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Abstract

The handling of long videos with complex and occluded
sequences has recently emerged as a new challenge in the
video instance segmentation (VIS) community. However,
existing methods have limitations in addressing this chal-
lenge. We argue that the biggest bottleneck in current ap-
proaches is the discrepancy between training and inference.
To effectively bridge this gap, we propose a Generalized
framework for VIS, namely GenVIS, that achieves state-
of-the-art performance on challenging benchmarks without
designing complicated architectures or requiring extra post-
processing. The key contribution of GenVIS is the learning
strategy, which includes a query-based training pipeline
for sequential learning with a novel target label assign-
ment. Additionally, we introduce a memory that effectively
acquires information from previous states. Thanks to the
new perspective, which focuses on building relationships
between separate frames or clips, GenVIS can be flexibly
executed in both online and semi-online manner. We eval-
uate our approach on popular VIS benchmarks, achieving
state-of-the-art results on YouTube-VIS 2019/2021/2022 and
Occluded VIS (OVIS). Notably, we greatly outperform the
state-of-the-art on the long VIS benchmark (OVIS), improv-
ing 5.6 AP with ResNet-50 backbone. Code is available at
https://github.com/miranheo/GenVIS.

1. Introduction

Video Instance Segmentation (VIS) is the task of identi-
fying, segmenting, and tracking all objects in videos simul-
taneously. With the emergence of datasets containing long
and complex sequences, the research community is taking
a step towards real-world applications. While many papers
have proposed solutions, the most notable performance im-
provement has been achieved by recent online methods using
image-based backbones [14, 34]. These results challenge
the common belief that end-to-end semi-online or offline ap-
proaches (i.e., [5, 13, 15, 30, 33, 38]) trained on longer video
clips would better model long-range object relationships.

We hypothesize that reason behind this somewhat surpris-

Training Inference

(b) Semi-Online & Offline

(c) GenVIS (ours)

(a) Online

Heuristic-free
AssociationFrame Clip & Video Heuristic

Association

...

...

...

Figure 1. Comparison between current VIS paradigms and our
approach. (a, b) While current methods use two separate paradigms
based on the number of frames processed, we argue that the key
challenge in processing real-world videos is building inter-clip
assocications. (b) Our proposed GenVIS addresses this challenge
and can operate effectively in both online and semi-online manner
without requiring hand-crafted post-processing.

ing result is the presence or absence of an object association
scheme between frames or clips that can scale to long videos.
Recent VIS methods, regardless of the approach, are driven
by powerful image-level detectors [6, 8], so detection and
segmentation quality are already robust and comparable to
each other. To operate robustly in long videos, what the VIS
really needs to focus on is the long-range tracking quality.
Although semi-online and offline methods are suitable for
tracking objects within clips, they need to associate objects
between clips to infer long videos, which is usually achieved
using simple heuristics such as IoU matching [1, 15].

While online methods are more robust than semi-
online/offline VIS solutions in processing long videos, we
still see a significant room for improvement in their tracking
approach. These methods only consider local contexts be-
tween adjacent frames during training, while test videos can
exceed hundreds of frames [27]. We believe that there is a
better way to learn long-range temporal modeling that could
fundamentally change the current VIS landscape.

In this paper, we argue that the biggest bottleneck in
handling long videos is the discrepancy between the training
and inference scenarios. Regardless of the previously defined
paradigms (e.g., how many frames a method processes at
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once), we need to focus on how to train the model. As
illustrated in Fig. 1, all previous methodologies use only
a few frames or clips (e.g., one or two) for training, while
real-world videos can have an unlimited length. Therefore,
they have to handle typical long-range tracking scenarios
(e.g., newborn objects and re-identification) as exceptions
through heuristics [34].

We introduce a Generalized VIS framework, namely
GenVIS (Fig. 1 (c)), that is designed to minimize the gap
between training and inference of long videos. We take an
existing offline VIS model (VITA [13]) as the backbone and
applay a query-propagation method [32] for object associa-
tion between clips. The essence of GenVIS is the novel train-
ing strategy. By improving the training strategy of the base
model, we achieve significant gains of 5.1 AP (Occluded
VIS [27]) and 5.8 AP (YouTube-VIS 2022 Long Videos [36])
in long and challenging benchmarks, outperforming all the
previous methods by a large margin.

