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Abstract

Point cloud completion addresses filling in the missing
parts of a partial point cloud obtained from depth sensors
and generating a complete point cloud. Although there
has been steep progress in the supervised methods on the
synthetic point cloud completion task, it is hardly applica-
ble in real-world scenarios due to the domain gap between
the synthetic and real-world datasets or the requirement of
prior information. To overcome these limitations, we pro-
pose a novel self-supervised framework ACL-SPC for point
cloud completion to train and test on the same data. ACL-
SPC takes a single partial input and attempts to output the
complete point cloud using an adaptive closed-loop (ACL)
system that enforces the output same for the variation of
an input. We evaluate our ACL-SPC on various datasets
to prove that it can successfully learn to complete a partial
point cloud as the first self-supervised scheme. Results show
that our method is comparable with unsupervised meth-
ods and achieves superior performance on the real-world
dataset compared to the supervised methods trained on the
synthetic dataset. Extensive experiments justify the neces-
sity of self-supervised learning and the effectiveness of our
proposed method for the real-world point cloud completion
task. The code is publicly available from this link.

1. Introduction

Along with the development of autonomous driving cars
and robotics, the usage of depth sensors such as LiDARs
has increased. These sensors can collect numerous points
in the 3D space, and the combination of these points forms
a 3D representation called a point cloud. Point cloud rep-
resentation has been widely used in many applications as it
is highly convertible to other 3D data representations, e.g.,
voxel and mesh, and accessible for obtaining information
from the real world. However, point clouds obtained from
a real-world sensor, e.g., a LiDAR, are often incomplete
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Figure 1. Overview of our proposed pipeline. We first generate
Co using the initial partial point cloud. Then, multiple synthetic
point clouds P, are generated from the random views of Cy. We
input the generated P, to the network and make predicted com-
plete point clouds. We take the loss between Cy and C,, to opti-
mize the parameters of the network fo.

and sparse due to occlusion, limitations of sensor resolu-
tion, and viewing angle [49] leading to loss of some geo-
metric information and difficulty in proceeding with further
applications e.g., object detection [26] and object segmenta-
tion [7]. We define such point clouds as partial point clouds.
Therefore, point cloud completion is a crucial task that in-
fers completing geometric 3D shapes by using such partial
point cloud observations.

With the advent of deep learning, previous data-driven
works [40, 43, 49] have been able to solve this task us-
ing complete point cloud ground-truths. Even though
such methods have achieved decent performance, they are
not applicable in real-world scenarios where the ground-
truth point clouds are not easy to obtain. For these rea-
sons, researchers have recently attempted to overcome the
lack of high-quality and large-scale paired training data
using multiple views of the point cloud in unsupervised
and weakly-supervised manners. Especially, recent meth-
ods [15,21] leverage multi-view consistency of the desired
object, which shows effectiveness in supervising 3D shape
prediction. PointPnCNet [21] claims that its method is
based on self-supervised learning. However, combining
multi-view consistency enables reconstructing a complete
3D point cloud and can be weak supervision. Moreover,
collecting multiple partial views of an object in real-world
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scenarios is difficult as gathering ground-truth point clouds.
Therefore, the necessity for multi-view consistency pre-
vents this method from being fully self-supervised. Mean-
while, other methods [6, 13,41, 50] exploit unpaired par-
tial and complete point clouds [6,41] or pre-trained mod-
els [13,50] on synthetic data to overcome the difficulty of
collecting ground-truth. However, the need for unpaired
data limits the methods’ applicability to a few categories.

