)

w/o Affine head 57.7(+35.8) 17.9(+7.9) 57.6(+4.9) 53.4(−3.0) 89.4(+1.6) 82.3(+1.9) 79.8(+5.4) 89.8(+0.1)

Our GVSL (Whole) 68.4(+46.5) 28.7(+18.7) 60.8(+8.1) 79.9(+23.5) 91.2(+3.4) 81.3(+0.9) 82.2(+7.8) 90.0(+0.3)

is 10−4. The pretext task is trained with 2× 105 iterations.

The downstream tasks are trained with 4 × 104 iterations

and validated every 200 iterations to save the best models

on their validation sets. For a fair comparison, all methods

in our experiment take the same basic training setting.

4.2. Comparison study shows our superiority

As demonstrated in Tab.1, our linear (a) and fine-tuning

(b) evaluations demonstrate our power representation abil-

ity and great transferring ability.

4.2.1 Powerful inner-scene transferring for both large
and small structures Our powerful inner-scene transfer-

ring ability shows the great application potential of our

GVSL in big-data but low-label scenarios of medical im-

ages. It achieves the highest performance both in large

and small structures in the same scene of the pre-training

dataset. 1) Large structures: In the SHC task which seg-

ments large cardiac structures, our GVSL achieves the

highest DSC (68.4%) in linear evaluation which is 11.9%

higher than the second-highest method [4]. This is be-

cause our learning of inter-image similarity promotes the

representation of consistent features. Especially for the

large anatomies which have clear visual semantics, our GM

brings a much more efficient representation. 2) Small struc-

tures: In the SAC task which segments the small coro-

nary arteries, numerous pre-training methods [3, 4, 7, 30]

mislead the model to ignore such small features, result-

ing in even lower performance than the “Scratch”, espe-

cial for those methods [3, 4, 7] designed for global predic-

tion. Our learning of the deformable transformation and

the self-restoration teaches the pre-trained network consis-

tent and effective representation for small visual semantics,

achieving the highest DSC in linear (28.7%) evaluation. It

is also interesting that when removing the affine head in our

Z-matching head, our GVSL achieves the best fine-tuning

performance (82.3%). This further demonstrates the impor-

tance of learning dense representation for small objects.

4.2.2 Effective inter-scene transferring Our effective

inter-scene transferring ability demonstrates our superior-

ity as the initiation for deep networks. The SBM task uses

brain MR images which have different modality and context

(body range) with the pre-training dataset, making a chal-

lenging inter-scene transferring. In linear evaluation, a lot

of compared methods [7, 7, 23, 48] are unable to bring pro-

motion in this task and achieves even worse performance

than “Scratch” due to the large difference between the

source (brain MR) and target (cardiac CT) tasks. Our frame-

work which is pre-trained on cardiac CT images is able to

efficiently adapt to the segmentation task on brain MR im-

ages. Therefore, it achieves the highest 79.9% DSC (23.5%

improvement). This is because the inter-image similarity

brings the pre-trained network a better clustering effect for

same semantic features even in different images, making the

representation easier to be transferred to the target scene in-

tegrally. It is worth noting that in the fine-tuning evaluation,

all methods only have similar even worse [2,3,7,23,48] per-

formance as the “Scratch”. This is because the large distri-

bution gap between brain MR and cardiac CT images (dif-

ferent modalities and body ranges) makes the pre-trained

representability unable to achieve valid transferring. Our

GVSL still achieves the highest 0.3% improvement.

4.2.3 Superiority in global and dense prediction tasks
Our superiority in both global and dense prediction tasks

shows its great adaptability to potential downstream tasks.

1) Dense prediction tasks (SHC, SAC, SBM): Our GVSL

has the highest DSC for all three tasks owing to our de-

formable head and self-restoration head which learns repre-

sentative and consistent features extraction ability for de-
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Figure 6. Our GVSL has powerful representability in linear evaluation and faster convergence ability in fine-tuning evaluation. In b), the

thick part of the lines mean the useful training process, and at the end of the thick parts are the saved best models on validation set.

tails. The SimSiam, BYOL, SimCLR, and DeepCluster

only learn global representation in their pretext tasks, hav-

ing very poor performance in the SAC which focuses on

detail features. 2) Global prediction tasks (CCC): The med-

ical images are similar globally and their lesions are on the

local regions. Our GVSL utilizes our Z-Matching head to

simultaneously learn the global and local visual similarity

for global-local representation, achieving the highest AUC

(82.2%) in the fine-tuning evaluation and illustrating our

superiority in the transferring of global prediction tasks.

Although our GVSL has 60.8% AUC in linear evaluation

which is 1.3% lower than the highest method (Rotation), it

is still higher than the Denoising, In-painting, and Model

Genesis which pre-train network via dense prediction tasks.

4.3. Ablation study and model analysis

4.3.1 Ablation study We compare our GVSL with the

only fundamental pretext task (self-restoration), the only

Z-Matching for GM learning, and the fundament + only

deformable matching, three observations can be found in

Tab.1. 1) When only learning the GM (Z-Matching), its ini-

tial weak representability makes the pre-trained model have

inefficient optimization and brings poor representation. Es-

pecially in the linear evaluation of the SAC task, it is un-

able to segment the extremely small structures due to the

single GM’s poor representation. 2) When adding the fun-

damental task, our GVSL has better performance than the

single two sub-pretext tasks on all four downstream tasks,

showing the importance of the basic representation from

self-restoration and the large contribution of our inter-image

similarity from our GM. 3) When removing the Affine head

in the Z-Matching head, it reduces 3.2% and 2.4% AUC in

the linear and fine-tuning evaluations of CCC task due to the

lack of global representation learning. However, it achieves

the highest DSC in the fine-tuning of the SAC task, because

the targeted learning of deformable matching will promote

the representation of thin structures in local features.