Our first proposal for improvement is to load multiple
clips during training. Unlike previous semi-online/offline
VIS methods [1, 5, 15, 30, 33] that focus on placing multiple
frames in a single clip to strengthen intra-clip tracking, we
propose to prioritize inter-clip tracking by learning the tem-
poral relationship through multiple consecutive clips. We
believe that strong inter-clip reasoning is crucial for process-
ing long videos in the real world. As videos must be split
into multiple clips that fit into GPU memory when process-
ing long videos, inter-clip association is inevitable. In this
work, we use relatively short clip lengths (e.g., 1 to 7), but
load as many clips as possible (e.g., usually more than 5).

More importantly, we propose a new learning criterion
that enables seamless association through multiple consecu-
tive clips. Since we now deploy a sufficient number of clips,
we can effectively simulate various inference scenarios at
training time, covering newborn objects and objects that dis-
appear and reappear. Specifically, we propose the Unified
Video Label Assignment (UVLA) that allows unique object
queries to detect newly-appeared object and to keep them
consistent once matching identities are obtained. Our new
learning criterion not only improves tracking performance
but also removes all heuristics1 required to handle new ob-
jects and re-identification from the inference stage. In other
words, our model infers videos exactly as it learned. With
these two proposals in the learning strategy, our base model
outperforms all the previous methods on long video VIS
benchmarks [27] without additional network modules.

To further bridge the remaining gap between training and
inference, we propose adopting a memory mechanism that
stores previously decoded object queries. This mechanism is
particularly useful for handling very long videos (or stream-
ing video), where there is a limit to the number of clips that

1Previously, [32] need to determine whether a tracked query is valid or
not with a confidence threshold.

can be loaded at once. To implement this, we add extra
information for each object query by reading from its previ-
ous states. The memory mechanism results in meaningful
improvements with only a small computational overhead.

Despite its simple framework, GenVIS achieves state-of-
the-art results on VIS benchmarks, outperforming previous
methods on challenging long and complex video datasets
(Occluded VIS [27] and YouTube-VIS 2022 [36]). Our
method also demonstrates strong generalization capability
under online and semi-online settings2. We provide addi-
tional analysis of the training and inference settings, which
can be useful for balancing accuracy and efficiency tradeoffs.

2. Related Works

2.1. Video Instance Segmentation

We categorize previous studies into two paradigms: 1) on-
line, and 2) semi-online & offline. In this paper, we integrate
the offline methods with the semi-online paradigm.

Online methods have been making considerable progress
through advances in image-level object detection algorithms.
MaskTrack R-CNN [36] was the first attempt on the VIS
task that puts its basis on the image instance segmenta-
tion model [11]. For the extension to the video domain,
MaskTrack R-CNN [36] and follow-up works [3, 22,37] pre-
dict frame-independent outputs and make association using
post-processing during the inference stage. Recently, Min-
VIS [14] suggested that a strong, query-based image instance
segmentation model [6] inherently embeds distinctions of
objects, and demonstrated competitive performance with-
out video-based training. Based on Deformable DETR [40],
IDOL [34] added a contrastive head that learns discrimina-
tive instance features between paired frames.

Inspired by Video Object Segmentation (VOS) meth-
ods [25], some previous works [9, 10, 17, 20] adopted propa-
gation approach. VISOLO [10] and PCAN [17] integrated
intermediate predictions and features to utilize the concept
of memory [25] for better performance.

Semi-online & Offline paradigms leverage multiple
frames to take advantage of the rich temporal context.
VisTR [30] adopted [4, 29] and introduced the first end-
to-end VIS model by taking a full video as an input and
yielding video-level mask trajectories. IFC [15] devised
inter-frame communication that alleviates the heavy com-
putation of VisTR and effectively encodes clip-wise infor-
mation. SeqFormer [33] proposed an architecture that ag-
gregates spatio-temporal contexts, iteratively decomposing
multi-level features of clips using object queries. VITA [13]
introduced a new offline paradigm, showing that video-level

2The term ‘general’ describes how our proposed framework is designed
to be versatile and able to operate in both online and semi-online manner.
This flexibility is achieved by adjusting the clip length to 1, which allows
us to convert the semi-online model into an online (per-frame) VIS model.
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Figure 2. (Left) Overview of our framework. (Right) Unified Video Label Assignment. By presenting this simple framework with novel
ground-truth assignment strategy that resembles the inference pipeline, we significanly improve the accuracy on the VIS task without any
bells-and-whistles. ? : indicates “no object” as not matched to a ground-truth.

scene understanding can be achieved by building temporal
interaction between frame-level object queries.

