
Grad-PU: Arbitrary-Scale Point Cloud Upsampling via Gradient Descent with

Learned Distance Functions

Yun He1 Danhang Tang2 Yinda Zhang2 Xiangyang Xue1 Yanwei Fu1

1 Fudan University 2 Google

Abstract

Most existing point cloud upsampling methods have

roughly three steps: feature extraction, feature expansion

and 3D coordinate prediction. However, they usually suf-

fer from two critical issues: (1) fixed upsampling rate after

one-time training, since the feature expansion unit is cus-

tomized for each upsampling rate; (2) outliers or shrink-

age artifact caused by the difficulty of precisely predicting

3D coordinates or residuals of upsampled points. To adress

them, we propose a new framework for accurate point cloud

upsampling that supports arbitrary upsampling rates. Our

method first interpolates the low-res point cloud according

to a given upsampling rate. And then refine the positions

of the interpolated points with an iterative optimization

process, guided by a trained model estimating the differ-

ence between the current point cloud and the high-res tar-

get. Extensive quantitative and qualitative results on bench-

marks and downstream tasks demonstrate that our method

achieves the state-of-the-art accuracy and efficiency.

1. Introduction

With the popularity of commercial 3D scanners, cap-

turing point clouds from real-world scenes becomes con-

venient and affordable. Thus point clouds have been

widely utilized in applications such as autonomous driving,

robotics, remote sensing, etc [11]. That being said, the raw

point clouds produced by 3D scanners or depth cameras are

often sparse and noisy, sometimes with small holes [16],

which greatly affects the performance of downstream tasks,

such as semantic classification [38], rendering [5], surface

reconstruction [1], etc. Consequently, it is vital to upsample

a raw point cloud to a dense, clean and complete one, with

Yun He and Xiangyang Xue are with the School of Computer Sci-

ence, Fudan University.

Yanwei Fu is with the School of Data Science, Fudan University.

He is also with Shanghai Key Lab of Intelligent Information Processing,

and Fudan ISTBI±ZJNU Algorithm Centre for Brain-inspired Intelligence,

Zhejiang Normal University, Jinhua, China.

𝑃𝐿

Previous Methods

𝑃𝐻 = 𝑁𝑁𝑅(𝑃𝐿)
Output

𝑃𝐼 𝑃𝐻 = argmin𝑃𝐼 𝑁𝑁(𝑃𝐼)

Ours

𝑁𝑁𝑅 for Each Upsampling Rate 𝑅

Interpolation

Shared NN

Iterative Update

Ground Truth

Input

Refinement

Figure 1. The comparison between previous point cloud upsam-

pling methods and ours, and NN denotes the deep neural net-

work. Given the low-res input PL, previous methods directly pre-

dict the 3D coordinates or residuals of high-res output PH . And

most of them need retraining to satisfy various upsampling rates.

Instead we first interpolate points in Euclidean space, which sep-

arates point generation from network learning and thus achieves

arbitrary upsampling rates. Then we formulate the refinement of

interpolated points as an iterative process aiming to minimize the

learned point-to-point distance function NN(PI).

more geometric details.

The common practice towards point cloud upsampling

usually consists of three key steps [15,16,18,27,30,41,43].

(1) Feature extraction: capturing point-wise semantic fea-

tures from the low-res point clouds. (2) Feature expan-

sion: expanding the extracted features w.r.t the specified

upsampling rate. (3) Coordinate prediction: predicting 3D

coordinates or residuals of upsampled points from the ex-

panded features. However, there are two critical issues in

this paradigm. Firstly, these models are usually dependent

on the upsampling rate. To support different upsampling

rates, multiple models need to be trained. Secondly, pre-

cisely estimating the 3D coordinates or offsets to the tar-

get points is hard, which leads to outliers or shrinkage ar-

tifact [20]. Although some recent methods try to handle

the fixed upsampling rate problem via affine combination

of neighboring points [19,29] or implicit neural representa-

tion [8, 46], their performance is still limited by the inaccu-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5354

racy of 3D coordinate prediction.

In this paper, we propose a novel point cloud upsampling

algorithm to address these two issues. In particular, our

method decouples the upsampling process into two steps.

First, we propose to directly upsample the input low-res

point cloud in Euclidean space by midpoint interpolation,

instead of expanding in the feature space. And the amount

of interpolated points is determined by a given upsampling

ratio. This makes the learning part independent with the up-

sampling module and helps the whole method generalize to

arbitrary upsampling rates. Secondly, the interpolated point

cloud is refined by an iterative process aiming to minimize

the difference between the interpolated point cloud and the

ground truth high-res point cloud. To measure the differ-

ence, we choose to use point-to-point distance, which elimi-

nates the need of surface extraction and can handle arbitrary

topologies. Moreover, comparing to coordinates (∈ R
3),

the point-to-point distance (∈ R
1) is an easier objective to

optimize, thus results in much more accurate upsampling

results in our experiments. Since the ground truth point

cloud is not available during inference, a model is trained

to approximate the point-to-point distance function in a dif-

ferentiable manner, thus termed as P2PNet. To improve the

training efficiency, we come up with a simple but effective

training scheme, by adding Gaussian noise to the data to

simulate varying degrees of difference between the input

and ground truth point cloud. The P2PNet is then trained to

minimize the difference, i.e., the refinement step is regarded

as a distance minimization process.

In this paper, we propose a novel framework for accurate

point cloud upsampling with arbitrary upsampling rates.