To overcome the challenges mentioned above, we pro-
pose a novel and the first self-supervised method called
ACL-SPC for point cloud completion using only a sin-
gle partial point cloud. We develop an adaptive closed-
loop (ACL) [2] system as shown in Figure | to design our
self-supervised point cloud completion framework ACL-
SPC. In ACL-SPC, an encoder adaptively reacts to the vari-
ance in the input by adjusting its parameters to generate the
same output. Using our developed ACL, our method tries
to generate a complete point cloud from a single partial in-
put captured from an unknown viewpoint without any prior
information or multi-view consistency and also simulates
several synthetic partial point clouds from the reconstructed
point cloud. Under our defined novel loss function, our
ACL-SPC can learn to generate the same complete point
cloud from all such synthetic point clouds and the initial
partial point cloud without any supervision. In the experi-
ments, we demonstrate the ability of our method to restore
a complete point cloud and the effect of our designed loss
functions on saving fine details and improving quantitative
performance. We also evaluate our method with various
datasets, including real-world scenarios, and verify that our
method can be applied in practice. Evaluation results show
that our method is comparable to other unsupervised meth-
ods and performs better than the supervised method trained
on a synthetic dataset.

Our main contributions can be summarized as follows:

* We propose ACL-SPC by developing an adaptive
control-loop ACL framework to solve the point cloud
completion problem in a self-supervised manner.

* We also design an effective self-supervised loss func-
tion to train our method without requiring any other
information and using only a single partial point cloud
taken from an unknown viewpoint.

e Our method achieves superior performance in real-
world scenarios compared to methods trained on syn-
thetic datasets and comparative performance among
other unsupervised methods.

2. Related Works
2.1. Supervised point cloud completion

Point cloud completion is the task of reconstructing a
complete geometry of a shape from partial point clouds.

Before the advancement of the deep neural network, some
traditional geometric-based methods [9, 22, 32] have been
attempted to complete shapes using the geometric priors
from a partial input without any external data. Other meth-
ods [20, 29, 30, 36, 38] have been proposed to handle the
point cloud completion task by utilizing the symmetry prop-
erty of the object to complete the incomplete parts.

With the development of deep learning, some learning-
based methods [9,23,34] have shown up to solve complete
the partial point cloud using a large amount of data. How-
ever, these methods have converted a partial point cloud
into voxels to apply convolutional neural networks (CNNs),
which leads to computational complexity and losing some
geometrical information of point clouds. PCN [49] as the
first data-driven approach learned a completion network di-
rectly from point clouds rather than converting to other rep-
resentations. Further, various works have proposed devel-
oped architectures using a novel rooted tree structure [37],
3D grids as the intermediate representation [43], feedback
refinement module [46], and transformers [48, 52] to im-
prove the performance. However, these methods deviate
from real-world scenarios, as gathering ground truth point
clouds is cost-inefficient and not practical.

2.2. Unsupervised point cloud completion

Due to the aforementioned limitations of supervised
methods for point cloud completion, existing unsupervised
approaches [15, 16,21] have been proposed to handle point
cloud completion tasks where ground truth data are unavail-
able. Meanwhile, weakly supervised methods [15, 16] have
attempted to predict the complete point cloud using mul-
tiple partial views, which are not always available in real-
world scenarios. Later, PointPnCNet [21] introduced an
inpainting framework with geometric consistency to over-
come the above issue and claim that the method is the
first self-supervised work for this task. Nevertheless, this
method has exploited geometric consistency between multi-
views of an object and showed that without this supervision,
they could not complete the partial point cloud. Moreover,
there have been attempts to utilize unpaired complete point
clouds from synthetic datasets to solve the difficulty of ac-
cessing ground-truths [6,13,41,50]. As a domain gap exists
between unpaired complete point clouds and partial point
clouds, these methods design architectures that can trans-
form from one domain to the other and eventually solve the
issue. However, these methods can only be suitable for cat-
egories available in synthetic datasets.