Several methods [1,15,18] take clip-level input and run se-
quentially with association algorithm during post-processing.
However, since the emergence of long video benchmarks
[27], most existing offline methods [5,15,30,33] cannot han-
dle these benchmarks in an end-to-end manner as GPU mem-
ories cannot hold more than hundreds of frames. Although
IFC [15] proposed a post-processing algorithm to match
clip-wise outputs, it depends on IoU between mask predic-
tions of intersecting frames, thus computationally heavy.
EfficientVIS [32] proposed a method that stitches clip-wise
outputs with minimal heuristics by making the model itself
learn to infer over sequential clips.

2.2. Multi-Object Tracking

Query-based Trackers [2, 24, 39] adopted query-based
object detectors [4, 40] to track objects across frames with
bounding boxes [16]. TrackFormer [24] follows a DETR-
like architecture where newly appeared objects in a video
are detected with object queries, but track queries are used to
re-identify target objects which were detected and tracked in
previous frames. MeMOT [2] and MOTR [39] also utilized
track queries, but they enhance the training approach com-
pared to TrackFormer by incorporating multiple frames and
introducing additional modules that make use of previous
track queries. Nonetheless, these models entail complex
heuristics with several handcrafted threshold values since
both object and track queries are responsible for detecting
objects in a scene, leading to duplicate detections.

Clip-based Tracker [31] proposed a novel approach to
improve long-term association by reformulating the standard
tracking-detection scheme as a clip-to-clip matching prob-
lem. Their observations are in line with our own, which

suggest that focusing on inter-clip association is important
for effectively utilizing temporal information.

3. Method

We propose a novel generalized video instance segmenta-
tion framework GenVIS that sequentially associate clip-wise
predictions. To this end, we first split an input RGB video
into Nv non-overlapping clips {Vi 2 RNf⇥H⇥W⇥3}Nv

i=1,
where each clip V consists of Nf consecutive frames. Here,
Nf is an integer less than the length of the input video; if
Nf = 1, our model runs in an online manner, otherwise semi-
online. Sequentially taking a clip, GenVIS comes out with
clip-level output queries that are used for predicting mask
tracklets with a class probability for the input clip. Then, the
clip-level output queries from the current clip again become
input object queries for the next clip. Attributed to our newly
defined label assignment strategy UVLA, GenVIS can 1)
incorporate multiple clips (e.g., five clips) during training,
which leads to better modeling real-video characteristics,
and 2) narrow the gap between training and inference as the
inter-clip associations can also be trained. We also integrate
information from past historical object queries by adopting
a memory mechanism, which further improves the predic-
tion qualities. Finally, GenVIS presents significant accuracy
while completely removing heuristic matching algorithms.

3.1. Instance Prototypes

As suggested in recent studies [13, 14], we hypothesize
that a unique object is temporally coherent over a short
period of time. Therefore, an object can be compressed
into a concise representation, instance prototype. Simply,
instance prototypes are identical to output object queries that
are used for predicting masks and categories in successful
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Transformer-based [29] offline VIS architectures [5, 15, 33].
However, such architectures have an underlying problem
that only a limited number of clips can be loaded at training
time, because they refer to dense spatio-temporal features to
decode object queries. For example, Mask2Former-VIS [5]
requires high-end GPUs with large memory capacity; in a
single NVIDIA V100 GPU, 2 clips whose length is 2 frames
(4 frames in total) are loaded for training.

To resolve the limitation, we adopt recently proposed
VITA [13] (Fig. 2 (left)), which suggests that a video can be
sufficiently represented with a collection of object-centric
vectors. Given a clip V , we discard all features but the collec-
tion of Nf ⇥Nq frame object queries (f ) from a per-frame
detector [6]. After building relations within f using Object
Encoder (E), we aggregate temporal contexts by inserting
Nq instance queries (q) into Object Decoder (D) and obtain
instance prototypes (p) as p = D(q, E(f)). The instance
prototypes are forwarded into prediction heads that output
clip-wise mask and class predictions {ŷk}

Nq
k=1.

As illustrated in Fig. 2 (left), we only train the four com-
ponents that are disjoint from the backbone features: E ,
D, q, and p. This leads to efficient memory consumption;
more than 30 clips of 3 frames long (⇠100 frames) can be
used for training even with a single RTX 3090 GPU. In the
VIS benchmark datasets, videos are sampled at 6 FPS; thus,
100 frames represent a video clip of 17 seconds long. We
find this strategy of using numerous clips during training
is essential in designing long-range relationships and mod-
eling real-video characteristics. More training details are
discussed in Sec. 4.2.