Specifically, our contributions can be summarized as:

• Decompose the upsampling problem into midpoint in-

terpolation and location refinement, which achieves ar-

bitrary upsampling rates.

• Formulate the refinement step as a point-to-point dis-

tance minimization process.

• Propose the P2PNet to estimate the point-to-point dis-

tance in a differentiable way.

Extensive experiments show that our method significantly

outperforms existing methods in accuracy, efficiency, ro-

bustness, and generalization to arbitrary upsampling rates,

also improves the performance of downstream tasks such as

semantic classification and surface reconstruction.

2. Related Work

Point Cloud Analysis. Due to the natural irregular struc-

ture of point clouds, traditional methods always first vox-

elize them and then apply 3D convolution for processing

[22, 31], which however brings huge computational cost.

Thus some other methods try to operate directly on the raw

point clouds [6, 7, 12, 17, 25, 26, 35, 36, 45]. Specifically,

PointNet [25] applies shared MLPs to extract point-wise

features first and then uses max pooling to obtain the order-

invariant global features. PointNet++ [26] designs the set

abstraction operation to further enhance the capture of local

geometry. DGCNN [35] achieves nonlocal feature diffu-

sion by constructing dynamic graphs in feature space. Point

Transformer [45] introduces attention mechanism [34] to

capture the long-range relations. And Fan et al. [6] designs

the Point 4D Convolution for modeling the spatio-temporal

correlations in point cloud sequences. Considering the ef-

fectiveness and efficiency, we simplify it to apply on the

spatial domain only, and denote it as Point 3D Convolution.

Learnable Point Cloud Upsampling. Benefiting from the

success of deep learning technology in the point cloud anal-

ysis field, researchers begin to focus on the learning-based

point cloud upsampling methods [8, 15, 16, 18, 19, 27±30,

40±43, 46]. In particular, PU-Net [43] adopts the Point-

Net++ [26] backbone to first extract multi-level features,

then expands them by multi-branch MLPs, and finally trans-

forms the expanded features to 3D coordinates. MPU [41]

proposes the EdgeConv [35] based feature extractor, and

expands features by assigning different 1D codes. PU-

GAN [15] introduces adversarial training and designs a up-

down-up unit for expanded features correction. PUGeo-

Net [28] first generates points in 2D space and then trans-

forms them to 3D space. Dis-PU [16] disentangles the

upsampling process by a dense generator and spatial re-

finer. PU-GCN [27] proposes Inception DenseGCN for fea-

ture extraction and NodeShuffle for feature expansion. PU-

Transformer [30] introduces a transformer-based model to

capture fine-grained point features. Moreover, PC2-PU [18]

designs patch correlation and point correlation modules to

improve the global spatial consistency. Besides the ex-

tra time-consuming annotations [28, 41, 42], these methods

usually have two aforementioned issues: fixed upsampling

rate after each training and outliers or shrinkage artifact due

to the difficulty of 3D coordinate estimation. Despite a few

recent methods break the former limitation by affine combi-

nation of neighbor points [19,29] or implicit function learn-

ing [8, 46], the latter problem still remains unsolved. To

handle these two issues simultaneously, we propose to up-

sample points in Euclidean space by midpoint interpolation,

and then refine them via distance minimazation.

Implicit Neural Representation. Learning continuous im-

plicit functions for 3D shape representation has prevailed

the research community in recent years [2±4,10,14,23,24].

Common practice is to train neural networks to approximate

conventional implicit shape functions, such as occupancy

probability [2, 3, 23], signed distance fields (SDF) [10, 24]

and unsigned distance fields (UDF) [4].

5355

3. Methodology

We propose a novel point cloud upsampling framework.

Once trained, it can upsample a point cloud with arbitrary

ratios. Specifically, given a low-res point cloud PL, we first

interpolate it to obtain a new point cloud PI with desired

amount of points in Sec 3.1. Then the locations of the inter-

polated points are refined by an iterative optimization pro-

cess to be as close to the ground truth high-res point cloud

PG as possible, as in Sec 3.2. Since the ground truth is not

available during inference, this refinement is guided by a

trained model, termed as P2PNet (Sec 3.3).

3.1. Midpoint Interpolation

To make our network learning uncoupled with point

generation, thus achieving arbitrary upsampling rates, we

propose the midpoint interpolation for point upsampling.

Given the low-res input PL, our interpolation method goes

through the following two steps. (1) Midpoint generation:

for each point p ∈ PL, we first find its k-nearest neighbor

pk, and then use its midpoint (p + pk)/2 as the new gener-

ated point. (2) Farthest point sampling (FPS): to remove re-

peatedly generated midpoints and control their number w.r.t

the desired upsampling rate R, we apply FPS to downsam-

ple the output of previous step. And the union of all down-

sampled points forms the final interpolated result PI .

3.2. Point Location Refinement

The second step is to refine the interpolated point cloud

PI to recover the fidelity. We formulate the problem as

minimizing the difference between PI and the ground truth

point cloud PG. To do so, one needs a distance metric.

3.2.1 Point-to-Point Distance

A straightforward metric is to regard the point clouds as im-

plicit surfaces, and measure the differences with the point-

to-surface distances, such as SDF [10, 24] or UDF [4] .

However, it is not always possible to reasonably extract a

surface from a low-res point cloud. In contrast, we use

the unsigned point-to-point distance function. Specifically,

given an interpolated point p ∈ PI , the distance function

F (p) represents the Euclidean distance between point p and

its nearest neighbor point p̂ in the ground truth high-res

point cloud PG. This function does not require a surface

and can handle arbitrary topologies, as Fig 2 illustrated.