2.3. Self-supervised Learning

Self-supervised learning has attracted increasing atten-
tion in computer vision due to its practicality and ability to
avoid the need for expensive annotated datasets. Follow-
ing the advances in CNNs, recent self-supervised learning

9436



Global AvgPool

FC+ReLU (1024) o PO

he

FC(Nc x3) 1
Shared

h W

a1l

Q4

1
@OE ---- @,

Figure 2. The framework of ACL-SPC. Our framework consists of an encoder-decoder style network where the parameters are shared
between the objects. The network adopts the PolyNet [47] as the encoder and three fully connected (FC) layers as the decoder. Our
network first takes the input partial point cloud and generates an estimated complete point cloud. Using this point cloud, we make multiple
synthesized partial point clouds as new inputs. Again, the network outputs estimated complete point clouds from the synthesized partial
point clouds. We apply consistency loss between multiple estimated complete point clouds and optimize the parameters of the network.

methods have incorporated generative [14,17,18,31,39,54]
and contrastive approaches [1, 10,44], to learn the features
from unlabeled data where an input itself provides supervi-
sion. Furthermore, researchers [11,19,27,33,35,45,51,53]
have started to apply self-supervised methods on point
clouds to overcome the cumbersome task of annotating.
These works have successfully shown great performance on
feature learning to handle tasks such as classification [11,
19,27,33,35,45,53], segmentation [11,19,27,33,35,45,53]
or upsampling [51]. In this way, we propose the first self-
supervised method for point cloud completion using only a
partial point cloud as input without any prior information.

3. Method

In control theory [24, 25], closed-loop systems have
many applications in various areas such as aerospace,
electronics, and biomedical. Especially adaptive closed-
loop (ACL) is a system where a controller automatically
gives a compensated signal for the variation in the system
so that the overall result remains the same [2, 24,25]. In
an ACL system, a controller outputs an appropriate signal
after receiving feedback from the error between the desired
output and the generated one. Meanwhile, obtaining a com-
plete point cloud generator invariant to the view of captured
partial point clouds is essential for point cloud completion
tasks. We believe that the aforementioned attribute of the
ACL system can be utilized for this task because it is ap-
propriate for constructing the same complete point cloud,
whatever a partial point cloud of an object comes in as an

input. Therefore, we develop the concept of ACL for point
cloud completion and introduce a novel self-supervised par-
tial point-cloud completion framework (ACL-SPC).

3.1. ACL-SPC

Using a conventional ACL as a point cloud completion
system requires the target complete the point cloud and sev-
eral partial point cloud observations to optimize the sys-
tem. However, accessing the target complete point cloud
and several partial observations in real-world scenarios is
not always possible. Therefore, we develop the ACL sys-
tem such that it generates the complete point cloud using
only a single partial observation and without requiring the
target complete point cloud for optimizing the system, as
shown in Figure 2. To achieve this goal, we employ a learn-
able model fy on an input partial point cloud observation
Py € RM 3 a5 follows:

CO:fe(P0)7 (1)

where Cy € R™*3 is the generated complete point cloud
and N, and N, refers to the number of points in the input
and output point cloud, respectively. Then we apply a par-
tial point cloud generator g, to generate a set of partial point
clouds P, from the generated point cloud Cj as follows:

Vv € {Ui}z]'vzsl’ P, = g,(Co), ()

where v; is a random parameter to generate Ny number of
different partial point clouds. We again employ the same
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Supervision Method Airplane Car Chair Average
P P, C| CDJ Pl C| CDJ P, C| CDJ| Pl Cl CDJ
DPC [16] - - 391 - - 347 - - 430 - - 389
Unsupervised  Guetal. [15] 091 1.05 195 1.27 141 2.68 1.69 1.64 3.33 1.29 136 2.65
PointPnCNet [21] 1.58 1.74 332 1.98 298 4.96 272 2.68 540 1.75 246 4.56
Self-supervised Ours 1.20 0.80 2.01 1.65 1.28 293 225 146 3.71 1.70 1.18 2.88