3.2. GenVIS

After obtaining instance prototypes from each clip, the
next challenge is: how to associate predictions from adjacent
clips. Previous studies [1, 14, 15] bipartitely match such
separate predictions using scores gauged under customized
measurements, and they show competitive performance in
relatively monotonous videos. However, we empirically
observe that these matching methods are vulnerable to scenes
where many objects with similar appearances have complex
trajectories.

Beyond the score-based associations, we take a further
step to design a non-heuristic association under the mo-
tivation of eliminating the barriers between training and
inference. This can be achieved by training the instance pro-
totypes to build relations between consecutive clips. Specif-
ically, as the instance prototypes encapsulate rich spatio-
temporal and object-centric information, we formulate in-
stance prototypes p of the previous clip to be instance queries
q for the current clip as:

qi = pi�1 = D(qi�1, E(f i�1)), (1)

where i is the index of the current clip. Then, we place a

strong condition that forces a unique instance prototype to
represent a unique instance throughout the whole video. To
this end, we devise a new ground-truth assignment during
training to support the strong condition, as existing label
assignment strategies are defined within a single clip [5, 13–
15, 33] or two clips [32] only.

Unified Video Label Assignment. We define Unified
Video Label Assignment (UVLA) with three goals: 1) be-
ing capable of incorporating an arbitrary number of clips
during training, 2) supporting the reuse of instance proto-
type for the next clip (Eq. (1)), and 3) completely removing
heuristics at inference. To note, there have been similar at-
tempts [28, 39] of reusing instance prototypes as additional
instance queries for different clips. However, they still re-
quire hyper-parameters and policies to remove or merge
queries at inference.

For the definition of UVLA, we introduce two states to
instance queries, ‘occupied’ and ‘unoccupied’. As illustrated
in Fig. 2 (right), instance queries become occupied (colored
hexagons) if they are previously matched to a certain ground-
truth, and they cannot be matched to another ground-truth
object throughout a whole video. On the other hand, only
unoccupied instance queries (non-colored hexagons) have
the opportunity to be matched to new ground-truth objects
that have not appeared in the past.

Formally, at ith clip Vi, we conduct one-to-one bipartite
matching between {ŷi

k
}Nq
k=1 and {yi

k
}K

i
new

k=1 , where the former
is the fixed-size set of Nq predictions and the latter is the
set of Ki

new ground-truths that are newly appeared in Vi,
respectively. Following query-based detectors [4, 6], we use
Hungarian algorithm [19] to obtain the optimal assignment
�̂i among a permutation of Nq elements � 2 SNq as:

�̂i = argmin
�2SNq

K
i
newX

k=1

⇣
Lmatch(y

i

k
, ŷi

�(k)) + ↵ · 1�(k)2⌦i�1

⌘
,

(2)

where Lmatch is the pair-wise matching cost defined in
VITA [13], ↵ is a large constant (e.g., 105), and ⌦i�1 is
the indices of previously occupied instance queries. The
|⌦i�1| occupied instance prototypes are directly matched
to their previously paired ground-truths, and we can avoid
these occupied instance prototypes being matched to newly
added ground-truth by simply adding ↵ · 1�(k)2⌦i�1

to the
matching cost. Then, we update ⌦ with the indices of newly
matched queries as follows:

⌦i = ⌦i�1 [ {�̂i(k)}K
new
i

k=1 , ⌦0 = ;. (3)

The rest (Nq �Knew
i

� |⌦i�1|) unoccupied predictions are
matched to “no object”.

With the proposed UVLA label assignment method, we
can effectively narrow the gap between training and infer-
ence. Concretely, we can use any number of clips (e.g., five)
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for training, allowing GenVIS to learn real-video character-
istics that appear in long sequences. Furthermore, we can
infer a video without any heuristics: if an object is detected
by kth instance prototype at a certain clip, the kth instance
query tracks the object until the input video ends.

3.3. Instance Prototype Memory

We further adopt memory [7, 25] to boost our long-range
association ability by referring to information from past
clips. From the definition of UVLA, the occupied instance
prototypes must be unceasingly matched to their designated
ground-truths until the input video ends. However, this
policy would be difficult to be maintained when inferring an
extremely long video, because the past information gradually
fades out as sequentially processing clips. For example, if an
object appeared in the remote past and then disappeared for a
long term, the occupied instance query may fail to recapture
the same object. To alleviate the limitation, we save concise
information – instance prototypes – into the memory for
each input clip and read them for improving predictions in
the current clip.