3.2.2 Distance Minimization

The location of the newly interpolated points in PI is

naively computed and therefore noisy. To improve the ac-

curacy, they need to be moved towards the ground truth

positions. A straightforward solution is to predict a co-

ordinate displacement (∈ R
3) for each interpolated point

Surface
Ground Truth

Point Cloud

Our Distance

Function
UDF

Figure 2. 2D illustrations of (left) a surface and its UDF; (right) a

point cloud and its point-to-point distance function.

p ∈ PI [16, 19, 42]. However, the prediction is often inac-

curate and thus results in outliers or shrinkage artifact [20].

To tackle this, we formulate the problem as a distance min-

imization process. At every iteration, an ªoracleº will give

us the point-to-point distance (∈ R
1) between the current

point p and the closest point p̂ in the ground truth high-res

point cloud PG. Through gradient descent [32], the distance

loss is back-propagated to encourage the interpolated points

moving towards the ground truth, as formulated below:

pt+1 = pt − λ∇F (pt), t = 0, ..., T − 1 (1)

where we have the initial interpolated point p0, the up-

dated point pt+1, the step size λ, and the negative gradient

−∇F (pt), which indicates the steepest direction for dis-

tance F (pt) decrease. The process is then repeated T times.

While this process can certainly refine PI to align with

the ground truth high-res point cloud PG. In practice, ob-

viously PG is not available during inference, which means

it is not possible to compute F . Therefore a differentiable

approximation of F is required.

3.3. P2PNet for Distance Function Learning

We design a Point-to-Point Distance Network (P2PNet)

to approximate F and serve as the oracle. In this section,

we detail the design of P2PNet which mainly consists of a

feature extractor and distance regressor, as in Fig 3.

Feature Extractor. To capture the local and global geo-

metric information of irregular points, we adopt the Point

4D Convolution from P4Transformer [6], but simplify it to

apply on the spatial domain only, thus termed as Point 3D

Convolution (P3DConv). Specifically, for each interpolated

point p ∈ PI and its associated feature f , we first search for

its k-nearest neighbor (pk, fk), and calculate the coordinate

offset (δx, δy, δz) between them for convolution kernel gen-

eration. Then the P3DConv on interpolated point (p, f) is

conducted as follow:

f ′ =
∑

pk∈K(p)

γ(α(δx, δy, δz)⊙ β(fk)) (2)

where f ′ is the convoluted feature, K(p) is the k-nearest

neighbor set of point p, γ, α, β all indicate an MLP-based

transformation with the same output channel d, and ⊙ rep-

resents the Hadamard product.

5356

Inference Path

P
3

D
C

o
n

v

M
L

P

M
L

P

T
ran

sitio
n

P
3

D
C

o
n

v

M
L

P

P
3

D
C

o
n

v

M
L

P

M
L

P

Dense Block: X3

F
eatu

re

In
terp

o
latio

n𝑙0 𝑙1, 𝑙2, 𝑙3Max Pooling: 𝑔

Feature

Extractor

Distance

Regressor

Interpolated Point

Ground Truth Point𝑙: Local Feature𝑔: Global Feature

Interpolated

Point Cloud 𝑃𝐼

Jitter

Training Path

Figure 3. Our P2PNet contains two submodules: a feature extractor and point-to-point distance regressor. For feature extractor, we stack

an initial MLP and three dense blocks with intra-block dense connection [13], where each dense block has three convolution groups to

capture local features and one transition down layer to reduce channel. In distance regressor, we estimate the point-to-point distance for

each query point conditioned on the extracted local and global features. Best viewed in color.

The detailed structure of our feature extractor is shown

in Fig 3. Given an interpolated point cloud PI ∈ RN×3,

where N is the number of points, an MLP first projects

PI to a higher dimensional space RN×d, followed by a

stack of three dense blocks with intra-block dense connec-

tion [13]. Each dense block consists of three convolution

groups, followed by a transition down layer. Inside each

convolutional group, an MLP reduces the feature dimen-

sion, while a P3DConv layer extracts local features. The

transition down layer is another MLP that reduces the fea-

ture channels and therefore following computational cost.

All MLPs for feature extraction share the same output chan-

nel of d. In the end, a set of multi-scale local features

{l0, l1, l2, l3} ∈ RN×d is captured. By further applying

a max pooling layer, a global feature g ∈ R1×d is obtained.

Distance Regressor. For any query point p ∈ R
3, its point-

to-point distance F (p) is estimated based on the extracted

local features {l0, l1, l2, l3} and global feature g.

To obtain the point-wise local features for each query

point p, we follow [26] to conduct the feature interpolation,

using the inverse distances of three-nearest neighbors in the

initial interpolated point cloud as weights. With that, the

point-to-point distance F (p) can be estimated as follow:

F (p) ≈ P2PNet(p) = ψ(p, l0p, l
1
p, l

2
p, l

3
p, g) (3)

where {l0p, l
1
p, l

2
p, l

3
p} are the interpolated multi-scale local

features, g is the global feature, and ψ is a four-layer MLP.

Inference. During inference, the extracted local and global

features are fixed. However in each iteration, since the

points have moved, interpolated features are re-generated,

thus new F (p) can be estimated.

Training. Unlike inference, there is no iterative optimiza-

tion during training. Instead the interpolated points are jit-

tered with Gaussian noise N (0, σ2) to serve as query points,

which simulates varying degrees of displacement in differ-

ent iterations, and increases the smoothness and continuity

of learned distance functions.