4.3.2 Our promotion for the learning efficiency As

shown in Fig.6, we analyze the learning of the models

which are initialized from scratch, by our GVSL, and by

the Model Genesis in the SAC and SBM tasks, demonstrat-

ing our powerful representability and much faster conver-

gence ability. In the linear evaluation, our GVSL improves

more than 20% DSC compared with the ’scratch’ or Model

Genesis, owing to our effective learning for details in local-

wise visual similarity. In the fine-tuning evaluation, our

GVSL also greatly improves the convergence speed which

achieves more than 30% improvement, illustrating its great

convergence ability and great potential for saving comput-

ing resources. Although in the fine-tuning of the SBM task,

the ”scratch” has faster convergence, it quickly falls into

over-fitting, and its performance is extremely limited.

4.3.3 The fundament’s necessity for our GM learning
The self-restoration learns a basic representation for visual

semantic regions, thus driving the learning of inter-image

similarity in our GM. As demonstrated in Fig.8, when only

learning our GM task, the network’s initial weak represen-

tation makes inefficient optimization of the GM task, so the

NCC loss LNCC does not converge and is unable to learn

the correspondence of semantic regions. When adding the

fundamental pretext task, driven by the basic representa-

tion of visual semantic regions from the self-restoration, the

NCC loss is successfully converging to learn the correspon-

dence of semantic regions for a better clustering effect of

same visual semantics inter images.

4.3.4 Our GVSL’s promotion for clustering effect As

shown in Fig.7, the local features f l from the pre-trained

models in the SHC task demonstrate our GVSL’s promotion

for the clustering effect. The random initialization mixes

the different semantics, so it is unable to extract represen-

tative features and distinguish the potential visual seman-

tics. When only learning the self-restoration, it learns ba-

sic representation for visual semantics, but is still limited

by the constraint for inter-image similarity. Therefore, the

local features f l are still mixed. When only learning our

Z-Matching head for the GM task, the features have a sig-

nificantly better clustering effect, showing the importance

of inter-image similarity. However, the features of some

semantics are still mixed. When the above two sub-pretext

tasks are used simultaneously in our GVSL, the basic repre-

sentation from the fundament promotes the learning of GM,
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so the clustering effect is more obvious and the features

of different visual semantics are representative and distin-

guishing. Although the yellow points show three parts in

our GVSL, each part is clustered, also showing that the rep-

resentation of internal semantics of this region is consistent.

5. Conclusion and Discussion

In this paper, we have advanced the inter-image sim-

ilarity learning in 3D medical image SSP, and proposed

the Geometric Visual Similarity Learning (GVSL) for the

representation of inter-image similarity, achieving power-

ful representability for the transfer learning in downstream

application-specific tasks. While its unique properties of

learning consistent representation for same semantics have

bright powerful performance in inner-scene, inter-scene,

and global-local transferring tasks for 3D images (CT, MR),

an important future work is to expand the learning of inter-

image similarity to some images without topological invari-

ance, i.e., whole slide imaging [12]. We believe that our

GVSL in SSP will promote the research of efficient learning

in medical image analysis, and our GVSL is able to serve as

a primary source of transfer learning for downstream tasks.

Discussion for impact The proposed method demon-

strates an effective and reasonable potential in medical

imaging analysis, showing great potential impact. Espe-

cially for the widely used 3D medical images, their spa-
tial completeness of 3D structures [35] avoids the spatial

projection (e.g., X-ray images) and spatial occlusion (e.g.,

natural images) of 2D images. The consistency in human

bodies also brings the topological invariance of the content

in these 3D images. Therefore, the geometric relationship

between these images is able to be effectively used to drive

the measurement of visual similarity. The spatial complete-

ness and topological invariance of 3D structure in images

will further inspire researchers to do more research on SSP.

Discussion for limitation There are still some limita-

tions in our GVSL. 1) The additional calculation in the Z-

Matching head and the fundamental self-restoration learn-

ing makes larger GPU memory requirement and more com-

puting costs. 2) The inter-scene transferring is still a large

challenge for medical image pre-training models due to the

large gap between the source and target scenes. Fortunately,

these limitations are gradually being solved due to the de-

velopment of GPU and enlarging of medical datasets (pro-

vides more possibilities for inner-scene transferring).
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[5] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp,

Thomas Brox, and Olaf Ronneberger. 3d u-net: learning

dense volumetric segmentation from sparse annotation. In

International conference on medical image computing and
computer-assisted intervention, pages 424–432. Springer,

2016. 5

[6] Ramtin Gharleghi, Dona Adikari, Katy Ellenberger, Sze-

Yuan Ooi, Chris Ellis, Chung-Ming Chen, Ruochen Gao,

Yuting He, Raabid Hussain, Chia-Yen Lee, et al. Automated

segmentation of normal and diseased coronary arteries-the

asoca challenge. Computerized Medical Imaging and Graph-
ics, page 102049, 2022. 5

[7] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
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