Given the ith clip, all instance prototypes from past i� 1

clips are gathered into the memory M = {{pk
j
}Nq

j=1}
i�1
k=1.

Using qi as a query to decode M, we follow standard cross-
attention [29] and obtain an output zi that holds past infor-
mation. Lastly, we simply extend Eq. (1) to incorporate zi

for initializing object queries as qi = pi�1 + zi. To note, for
a query of index j, we narrow the scope to decode only the
memory of same indices {pk

j
}i�1
k=1. Compared to globally de-

coding the memory, the index-wise decoding leads to better
memory-reading efficiency and also improves accuracy.

4. Experiments

4.1. Datasets

We evaluate our method on two benchmarks: YouTube-
VIS (YTVIS) [36] and Occluded VIS (OVIS) [27]. The
YTVIS dataset has three versions (2019, 2021, 2022). All
versions tackle segmenting objects of 40 predefined cate-
gories in a video. The dataset has been updated to include
more challenging videos which are long and contain com-
plex trajectories. While the YTVIS 2021 and 2022 datasets
share the same training set, YTVIS 2022 introduces 71 extra
videos on top of the validation set of YTVIS 2021. We report
the accuracy of the YTVIS 2021 videos and newly added
YTVIS 2022 long videos, respectively.

OVIS is another challenging VIS dataset that consists of
objects of 25 categories and targets a difficult scenario of
heavy occlusions between objects. Also, the OVIS dataset is
significantly longer than the YTVIS datasets; for example,
the longest video of OVIS is ⇠50 seconds long while that of
YTVIS 2022 is ⇠10 seconds long.

4.2. Implementation Details

While we adopt the architecture of VITA [13], we replace
the window-based self-attention layers for object tokens with
the global attention layers. As data augmentation techniques,
random flipping and cropping are selected. Also, we gener-
ate pseudo videos using images of the COCO dataset [21]
and jointly train the model with the VIS datasets follow-
ing [33]. One batch consists of 8 videos; 5 clips (N train

v
= 5)

are sampled from each video, and the length of clip (N train
f

)
is 1 and 3 frames for training online and semi-online ver-
sions, respectively. Since we freeze the frame-level detector
and backbone network, only a small size of memory is re-
quired for training. Although a large number of frames are
used for training (e.g., 40), the online version of GenVIS
with a ResNet-50 backbone can be trained with even a sin-
gle RTX 3090 GPU. Our implementation is based on the
detectron2 [35] framework and is attached in the sup-
plementary material.

4.3. Main Results

We compare GenVIS with state-of-the-art methods us-
ing both lightweight and powerful backbones, e.g., ResNet-
50 [12] and Swin-L [23], on the VIS benchmarks: YTVIS
2019/2021/2022 and OVIS. GenVIS shows competitive per-
formance on all benchmarks, and especially, it largely outper-
forms existing methods in the challenging datasets: YTVIS
2021/2022 and OVIS.

YouTube-VIS 2019 & 2021. In Tab. 1, we compare Gen-
VIS with state-of-the-art methods on the YTVIS 2019 and
2021 benchmarks [36]. On the YTVIS 2019 benchmark,
GenVIS achieves the highest AP with ResNet-50, while its
AP is marginally lower than IDOL [34] with Swin-L. On the
other hand, on the YTVIS 2021 benchmark which consists of
more difficult videos, GenVIS surpasses not only IDOL [34]
with Swin-L in AP by 3.5 but also with ResNet-50 by 3.2.

YouTube-VIS 2022. As shown in Tab. 2, we also present
comparisons on the YouTube-VIS 2022 benchmark [36]
which is more challenging than the previous benchmarks
(2019 and 2021). Our GenVIS shows significant improve-
ment over the previous state-of-the-art methods: Min-
VIS [14] and VITA [13]. Based on the strong ability to track
objects even under complex trajectories, our method using a
ResNet-50 [12] backbone achieves 37.5 AP. This is the high-
est accuracy among the models that use the same backbone,
and also higher than MinVIS using a Swin-L [23] backbone.
Attaching our method on top of a Swin-L backbone, GenVIS
shows 45.1 AP which is 4.0 AP higher than VITA. Although
GenVISsemi-online shows slightly lower AP than its online
version, it still outperforms MinVIS and VITA.
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Method Backbone YouTube-VIS 2019 YouTube-VIS 2021
AP AP50 AP75 AR1 AR10 AP AP50 AP75 AR1 AR10