Loss Function. We apply L1 loss to minimize the error

between the predicted distance P2PNet(p) and the ground

truth F (p).

L(PI) =
1

|PI |

∑

p∈PI

|F (p)− P2PNet(p)| (4)

4. Evaluation

In this section, we first demonstrate the superior perfor-

mance of our algorithm against prior state-of-the-arts on

public datasets. And then validate the performance gain

on downstream applications. Stress test results are also re-

ported to demonstrate the robustness. Finally, we provide

comprehensive ablation studies to prove the effectiveness of

each component. Please refer to the supplementary material

for implementation details and more comparative results.

4.1. Experiment Setup

Datasets. Two public datasets, PU-GAN [15] and PU1K

[27] are used for evaluation. We follow the official train-

ing/testing splits and settings in original papers, where

training is conducted on patch level. Compared to the PU-

GAN dataset, PU1K is more challenging because it has a

larger volume of data and more diverse categories.

5357

CD: 0.238

HD: 3.625

CD: 0.053

HD: 3.485

CD: 0.048

HD: 3.668

CD: 0.050

HD: 3.628

CD: 0.053

HD: 3.747

CD: 0.047

HD: 2.404

CD: 0.032

HD: 0.790

CD: 0.044

HD: 2.645

CD: 0.859

HD: 7.491

CD: 0.311

HD: 4.017

CD: 0.435

HD: 3.745

CD: 0.351

HD: 3.862

CD: 0.242

HD: 2.472

CD: 0.575

HD: 6.289

CD: 0.486

HD: 4.608

CD: 0.293

HD: 3.184

Input GT PU-Net MPU PU-GAN Dis-PU PU-EVA PU-GCN OursNePs

Figure 4. Qualitative results on the PU-GAN dataset, where the first row is 4× evaluation, the second row is 16× evaluation. And the units

of both CD and HD metrics are 10−3. Our results clearly achieve the highest upsampling quality, with less outliers, smoother surfaces and

more fine-grained details.

During training, each input low-res patch contains 256
points, while its corresponding high-res patch has 1024
points. Thus the upsampling rate R = 4. During test-

ing, we follow [27] to generate point clouds from the test

set of PU-GAN with Poisson disk sampling [44], as it only

provides 3D meshes. All testing low-res point clouds from

both datasets have 2048 points, while the high-res counter-

parts contain 2048×R points. Given the low-res input, we

first generate the interpolated point cloud by our midpoint

interpolation. Then we follow [27] to extract patches, apply

gradient descent to update them, and finally merge them to

obtain the full high-res output.

Besides aboved synthetic datasets, we also adopt the

real-scanned ScanObjectNN [33] and KITTI [9] datasets for

qualitative evaluation.

Evaluation Metrics. Following [16, 19, 27], we adopt the

Chamfer distance (CD), Hausdorff distance (HD) and point-

to-surface distance (P2F) as metrics.

Baselines. For the PU-GAN dataset, we train PU-Net [43],

MPU [41], PU-GAN [15], Dis-PU [16], PU-EVA [19], PU-

GCN [27] and Neural Points (NePs) [8] with the default

settings in the respective papers as baselines. For the PU1K

dataset, we only choose PU-Net [43], MPU [41] PU-GCN

[27] and PU-Transformer [27], following original papers.

4.2. Comparison with SOTA

Results on the PU-GAN Dataset. Tab 1 shows that our

method outperforms prior arts on all metrics. In particular,

the performance gain on higher upsampling rate (16×) is

larger. As shown in Fig 4, previous methods tend to gen-

erate outliers caused by overestimation of 3D coordinates.

This artifact is more severe as the upsampling rate goes

higher. On the contrary, our results have much less outliers,

more faithful surfaces and more fine-grained details, with-

out obvious distinction between 4× and 16× upsampling.

Rates 4× (R = 4) 16× (R = 16)

Methods
CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

Param. ↓
Kb

Time ↓
s

CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

PU-Net [43] 0.529 6.805 4.760 814.3 0.566 0.510 8.206 6.041

MPU [41] 0.292 6.672 2.822 76.2 0.573 0.219 7.054 3.085

PU-GAN [15] 0.282 5.577 2.016 684.2 0.698 0.207 6.963 2.556

Dis-PU [16] 0.274 3.696 1.943 1047.0 1.604 0.167 4.923 2.261

PU-EVA [19] 0.277 3.971 2.524 2869.0 0.740 0.185 5.273 2.972

PU-GCN [27] 0.268 3.201 2.489 76.0 0.538 0.161 4.283 2.632

NePs [8] 0.259 3.648 1.935 664.1 0.403 0.152 4.910 2.198

Ours 0.245 2.369 1.893 67.1 0.384 0.108 2.352 2.127

Table 1. Quantitative results on the PU-GAN dataset, where 4×
and 16× represent the upsampling rate R = 4 and R = 16 re-

spectively. Our method outperforms others in both accuracy and

efficiency.

In addition, we compare the efficiency of each method

under 4× setting, in terms of network parameters (Param.),

as well as inference time which is measured end-to-end

from loading the input low-res point cloud to generate the

full high-res output, using a TITAN X GPU. Note that

model size and inference time are not necessarily in pro-

portion, because some of the expensive operations, e.g. k-

nearest neighbor search, are not part of the network. That

said, our method is the fastest with the fewest parameters.