Table 1. Quantitative results on three categories airplane, car and chair. We also calculate average values among the categories. P, C,
and CD refers to precision, coverage, and Chamfer distance, respectively. All the values are multiplied by 100.
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Figure 3. Qualitative comparison on the ShapeNet dataset. We visualize a) the partial input, b) completed ground truth point cloud,
¢) multi-view point cloud, results on d) GRNet, ¢) Gu et al., and f) ours. The multi-view point cloud is the concatenation of five random
partial views of an object. Our result show that our method can recover most of the missing parts from the partial input.

model fy on the generated synthetic partial point clouds P,
to generate the same point cloud Cj as follows:

Vo e {Ui}iv:sla Cv = fO(Pv> = f@(gv(co))v (3)

where C), is the predicted complete point cloud for the gen-
erated point cloud Cy. Then, we optimize the system by a
loss function between the predicted complete point clouds
C, and the generated initial complete point cloud Cy. Ac-
cordingly, our ACL-SPC learns to generate the same com-
plete point cloud for different partial point cloud observa-
tions P, synthesized from the generated Cj. Since the
learnable model fy is optimized to map any partial point
cloud P, to its corresponding target complete point cloud
Cy, the generated point cloud Cj as the output of fy on the
input partial point cloud F must predict the target complete
point cloud.

3.2. Loss functions

To train our network fy, we use two self-supervised loss
functions. First, to optimize the ACL-SPC and guarantee
to generate the same predicted complete point clouds, we
design the consistency loss function £°°" between the pre-
dicted complete point clouds C,, and Cj as follows:

1
N x N Z

ve{v; f’;’l

L = 1Cy = Coll3, 4

where |[.||2 represents the Ly norm. We further utilize the
weighted Chamfer distance [21] loss £%°¢ between the pre-
dicted complete point cloud Cj and the input partial point
cloud Py. The weighted Chamfer distance is invariant to
the permutation of the order of points which is composed of
two parts with the corresponding weights as follows:

in [lg—pll2. 5
> ninllg—pll2. 5

q€Py

wed « : B
£ = ,,;quglf% lp=allz+ 3
The first term measures the mean distance for each point in
the source point cloud Cj to the closest point in the target
point cloud Py, while the second term measures the mean
distance from each point in the target point cloud F; to its
nearest point in the source point cloud Cy. Therefore, the
second term leads the predicted point cloud Cj to cover the
points in the target point cloud F, while the first term per-
forms as a regularizer. We set « = 0.1 and 8 = 0.9 to en-
force the points to cover the non-missing parts of the point
cloud and let the remaining points be flexible to fill in the
missing parts. The total loss £°? is the weighted summa-
tion of two aforementioned loss functions as follows:

ﬁtolal _ /\consﬁcons + L:wcd. (6)
3.3. Training details

Our model fy includes an encoder £ which learns the lo-
cal and global features from the partial input point clouds
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Supervision  Method P C CD
GRNet [43] 4.63 6.90 11.53
Supervised SFNet [42] 14.12 12.64 26.76
pen [49] 9.83 17.96 27.79
Unsupervised Gu [15] 8.70 10.70 19.40
P PointPnCNet [21] 9.00 10.00 19.00
Self-supervised Ours 11.67 5.63 17.30
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(a) Quantitative results.
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(b) Qualitative results.

Figure 4. Evaluation on the SemanticKITTI [3] dataset. We compare our results with various supervised and unsupervised methods by
a) evaluating our quantitative results in terms of precision (P), coverage (C), and Chamfer distance (CD) and b) visualizing their outputs.
For supervised methods, we use their pretrained models on the synthetic PCN [49] dataset to evaluate on the SemanticKITTI.