Se
m

i-O
nl

in
e

/O
ffl

in
e

EfficientVIS [32] ResNet-50 37.9 59.7 43.0 40.3 46.6 34.0 57.5 37.3 33.8 42.5
IFC [15] ResNet-50 41.2 65.1 44.6 42.3 49.6 35.2 55.9 37.7 32.6 42.9
Mask2Former-VIS [5] ResNet-50 46.4 68.0 50.0 - - 40.6 60.9 41.8 - -
TeViT [38] MsgShifT 46.6 71.3 51.6 44.9 54.3 37.9 61.2 42.1 35.1 44.6
SeqFormer [33] ResNet-50 47.4 69.8 51.8 45.5 54.8 40.5 62.4 43.7 36.1 48.1
VITA [13] ResNet-50 49.8 72.6 54.5 49.4 61.0 45.7 67.4 49.5 40.9 53.6

GenVISsemi-online ResNet-50 51.3 72.0 57.8 49.5 60.0 46.3 67.0 50.2 40.6 53.2

SeqFormer [33] Swin-L 59.3 82.1 66.4 51.7 64.4 51.8 74.6 58.2 42.8 58.1
Mask2Former-VIS [5] Swin-L 60.4 84.4 67.0 - - 52.6 76.4 57.2 - -
VITA [13] Swin-L 63.0 86.9 67.9 56.3 68.1 57.5 80.6 61.0 47.7 62.6
GenVISsemi-online Swin-L 63.8 85.7 68.5 56.3 68.4 60.1 80.9 66.5 49.1 64.7

O
nl

in
e

CrossVIS [37] ResNet-50 36.3 56.8 38.9 35.6 40.7 34.2 54.4 37.9 30.4 38.2
VISOLO [10] ResNet-50 38.6 56.3 43.7 35.7 42.5 36.9 54.7 40.2 30.6 40.9
MinVIS [14] ResNet-50 47.4 69.0 52.1 45.7 55.7 44.2 66.0 48.1 39.2 51.7
IDOL [34] ResNet-50 49.5 74.0 52.9 47.7 58.7 43.9 68.0 49.6 38.0 50.9
GenVISonline ResNet-50 50.0 71.5 54.6 49.5 59.7 47.1 67.5 51.5 41.6 54.7

MinVIS [14] Swin-L 61.6 83.3 68.6 54.8 66.6 55.3 76.6 62.0 45.9 60.8
IDOL [34] Swin-L 64.3 87.5 71.0 55.6 69.1 56.1 80.8 63.5 45.0 60.1
GenVISonline Swin-L 64.0 84.9 68.3 56.1 69.4 59.6 80.9 65.8 48.7 65.0

Table 1. Comparisons on YouTube-VIS 2019 and 2021 validation sets. We group the results by online or not online methods, and then,
lightweight (e.g., ResNet-50) or powerful (e.g., Swin-L) backbone networks. For each group, we bold the best value in every metric.

Method AP AP50 AP75 AR1 AR10

R
es

N
et

-5
0 MinVIS [14] 23.3 47.9 19.3 20.2 28.0

VITA [13] 32.6 53.9 39.3 30.3 42.6

GenVISonline 37.5 61.6 41.5 32.6 42.2
GenVISsemi-online 37.2 58.5 42.9 33.2 40.4

Sw
in

-L

MinVIS† [14] 33.1 54.8 33.7 29.5 36.6
VITA† [13] 41.1 63.0 44.0 39.3 44.3

GenVISonline 45.1 69.1 47.3 39.8 48.5

GenVISsemi-online 44.3 69.9 44.9 39.9 48.4

Table 2. Comparisons on the newly added YTVIS 2022 long

videos. †: Evaluated using official repositories as the scores are not
specified in original papers. Underline and bold denote the highest
accuracy using ResNet-50 and Swin-L, respectively.

OVIS. We further validate the competitiveness of GenVIS
on the OVIS [26] validation set as shown in Tab. 3. Com-
pared to IDOL [34] which previously ranked the highest
accuracy, our method achieves 5.6 and 2.8 AP improvements
on top of ResNet-50 and Swin-L backbones, respectively.