Arbitrary Upsampling Rates. Unlike most of previous

5358

Input PU-GAN PU-EVA NePs OursDis-PU PU-GCN

Figure 5. 4× upsampled results on the ScanObjectNN dataset, and the meshes are reconstructed by BallPivoting surface reconstruction

algorithm [1]. Our method generates more complete, smooth and faithful mesh and point cloud.

Dis-PUInput NePsPU-GCN Ours

Figure 6. 4× upsampled results on the KITTI dataset. Our result not only retains more fine-grained details but also fills the gaps between

LiDAR fibers.

methods [15,16,18,27,28,30,41,43], our approach does not

need retraining for different upsampling rates. Similarly,

priort art NePs [8] also does not require retraining. Thus we

conduct a comparison using the model trained on PU-GAN

dataset. For both methods, we only vary the upsampling

rate R during inference while fixing all other parameters.

Based on Tab 2, our method yields better accuracy under

most of the metrics, except the P2F metric with 6× and 7×
upsampling. Note that since P2F is asymmetrical, only from

upsampled points to the ground truth surfaces but not vice

versa [15], CD and HD metrics are more meaningful.

Methods NePs [8] Ours

Rates
CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

2× 0.642 7.324 2.574 0.540 3.177 1.775

3× 0.409 5.389 2.176 0.353 2.608 1.654

5× 0.248 3.922 1.871 0.234 2.549 1.836

6× 0.242 3.671 1.809 0.225 2.526 1.981

7× 0.237 3.796 1.795 0.219 2.634 1.940

Table 2. NePs [8] vs. ours on the PU-GAN dataset with upsam-

pling rate R ∈ {2, 3, 5, 6, 7}. Our method achieves superior accu-

racy across most cases.

Results on the PU1K Dataset. We also conduct the 4×
evaluation on the more challenging PU1K dataset, as re-

ported in Tab 3. Our method still outperforms others on

almost all metrics, except for the P2F metric, which is sec-

ond to PU-Transformer [30]. Note that our model is much

smaller than PU-Transformer (67.1Kb vs. 969.9Kb).

Results on Real Datasets. Using models trained on the

PU-GAN dataset, we also conduct experiments on real-

Methods
CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

PU-Net [43] 1.155 15.170 4.834

MPU [41] 0.935 13.327 3.511

PU-GCN [27] 0.585 7.577 2.499

PU-Transformer [30] 0.451 3.843 1.277

Ours 0.404 3.732 1.474

Table 3. 4× quantitative results on the PU1K dataset, where the

results of other methods are directly borrowed from the original

papers. Our method outperforms others on nearly all metrics.

scanned point clouds from ScanObjectNN [33] and KITTI

[9] datasets, as shown in Fig 5 and Fig 6. Since there is

no ground truth high-res point cloud, we only qualitatively

compare, and omit some methods that produce consistently

worse results. Not only sparse and noisy, scanned data of-

ten have small holes or gaps, which makes them even more

challenging. Fig 5 shows that our results are more complete,

smooth and faithful, while other methods tend to keep the

holes. In Fig 6, our result appears to be more complete and

with more fine-grained details.

4.3. Impact on Downstream Tasks

We further highlight the upsampling quality in two

downstream applications: point cloud classification and sur-

face reconstruction.

Point Cloud Classification. We adopt CurveNet [38] as

the classification model, and utilize the same training and

testing schema on the ModelNet40 dataset [37]. Specifi-

cally, the model is trained with 1024 points. For each test-

ing point cloud, we uniformly subsample 256 points as the

5359

low-res input, and upsample them back to 1024 points with

various methods (trained on the PU-GAN dataset).

We then compare the classification performance on the

downsampled low-res point clouds (Low-res, 256 points),

original test set (High-res, 1024 points) and upsampled

point clouds (1024 points). As shown in the first two rows

of Tab 4, the classification accuracy of the low-res point

clouds is observably worse, while our upsampling method

brings a significant improvement.

Classification

Accuracy (%) ↑

Low-res High-res PU-Net [43] MPU [41] PU-GAN [15]

68.76 93.72 88.82 89.91 90.25

Dis-PU [16] PU-EVA [19] PU-GCN [27] NePs [8] Ours

91.57 90.83 91.21 91.39 91.96

Reconstruction

CD (10−3) ↓

Low-res High-res PU-Net [43] MPU [41] PU-GAN [15]

0.106 0.039 0.221 0.102 0.090

Dis-PU [16] PU-EVA [19] PU-GCN [27] NePs [8] Ours

0.084 0.086 0.079 0.075 0.071

Table 4. Results on downstream tasks. The first two rows are the

overall classification accuracy on ModelNet40, and the last two

rows measure the surface reconstruction error with Chamfer dis-

tance on the PU-GAN dataset. ªLow-resº denotes the downsam-

pled point clouds, and ªHigh-resº denotes the high-res counter-

parts. Obviously our upsampled point clouds bring the most sig-

nificant performance improvement to downstream tasks.

Surface Reconstruction. We utilize BallPivoting [1] to

reconstruct meshes from the 4× upsampled point clouds

(8192 points) of PU-GAN dataset. From the last two rows

of Tab 4, we find that the low-res point clouds (Low-

res, 2048 points) already achieve a comparable perfor-

mance, because they are directly sampled from the ground

truth meshes. Although the improvement obtained by each

method is marginal, our approach still yields the best.

4.4. Robustness Test

Additive Noise. As the point clouds captured by scanners

are often noisy, it is necessary to evaluate the robustness of

each method against noise. To be specific, we first generate

some random noise offline, which is sampled from a stan-

dard Gaussian distribution N (0, 1) and multiplied by a fac-

tor τ , where τ denotes the noise level. Then we test on the

low-res point clouds of PU-GAN dataset with added noise.