and a decoder D to generate the points of the complete
point clouds as shown in Figure 2. We use PolyNet [47],
a powerful spatial graph CNN, as the encoder £ which con-
sists of four squeezed PolyConv layers with the sizes of 64,
128, 256, and 512, respectively. We apply a random down-
sampling followed by max-pooling after the first three Poly-
Conv layers to reduce the point size to 512, 128, and 32,
respectively. We employ a global average pooling after the
last PolyConv layer to eliminate the spatial dependency and
obtain 512 invariant features to various partial observations
and point permutations. We use three fully connected (FC)
layers as the decoder D with the sizes of 1024, 1024, and
N, x 3, respectively, where the ReLU non-linear activation
function is applied on the outputs of the first and the sec-
ond FC layers. In fact, g, is a non-learnable function that
generates the synthetic partial point clouds by projecting the
generated complete point cloud to a depth map at a random
view v from azimuth [0°, 360°] and elevation [—20°, 40°].
We then back-project the depth map into 3D. To avoid dou-
ble backpropagation and optimize fy only once, we use the
detach operator [28] as shown in Figure 2. We exploit the
Adam optimizer and optimize the model for every 32 differ-
ent input partial point clouds and their Ny synthetic partial
point clouds and set Ny = 8 and Acops = 10 in our base-
line. For the inference, we feed the input partial point cloud
to the trained model fy to directly generate the correspond-
ing complete point cloud, which takes 12ms on average for
each sample with a NVIDIA RTX 2080Ti.

4. Experiments
4.1. Datasets and metrics

In this section, we discuss the training and evaluation
datasets and the metrics used to compare our proposed
method ACL-SPC with the related methods.

Synthetic Datasets: ShapeNet [5] is a large-scaled dataset
including curated 3D shapes represented by CAD models,
which consists of 55 categories. Among them, we focus on
three categories, airplanes, cars, and chairs, to maleaaintain
the same setup as the previous works [15, 16,21]. Followed

by these works, we capture RGB-D data from five random
views for each object, transfer them to 3D, and resample
3096 points of them to generate a set of partial point clouds.
The ground truth complete point clouds with the fixed 8192
number of points are used for evaluation.

Real-World Datasets: Similar to previous works [6,13,50],
we evaluate our method using three sources of real scans:
ScanNet [8] (chairs and tables), MatterPort3D [4] (chairs
and tables), and KITTI [12] (car). The ScanNet and
MatterPort3D datasets are richly annotated 3D reconstruc-
tions of indoor environments, whereas the KITTI dataset
is of outdoor scenes. We resample the points to 2048
points to match the previous work’s settings [6, 13, 50].
SemanticKITTI dataset [3] is derived from the KITTI
dataset [12], including only the car objects which are cap-
tured in multi-views from sequence 00 to 10 when parked.
We take out the sequence 08 for testing and exploit the other
sequences for training. Note that the input points are re-
sampled to 1024 for convenience. As the SemanticKITTI
dataset has no ground truth complete point cloud, we fol-
low the same steps as in the previous work [15] to generate
them by aggregating partial point clouds.

Metrics. We utilize the Chamfer distance (CD) between the
reconstructed point cloud and the ground truth to evaluate
the performance of our ACL-SPC method. Chamfer dis-
tance is the average distance between each point in a point
cloud and the nearest point in the other as follows:

1 .
CD(Co,GT) = 1= > min [Ip — ll>
c

L @
N > min flg—pll,
qeGT

where GT is defined as the ground truth complete point
cloud with N, points. The first and second term refers
to precision and coverage, respectively. Precision infers
how much the generated points are distributed well com-
pared to the ground-truth data, while coverage refers to
how much the missing parts of the partial point cloud are
filled in. Accordingly, the coverage is an important metric

9439



ScanNet MatterPort3D KITTI
Supervision Method Chair Table Chair Table Car
UCDJ UHD| UCDJ UHD| UCD) UHDJ UCDJ UHD) UCDJ UHDJ
pcl2pcl [6] 173 101 9.1 118 159 105 60 11.8 9.2 141
Shapelnversion [50] 32 101 33 119 36 100 3.1 118 29 138
Unsupervised +UHD [50] 4.0 9.3 6.6 11.0 4.5 9.5 57 107 53 125
Cycle4Comp. [41] 5.1 6.4 3.6 5.9 8.0 84 42 6.8 33 5.8
DE[13] 2.8 54 2.5 5.2 3.8 6.1 2.5 54 1.8 35
OptDE [13] 2.6 5.5 19 4.6 3.0 55 1.9 53 1.6 35
Self-supervised Ours 14 4.7 1.8 5.1 1.8 4.8 2.1 4.9 2.0 4.9

Table 2. Quantitative results on the real-world datasets [4,8,12] in the categories of chair, table, and car. We evaluate the method in
terms of UCD and UHD where the values are multiplied by 10% and 10* respectively.