4.4. Ablation Studies

We conduct ablation studies to verify the proposed learn-
ing method and memory module and show flexible usage
of GenVIS in both online and semi-online settings. Here,
we use a ResNet-50 [12] backbone and do not use pseudo

Method AP AP50 AP75 AR1 AR10

R
es

N
et

-5
0

CrossVIS [37] 14.9 32.7 12.1 10.3 19.8
VISOLO [10] 15.3 31.0 13.8 11.1 21.7
TeViT† [38] 17.4 34.9 15.0 11.2 21.8
VITA [13] 19.6 41.2 17.4 11.7 26.0
MinVIS [14] 25.0 45.5 24.0 13.9 29.7
IDOL [34] 30.2 51.3 30.0 15.0 37.5

GenVISonline 35.8 60.8 36.2 16.3 39.6
GenVISsemi-online 34.5 59.4 35.0 16.6 38.3

Sw
in

-L

VITA [13] 27.7 51.9 24.9 14.9 33.0
MinVIS [14] 39.4 61.5 41.3 18.1 43.3
IDOL [34] 42.6 65.7 45.2 17.9 49.6

GenVISonline 45.2 69.1 48.4 19.1 48.6
GenVISsemi-online 45.4 69.2 47.8 18.9 49.0

Table 3. Comparisons on OVIS validation set. Underline and
bold denote the highest accuracy using ResNet-50 and Swin-L,
respectively. † denotes using MsgShifT [38] backbone.

videos generated from the COCO dataset for training.

Effect of the proposed learning method and memory

We initiate the experiment with the VITA [13] model that
regards an entire video as one long clip (Nv = 1) and learns
the direct association of objects within a clip. Since we split
a video into non-overlapping clips of three frames, we adopt
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N train
v

CL UVLA IPM OVIS YouTube-VIS 2022 Long Videos
AP AP50 AP75 AR1 AR10 AP AP50 AP75 AR1 AR10

1 24.1 44.9 22.6 13.4 30.2 25.4 43.6 26.8 22.7 29.6
2 3 27.4 47.2 27.4 13.9 32.6 29.6 49.3 32.0 26.3 35.0

5 3 29.8 50.4 31.3 15.0 34.8 32.8 51.9 36.4 32.4 39.1
5 3 3 32.5 56.5 33.2 16.1 36.9 35.4 53.4 42.8 32.1 38.6
5 3 3 3 33.4 57.8 34.5 15.7 37.7 36.9 56.5 44.7 32.1 41.4

Table 4. Ablation study of the methods for learning inter-clip association (CL and UVLA) and the memory module (IPM). N train
v is the

number of clips used for training. CL and UVLA denote correspondence learning and unified video label assignment, respectively.

Global Index

AP 31.8 33.4

Table 5. Ablation study of memory decoding
method in IPM on the OVIS validation set.

Nf AP AP50 AP75 AR1 AR10

1 33.0 56.8 34.3 15.7 37.5
3 33.4 57.8 34.5 15.7 37.7

5 31.3 56.0 32.8 15.3 35.9
7 29.7 51.4 30.7 14.6 34.0

Table 6. Ablation study of the clip length (Nf )
on the OVIS validation set. The same value (Nf )
is used for training (N train

f ) and inference (N eval
f ).

YTVIS 2021YTVIS 2019 YTVIS 2022 Long OVIS
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Figure 3. Deployment of GenVIS using the different lengths of a clip (N eval
f ) for inference

on the Youtube-VIS 2019/21/22 and OVIS validation sets. We validated two different
GenVIS models trained using N train

f of 1 and 3 which represent online and semi-online
settings, respectively. FPS is measured on a single A100 GPU. The models trained for
the main experiments are used.

the matching algorithm of MinVIS [14] that uses the cosine
similarity of instance prototypes for the association across
clips (inter-clip association). This baseline shows AP of
24.1 and 25.4 in OVIS and YTVIS 2022 Long, respectively,
as shown in Tab. 4. As the next baseline, we apply the
correspondence learning [32] between two clips that the
same query refers to the same object across clips. This
improves AP to 27.4 and 29.6, respectively.

On top of these two baselines, we extend learning of corre-
spondence between two clips to five clips. Such naive adapta-
tion leads to improvement in both OVIS (27.4 ! 29.8) and
YTVIS 2022 Long (29.6 ! 32.8). This demonstrates that
training with multiple clips allows the model to effectively
learn the inter-clip association. When we adopt UVLA, our
label assignment strategy, carefully designed for learning cor-
respondence between multiple clips by considering complex
scenarios occurring in long videos, such as a temporary dis-
appearance of objects, AP is significantly improved in both
datasets (29.8 ! 32.5 and 32.8 ! 35.4). Incorporating
the instance prototype memory (IPM) additionally increases
AP. In a nutshell, our proposed training method improves
AP by 6.0 and 7.3 in OVIS and YTVIS 2022 Long, respec-
tively, even though we maintain the simple and heuristic-free
inter-clip association method.