And the training of all methods incorporate with Gaussian

noise perturbation as augmentation strategy for fair compar-

ison. As shown in Tab 5, our method achieves the best per-

formance consistently, especially at high noise level. And

Fig 7 provides the qualitative comparisons, which verifies

that our result is cleaner with much less outliers.

Various Input Sizes. Considering all previous evaluations

of PU-GAN and PU1K datasets are conducted on the low-

res point clouds with 2048 points, we further validate the

robustness of our method against different input sizes. As

Fig 8 shows, although our model is trained on the fixed-

scale input data, it can generalize well to different scales

during inference, even when the input is extremely sparse.

Noise Levels τ = 0.01 τ = 0.02

Methods
CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

PU-Net [43] 0.628 8.068 9.816 1.078 10.867 16.401

MPU [41] 0.506 6.978 9.059 0.929 10.820 15.621

PU-GAN [15] 0.464 6.070 7.498 0.887 10.602 15.088

Dis-PU [16] 0.419 5.413 6.723 0.818 9.345 14.376

PU-EVA [19] 0.459 5.377 7.189 0.839 9.325 14.652

PU-GCN [27] 0.448 5.586 6.989 0.816 8.604 13.798

NePs [8] 0.425 5.438 6.546 0.798 9.102 12.088

Ours 0.414 4.145 6.400 0.766 7.339 11.534

Table 5. 4× quantitative results on the PU-GAN dataset with dif-

ferent noise level τ . It is obvious that our method consistently

surpasses all other approaches.

Input GT

PU-EVA

CD: 0.428

HD: 6.133

PU-GAN

CD: 0.496

HD: 6.870

Dis-PU

CD: 0.439

HD: 5.233

PU-GCN

CD: 0.424

HD: 6.149

Ours

CD: 0.355

HD: 2.888

NePs

CD: 0.431

HD: 5.526

Figure 7. 4× qualitative results on the PU-GAN dataset with

added noise level τ = 0.01. The units of both CD and HD met-

rics are 10−3. Our result is cleaner with less outliers and higher

fidelity.

256 points 2048 points 4096 points

In
p

u
t

O
u

rs

Figure 8. 4× upsampled results by our method with different input

sizes. Our method consistently achieves high upsampling quality

regardless of the input density.

4.5. Ablation Study

In this section, we conduct the comprehensive ablation

studies to validate the effectiveness of each component, and

5360

all these experiments are based on the PU1K dataset with

4× setting.

Distance Regression vs. Coordinate Prediction. Com-

pared with predicting 3D coordinates or residuals, merely

regressing the point-to-point distance is a relatively easier

task. To verify this point, we modify the output channel of

P2PNet’s last MLP to predict the 3D coordinate offset for

each interpolated point, and we employ a L2 loss to mini-

mize the error. Following [20, 21, 39], we update interpo-

lated points to ground truth in an auto-regression way:

pt+1 = pt + λ∆(pt), t = 0, ..., T − 1 (5)

where ∆(pt) denotes the predicted coordinate displace-

ment, λ is the step size, and we fine-tune it and iteration

number T to achieve the best performance, holding all other

parameters the same. Moreover, we also report the results

of end-to-end update, which repeats Eq 5 only once with

step size λ = 1.

Prediction Contents
CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

3D Coordinate Offset (End-to-end) 1.170 11.834 2.521

3D Coordinate Offset (Auto-regression) 0.663 7.034 1.935

Point-to-point Distance 0.404 3.732 1.474

Table 6. 4× comparative results on the PU1K dataset with dif-

ferent prediction contents. Predicting distance obviously achieves

the best performance.

As reported in Tab 6, our distance regression based

method clearly achieves superior performance, although up-

dating points auto-regressively can alleviate the misestima-

tion of predicted coordinate offsets to some extent.

Midpoint Interpolation. We employ midpoint interpola-

tion to obtain both the input of P2PNet and initial point

cloud to be updated. For validating the effectiveness of mid-

point interpolation, we replace the input of P2PNet with the

low-res point cloud PL. And we also jitter each point in PL

with Gaussian noise N (0, σ2) for R times to get the other

initial point cloud, denoted as PR. Finally, we combine dif-

ferent network inputs and initial point clouds to conduct the

experiments, holding all other parameters the same.

Network Inputs Initial Point Clouds to Be Updated
CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

PL PR 0.806 6.258 1.640

PL PI 0.426 3.989 1.813

PI PR 0.648 5.474 3.523

PI PI 0.404 3.732 1.474

Table 7. 4× comparative results on the PU1K dataset with differ-

ent combinations of network input and initial point cloud. Using

PI as both network input and initial point cloud clearly achieves

the best perfomance.

From the second and forth rows of Tab 7, we conclude

that using the denser interpolated point cloud PI as network

input benefits the feature extraction. And the improvement

is more evident in the comparison between the third and

forth rows, it proves that our midpoint interpolation result

provides a better initial position, which benefits the update

process under the same number of iterations. Moreover, for

the PI + PR combination, it can achieve comparable per-

formance to ours by more iterations, which further verifies

the robustness of our refinement to different initialization,

please refer to the supplementary for more details.