MatterPort3D ScanNet

KITTI

Input

Shapelnv. [50]

OptDE [13] Ours

Input

Shapelnv. [50]

OptDE [13] Ours

Figure 5. Qualitative results on the real-world datasets [4,8,12] in the categories of chair, table, and car.

for point cloud completion tasks, reflecting the effective-
ness of the methods to fill the missing parts. Additionally,
we utilize two metrics called Unidirectional Chamfer Dis-
tance (UCD) and Unidirectional Hasudorff Distance (UHD)
for the real-world datasets [4, 8, 12] in the same way as
previous works [6, 13, 50]. To calculate UCD, we obtain
the first term of CD( Py, Cp) between the partial input point
cloud Py and the predicted complete point cloud Cy using
equation 7. Similarly, we measure the UHD with the single
side of Hausdorff distance as follows:

UHD(Fy, Co) = max min P — a2 8)

Although the two metrics do not reflect the completeness of
shape, they can give a fair comparison where ground-truth
data is unavailable.

4.2. Evaluation on synthetic dataset

In this section, we qualitatively and quantitatively evalu-
ate our ACL-SPC method on the ShapeNet dataset and com-
pare the results with the related methods [15, 16,21]. We
train our network for each category separately with 1000
epochs by a learning rate of 0.001, which is decayed by 0.5
for every 200 epochs to generate N. = 8192 points. We
visualize and compare the results of our method with the
supervised [43] and unsupervised [15] methods in Figure 3.

We note that GRNet [43] and Gu et al. [15] utilize the GT
and the multi-view information as their supervision, respec-
tively. Using the multi-view information leads to achieving
a high-quality appearance for Gu et al. [15] because the con-
catenated point cloud from five random partial point clouds
is almost as the GT as shown in Figure 3c. Even without
this information, our ACL-SPC method shows comparable
results in completing the missing parts of the input in a fully
self-supervised manner. Moreover, our quantitative results
in Table 1 show that our method can outperform the unsu-
pervised methods DPC [16] and PointPnCNet [21] with a
large gap 1.01 and 1.68 with the CD on average while per-
forming only 0.23 lower performance compared to Gu et
al. method. Therefore, our method can learn even bet-
ter without any prior information compared to some of the
unsupervised methods that have leveraged multiple partial
views. Moreover, our method outperforms all the unsuper-
vised methods by the coverage metric, which shows its su-
periority in covering the missing parts.

4.3. Evaluation on real-world dataset

We evaluate our self-supervised method ACL-SPC on
SemanticKITTI [3] dataset and compare the results with
both supervised and unsupervised methods. We train our
network for 500 epochs with a learning rate of 0.001, and it
is decayed by 0.5 for every 200 epochs to output N, = 8192
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number of points. We exploit pretrained models of the su-
pervised methods [42,43] on the synthetic PCN [49] dataset
to test on the real-world SemanticKITTI dataset. As shown
in Figure 4a, our method outperforms the unsupervised
methods Gu et al. [15] and PointPnCNet [21] in terms of
coverage and CD. It also achieves better coverage compared
to the supervised method GRNet [43], while it shows supe-
rior performance in all metrics compared to the supervised
method SFNet [42]. Moreover, we can see through Fig-
ure 4b that the supervised methods perform poorly on the
real-world dataset compared to our method due to the do-
main gap with the synthetic dataset, which emphasizes the
generalizability of our self-supervised method in real-world
scenarios. Additionally, we can validate that the coverage
is more important than other metrics as our method shows
better qualitative results than GRNet [43] even though our
method shows larger precision and CD values.