Memory decoding in IPM. As shown by Tab. 5, global de-
coding of instance prototypes in the memory does not show
an improvement in the accuracy compared to index-wise de-
coding. Also, index-wise decoding is computationally more
scalable with a long video, thus, we decide to use it in IPM.

Length of clip (Nf ) for training. With the fixed number
of clips (Nv = 5), we experiment with the length of clip
(Nf ) used for training. As shown in Tab. 6, there is no no-
table change in AP when Nf increases from 1 to 3. However,
higher Nf values (e.g., 5 and 7) bring about degradation of
AP, for example, a decrease of 2.1 and 3.7, respectively, com-
pared to Nf = 3. Based on this empirical observation, we
use Nf = 3 for training the semi-online version of GenVIS.

Flexibility of GenVIS for online and semi-online settings.

As shown in Fig. 3, GenVIS is flexible to use different clip
lengths for inference (N eval

f
) although it is trained with a

clip length (N train
f

) of 1 or 3. In the YTVIS 2019 dataset,
increasing the window size from one to seven improves AP
even though GenVIS is trained with a clip of one frame.
Since YTVIS 2021 & 2022 and OVIS datasets have more
complex trajectories of objects than YTVIS 2019, using a
larger window size for inference leads to lower AP, especially
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Figure 4. Qualitative comparisons of our method, GenVIS, with the state-of-the-art methods: MinVIS [14] and VITA [13]. The videos
on the left and right are from YouTube-VIS 2022 [36] and OVIS [27] datasets, respectively. GenVIS shows impressive accuracy in these
complicated scenes where the objects look similar crossing each other. Objects with the same identity are displayed in the same color.

in the OVIS dataset where objects are heavily occluded in
each other. In these datasets, using a short clip to extract the
instance prototypes is more effective than a long clip which
is also observed in Tab. 6. In contrast, using a longer clip
outputs temporally compact instance prototypes that lead to
faster execution speed and memory efficiency. In the case
of such usage, it is better to use the GenVIS trained using a
long clip (e.g., N train

f
= 3) since the decrease in AP is lower

than the online version which is trained with N train
f

= 1.

4.5. Qualitative Results

Fig. 4 shows the visualization results of our GenVIS
and recent online [14] and offline VIS methods [13] on the
benchmarks consisting of long and complicated scenarios.
In the selected scenes, the animals are similar in appearance,
and their trajectories are too complex to keep tracking the
same instance. In the scene of YTVIS 2022, MinVIS fails
to segment the elephant which is severely occluded by the
elephant in front of the target, and VITA fails to track the
front elephant resulting in the change of its ID. However,
GenVIS successfully segments and tracks all objects in this
challenging scene. GenVIS performs well even in the scene
of OVIS where the left-front cat is moving behind two cats.

5. Limitations and Future Works

Our method achieves state-of-the-art performance on long
videos in both online and semi-online manners. Also, we
demonstrate the trade-offs between the accuracy and the ef-
ficiency for various learning options. While the proposed
framework provides a choice of the length of the clip with-
out modifying the architecture, once the length of the clip
is determined, our method treats an input video uniformly
in that unit. However, there can be a variety of situations
in a single video. For example, if a scene continues mono-

tonically, it may be advantageous to process it broadly and
put it in memory without taking the scope small, whereas
frame-level processing could be beneficial in the opposite
case. Therefore, designing adjustable windows will be an
interesting future direction. In addition, because we take a
label assignment strategy that gives unique IDs to unique
object queries, the strategy can be limited if there are very
large numbers of objects across the video. Designing an
algorithm integrated with memory could be another future
direction.

6. Conclusion

In this paper, we propose GenVIS a generalized frame-
work for video instance segmentation (VIS). To seamlessly
bridge the gap between training and inference, we propose
the following: 1) a training strategy that can involve multi-
ple clips, 2) training the associations between separate clips
with the novel label assignment - UVLA, and 3) the use of
memory to alleviate vanishing information in long videos.
By integrating these proposals into a single framework, we
demonstrate the effectiveness of our method by achieving
state-of-the-art results on multiple benchmarks.
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