P3DConv vs. EdgeConv [41]. The EdgeConv based feature

extractor [41] is widely used by previous work [8, 15, 16,

41, 46]. However, EdgeConv [41] utilizes most of parame-

ters to refine each individual feature. While our P3DConv

focuses on the feature aggregation achieved by generated

convolution kernels, thus benefits the extraction of local and

global features. For verifying the superior performance of

our P3DConv, we replace the dense block in our P2PNet

with EdgeConv in [41], and we also fine-tune the number

of EdgeConv layers to achieve the comparable network pa-

rameters, as Tab 8 shows.

Convolution Layers
CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

Param. ↓
Kb

EdgeConv [41] 0.878 17.645 3.363 71.2

P3DConv 0.404 3.732 1.474 67.1

Table 8. 4× comparative results on the PU1K dataset with dif-

ferent convolution layers. Our P3DConv is clearly more effective

than EdgeConv [41].

5. Conclusion

We propose a novel method for precise point cloud up-

sampling, supporting arbitrary upsampling rates after train-

ing once. For arbitrary upsampling rates, we propose to

directly upsample points in Euclidean space via midpoint

interpolation and then refine them, which decouples the

point generation from network learning. For refining the

interpolated points more precisely, we regard the refine-

ment as an optimization problem, and then solve it by min-

imizing the learned point-to-point distance function. And

considering the ground truth point cloud is not avaliable

during inference, we construct P2PNet to approximate the

point-to-point distance function in a differentiable way. Ex-

tensive quantitative and qualitative comparisons on bench-

marks and downstream tasks demonstrate that our method

outperforms prior state-of-the-art methods, while achieving

the fewest parameters and fastest inference speed.

Acknowledgments. This work was supported in

part by NSFC Project (62176061) and STCSM Project

(No.22511105000). Danhang Tang, Yinda Zhang and Xi-

angyang Xue are the corresponding authours.

5361

References

[1] Fausto Bernardini, Joshua Mittleman, Holly Rushmeier,

ClÂaudio Silva, and Gabriel Taubin. The ball-pivoting algo-

rithm for surface reconstruction. IEEE transactions on visu-

alization and computer graphics, 5(4):349±359, 1999. 1, 6,

7

[2] Zhiqin Chen and Hao Zhang. Learning implicit fields for

generative shape modeling. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 5939±5948, 2019. 2

[3] Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll.

Implicit functions in feature space for 3d shape reconstruc-

tion and completion. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

6970±6981, 2020. 2

[4] Julian Chibane, Gerard Pons-Moll, et al. Neural unsigned

distance fields for implicit function learning. Advances in

Neural Information Processing Systems, 33:21638±21652,

2020. 2, 3

[5] Peng Dai, Yinda Zhang, Zhuwen Li, Shuaicheng Liu, and

Bing Zeng. Neural point cloud rendering via multi-plane

projection. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 7830±

7839, 2020. 1

[6] Hehe Fan, Yi Yang, and Mohan Kankanhalli. Point 4d

transformer networks for spatio-temporal modeling in point

cloud videos. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 14204±

14213, 2021. 2, 3

[7] Hehe Fan, Xin Yu, Yuhang Ding, Yi Yang, and Mohan

Kankanhalli. Pstnet: Point spatio-temporal convolution on

point cloud sequences. arXiv preprint arXiv:2205.13713,

2022. 2

[8] Wanquan Feng, Jin Li, Hongrui Cai, Xiaonan Luo, and Juy-

ong Zhang. Neural points: Point cloud representation with

neural fields for arbitrary upsampling. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 18633±18642, 2022. 1, 2, 5, 6, 7, 8

[9] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel

Urtasun. Vision meets robotics: The kitti dataset. The Inter-

national Journal of Robotics Research, 32(11):1231±1237,

2013. 5, 6

[10] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and

Yaron Lipman. Implicit geometric regularization for learning

shapes. arXiv preprint arXiv:2002.10099, 2020. 2, 3

[11] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu,

and Mohammed Bennamoun. Deep learning for 3d point

clouds: A survey. IEEE transactions on pattern analysis and

machine intelligence, 43(12):4338±4364, 2020. 1

[12] Yun He, Xinlin Ren, Danhang Tang, Yinda Zhang, Xi-

angyang Xue, and Yanwei Fu. Density-preserving deep point

cloud compression. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

2333±2342, 2022. 2

[13] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4700±4708, 2017. 4

[14] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei

Huang, Matthias Nieûner, Thomas Funkhouser, et al. Local

implicit grid representations for 3d scenes. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 6001±6010, 2020. 2

[15] Ruihui Li, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and

Pheng-Ann Heng. Pu-gan: a point cloud upsampling ad-

versarial network. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision, pages 7203±7212,

2019. 1, 2, 4, 5, 6, 7, 8

[16] Ruihui Li, Xianzhi Li, Pheng-Ann Heng, and Chi-Wing Fu.

Point cloud upsampling via disentangled refinement. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 344±353, 2021. 1, 2, 3, 5, 6,

7, 8

[17] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,

and Baoquan Chen. Pointcnn: Convolution on x-transformed

points. Advances in neural information processing systems,

31, 2018. 2

[18] Chen Long, WenXiao Zhang, Ruihui Li, Hao Wang, Zhen

Dong, and Bisheng Yang. Pc2-pu: Patch correlation and

point correlation for effective point cloud upsampling. In

Proceedings of the 30th ACM International Conference on

Multimedia, pages 2191±2201, 2022. 1, 2, 6

[19] Luqing Luo, Lulu Tang, Wanyi Zhou, Shizheng Wang, and

Zhi-Xin Yang. Pu-eva: An edge-vector based approxima-

tion solution for flexible-scale point cloud upsampling. In

Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 16208±16217, 2021. 1, 2, 3, 5, 7

[20] Shitong Luo and Wei Hu. Score-based point cloud denoising.