Furthermore, we quantitatively and qualitatively eval-
uate our method on ScanNet [8], MatterPort3d [4], and
KITTTI [12] dataset as shown in Table 2 and Figure 5, re-
spectively. In contrast to the unsupervised methods [6, 13,
41,50] that require synthetic datasets in addition to the real-
world datasets for training because they either need un-
paired ground truth [6, 41] or pretrained model [13, 41],
our method is trained only on real-world datasets. Except
for some metrics in the table categories, our method gener-
ally performs better than the state-of-the-art [13] in Scan-
Net and MatterPort3D datasets as shown in Table 2. How-
ever, in the KITTI dataset, our method is slightly behind
the state-of-the-art by 0.4 and 1.4 on UCD and UHD, re-
spectively. We also qualitatively compare the results with
unsupervised methods [13, 50] as shown in Figure 5. The
Shapelnversion [50] generally fails to generate the missing
parts in some cases, such as the chair class of MatterPort3D
datasets. Meanwhile, OptDE [13] generates lots of noise
in most samples, especially in the categories of the Scan-
Net [8] dataset. In contrast, our method generates plausi-
ble points in the missing parts of the input in all samples.
One drawback of our results is that the output point cloud is
not uniformly distributed, being sparser in the input regions
where points were absent. Thus, even without requiring any
synthetic datasets, we illustrate that our method is competi-
tive compared to other unsupervised methods.

4.4. Ablation study

In this section, we further analyze our novel ACL-SPC
method by extensive ablations studies on test-time adapta-
tion, the effect of defined loss functions, the number of syn-
thesized data, training on the multi-class dataset, and train-
ing on a dataset including only one view of objects.

Supervision Pl Cl CD|
Supervised 17.29 8.57 25.86
Self-supervised  11.67 5.63 17.30
Test-time adapt.  9.62 7.09 16.71

Table 3. Evaluation on Test-time adaptation. We train the net-
work in three modes: supervised, self-supervised, and test-time
adaptation. The values are multiplied by 100.

4.4.1 Test-time adaptation

Similar to previous works [6, 13,41, 50], we show that our
method can also be effective for test-time adaptation. We
train and test our network in three different schemes, as
shown in Table 3. First, we train the network in the su-
pervised setting on a synthetic dataset and then evaluate it
on a real-world dataset. Second, we train our network in a
self-supervised manner, without any pretraining, and train
and test it on the real-world dataset. Finally, on the test-
adaptation setting, it goes through the pretraining stage and
then moves on to the adaptation stage with our ACL-SPC
framework. Table 3 displays the precision, coverage, and
CD of each experiment setting. The results show the suit-
ability of our ACL-SPC method not only for self-supervised
learning but also for test-time adaption.

4.4.2 Effect of each loss

We evaluate the effects of each loss by taking out each loss
at a time for each experiment. We report the quantitative
results for the experiments without L£ved without £, and
with the total loss £°@ in Figure 6a. Taking out £ af-
fects critically in the results as there is no guarantee to cover
points in the input. On the other hand, excluding £ re-
sults in a worse coverage value which proves the importance
of our proposed ACL-SPC to fill the missing parts of partial
input point clouds. To visualize this effect, we qualitatively
compare our results with and without £°°™ in Figure 6b.
Without £°°", only the input is covered while the missing
parts are still uncovered. We note that since without £
there is no constraint to generate points in the location of the
input, the method produce all points in the same position.