In Proceedings of the IEEE/CVF International Conference

on Computer Vision, pages 4583±4592, 2021. 1, 3, 8

[21] Wei-Chiu Ma, Shenlong Wang, Jiayuan Gu, Sivabalan Mani-

vasagam, Antonio Torralba, and Raquel Urtasun. Deep feed-

back inverse problem solver. In Computer Vision±ECCV

2020: 16th European Conference, Glasgow, UK, August 23±

28, 2020, Proceedings, Part V 16, pages 229±246. Springer,

2020. 8

[22] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d con-

volutional neural network for real-time object recognition.

In 2015 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 922±928. IEEE, 2015. 2

[23] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-

bastian Nowozin, and Andreas Geiger. Occupancy networks:

Learning 3d reconstruction in function space. In Proceedings

of the IEEE/CVF conference on computer vision and pattern

recognition, pages 4460±4470, 2019. 2

[24] Jeong Joon Park, Peter Florence, Julian Straub, Richard

Newcombe, and Steven Lovegrove. Deepsdf: Learning con-

tinuous signed distance functions for shape representation.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 165±174, 2019. 2, 3

[25] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. In Proceedings of the IEEE conference

5362

on computer vision and pattern recognition, pages 652±660,

2017. 2

[26] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. Advances in neural information

processing systems, 30, 2017. 2, 4

[27] Guocheng Qian, Abdulellah Abualshour, Guohao Li, Ali

Thabet, and Bernard Ghanem. Pu-gcn: Point cloud upsam-

pling using graph convolutional networks. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 11683±11692, 2021. 1, 2, 4, 5, 6, 7

[28] Yue Qian, Junhui Hou, Sam Kwong, and Ying He. Pugeo-

net: A geometry-centric network for 3d point cloud upsam-

pling. In European Conference on Computer Vision, pages

752±769. Springer, 2020. 2, 6

[29] Yue Qian, Junhui Hou, Sam Kwong, and Ying He. Deep

magnification-flexible upsampling over 3d point clouds.

IEEE Transactions on Image Processing, 30:8354±8367,

2021. 1, 2

[30] Shi Qiu, Saeed Anwar, and Nick Barnes. Pu-transformer:

Point cloud upsampling transformer. arXiv preprint

arXiv:2111.12242, 2021. 1, 2, 6

[31] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger.

Octnet: Learning deep 3d representations at high resolutions.

In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 3577±3586, 2017. 2

[32] Sebastian Ruder. An overview of gradient descent optimiza-

tion algorithms. arXiv preprint arXiv:1609.04747, 2016. 3

[33] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua,

Thanh Nguyen, and Sai-Kit Yeung. Revisiting point cloud

classification: A new benchmark dataset and classification

model on real-world data. In Proceedings of the IEEE/CVF

international conference on computer vision, pages 1588±

1597, 2019. 5, 6

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, èukasz Kaiser, and Illia

Polosukhin. Attention is all you need. Advances in neural

information processing systems, 30, 2017. 2

[35] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,

Michael M Bronstein, and Justin M Solomon. Dynamic

graph cnn for learning on point clouds. Acm Transactions

On Graphics (tog), 38(5):1±12, 2019. 2

[36] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep

convolutional networks on 3d point clouds. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, pages 9621±9630, 2019. 2

[37] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d

shapenets: A deep representation for volumetric shapes. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1912±1920, 2015. 6

[38] Tiange Xiang, Chaoyi Zhang, Yang Song, Jianhui Yu, and

Weidong Cai. Walk in the cloud: Learning curves for point

clouds shape analysis. In Proceedings of the IEEE/CVF In-

ternational Conference on Computer Vision, pages 915±924,

2021. 1, 6

[39] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and

Dieter Fox. Posecnn: A convolutional neural network for

6d object pose estimation in cluttered scenes. arXiv preprint

arXiv:1711.00199, 2017. 8

[40] Shuquan Ye, Dongdong Chen, Songfang Han, Ziyu Wan, and

Jing Liao. Meta-pu: An arbitrary-scale upsampling network

for point cloud. IEEE transactions on visualization and com-

puter graphics, 2021. 2

[41] Wang Yifan, Shihao Wu, Hui Huang, Daniel Cohen-Or, and

Olga Sorkine-Hornung. Patch-based progressive 3d point set

upsampling. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 5958±

5967, 2019. 1, 2, 5, 6, 7, 8

[42] Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and

Pheng-Ann Heng. Ec-net: an edge-aware point set consoli-

dation network. In Proceedings of the European conference

on computer vision (ECCV), pages 386±402, 2018. 2, 3

[43] Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and

Pheng-Ann Heng. Pu-net: Point cloud upsampling network.

In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 2790±2799, 2018. 1, 2, 5, 6,

7

[44] Cem Yuksel. Sample elimination for generating poisson disk

sample sets. In Computer Graphics Forum, volume 34, pages

25±32. Wiley Online Library, 2015. 5

[45] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and

Vladlen Koltun. Point transformer. In Proceedings of the

IEEE/CVF International Conference on Computer Vision,

pages 16259±16268, 2021. 2

[46] Wenbo Zhao, Xianming Liu, Zhiwei Zhong, Junjun Jiang,

Wei Gao, Ge Li, and Xiangyang Ji. Self-supervised

arbitrary-scale point clouds upsampling via implicit neural

representation. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 1999±

2007, 2022. 1, 2, 8

5363