4.4.3 Number of synthesized data

We analyze how the number of synthesized data can influ-
ence point cloud completion results. Table 4 presents the
precision, coverage, and CD values when Nj is set to 1, 4,
and 8. According to the results, we achieve the best perfor-
mance by Ny, = 8 on average among other setups, while
there is no dramatic difference as it shows only 0.03, 0.01,
and 0.03 difference compared to having one number of syn-
thesized data. Consequently, having more synthesized data
slightly enhances the performance.
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Loss Airplane Car Chair

P, C| CDJ P, C| CDJ P, C| CDJ
—L£wed 115 18.76 19.91 4.66 26.5131.17 391 26.4130.32
—Leoms 1,10 1.22 2.32 145 2.11 3.56 1.99 1.74 3.73
L£total 120 0.81 2.01 1.65 1.28 2.93 225 146 3.71

(a) Quantitative results.

Input GT — [coons total

(b) Qualitative results.

Figure 6. Evaluation on the effects of loss functions. We show a) precision (P) and coverage (C) values multiplied by 100 for each

experiment with different losses, and b) qualitative results.

Ablation Setu Airplane Car Chair Average
P P, Cl CDJ P, Cl CDJ P, CJ CD{ P, CJ CDJ
1 1.19 085 2.04 1.63 127 2.90 237 145 3.82 173 1.19 2.92
Num Syns 4 123 082 2.05 1.62 130 292 255 143 397 1.80 1.18 2.98
8 120 081 2.01 165 128 2.93 225 146 3.71 170 1.18 2.89
- Single 120 081 2.01 1.65 128 2093 225 146 3.71 170 1.18 2.89
5 Muld 140 079 2.19 1.66 125 291 235 142 376 1.80 1.15 2.96
Views 123 089 2.12 1.63 127 2.90 215 154 3.69 1.67 123 2.90
W 120 0.81 2.01 1.65 128 293 225 146 3.71 170 118 2.89

Table 4. Quantitative effects of the number of synthetic partial views, single-/multi-class training, and single-/multi-view training.
We present the values of precision (P), coverage (C), and Chamfer distance (CD) multiplied by 100.

4.4.4 Training on multi-class

In our main experiment, we train our model on a specific
class and present the results in section 4.2. However, in real-
world scenarios where the classes of objects are not identi-
fied, it is necessary to train the network on multi-class ob-
jects. Table 4 shows the quantitative results of the ShapeNet
dataset when trained with multi-class objects. The results
demonstrate not much difference in the performance as the
precision and CD values were 0.10 and 0.07 worse, while
the coverage was 0.03 better in the multi-class training.
Thus, we believe that our network can learn to understand
the appropriate features of a particular object even when
there are various classes in the training set.

4.4.5 Single-view training

As mentioned in section 2, recent works [15, 16,21] lever-
age multi-partial views for supervision. Even though our
method does not take the advantage of multi-view supervi-
sion, we validate the power of our method to be trained on
only a single view per object. As the training set includes
multiple partial views for the same object, we take out these
views and leave only one partial view to prove that it does
not significantly affect our method’s performance. Accord-
ing to Table 4, our method shows only 0.01 CD difference
with the model trained with only the single partial view in-
cluded in the training set. Through the results, we confirm
that our method can still perform as expected even without

multi-views of an object in the training set.

5. Conclusion

In this paper, we propose ACL-SPC, the first self-
supervised point cloud completion method from only a sin-
gle input partial point cloud. Our method learns to com-
plete partial point clouds by adaptively controlling the out-
put in a closed-loop system. We also introduce a consis-
tency loss to generate the same complete point cloud and
learn the geometric features of the object. Our extensive
experiments demonstrate that our method can be more use-
ful in real-world scenarios without performance degrada-
tion than other methods. In most cases, our method shows
better performance in the coverage than precision showing
the excellent performance of filling in the missing parts.

Limitations and future works. One remaining limita-
tion of our method is that there is no constraint to not gener-
ate redundant points, which results in high precision values.
To improve the precision and reduce noise, we will apply
more constraints for future works. We will further find ap-
plications of our self-supervised framework in other point
cloud restoration tasks such as denoising and upsampling.
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