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Abstract

In unsupervised domain adaptation (UDA), a model
trained on source data (e.g. synthetic) is adapted to tar-
get data (e.g. real-world) without access to target anno-
tation. Most previous UDA methods struggle with classes
that have a similar visual appearance on the target domain
as no ground truth is available to learn the slight appear-
ance differences. To address this problem, we propose a
Masked Image Consistency (MIC) module to enhance UDA
by learning spatial context relations of the target domain
as additional clues for robust visual recognition. MIC en-
forces the consistency between predictions of masked target
images, where random patches are withheld, and pseudo-
labels that are generated based on the complete image by
an exponential moving average teacher. To minimize the
consistency loss, the network has to learn to infer the pre-
dictions of the masked regions from their context. Due to
its simple and universal concept, MIC can be integrated
into various UDA methods across different visual recogni-
tion tasks such as image classification, semantic segmenta-
tion, and object detection. MIC significantly improves the
state-of-the-art performance across the different recognition
tasks for synthetic-to-real, day-to-nighttime, and clear-to-
adverse-weather UDA. For instance, MIC achieves an un-
precedented UDA performance of 75.9 mloU and 92.8%
on GTA—Cityscapes and VisDA-2017, respectively, which
corresponds to an improvement of +2.1 and +3.0 percent
points over the previous state of the art. The implementation
is available at https://github.com/lhoyer/MIC.

1. Introduction

In order to train state-of-the-art neural networks for visual
recognition tasks, large-scale annotated datasets are neces-
sary. However, the collection and annotation process can be
very time-consuming and tedious. For instance, the annota-
tion of a single image for semantic segmentation can take
more than one hour [10,66]. Therefore, it would be beneficial
to resort to existing or simulated datasets, which are easier
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Figure 1. (a) Previous UDA methods such as HRDA [31] strug-
gle with similarly looking classes on the unlabeled target domain.
Here, the interior of the sidewalk is wrongly segmented as road,
probably, due to the ambiguous local appearance. (b) The proposed
Masked Image Consistency (MIC) enhances the learning of context
relations to consider additional context clues such as the curb in
the foreground. With MIC, the adapted network is able to correctly
segment the sidewalk. (c) MIC can be plugged into most existing
UDA methods. It enforces the consistency of the predictions of a
masked target image with the pseudo-label of the original image.
So, the network is trained to better utilize context clues on the target
domain. Further details are shown in Fig. 3.

to annotate. However, a network trained on such a source
dataset usually performs worse when applied to the actual
target dataset as neural networks are sensitive to domain
gaps. To mitigate this issue, unsupervised domain adapta-
tion (UDA) methods adapt the network to the target domain
using unlabeled target images, for instance, with adversarial
training [20,27,57,73] or self-training [30,31,72,79,97].
UDA methods have remarkably progressed in the last few
years. However, there is still a noticeable performance gap
compared to supervised training. A common problem is the
confusion of classes with a similar visual appearance on the
target domain such as road/sidewalk or pedestrian/rider as
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there is no ground truth supervision available to learn the
slight appearance differences. For example, the interior of
the sidewalk in Fig. 1 is segmented as road, probably, due
to a similar local appearance. To address this problem, we
propose to enhance UDA with spatial context relations as
additional clues for robust visual recognition. For instance,
the curb in the foreground of Fig. 1 a) could be a crucial
context clue to correctly recognize the sidewalk despite the
ambiguous texture. Although the used network architectures
already have the capability to model context relations, previ-
ous UDA methods are still not able to reach the full potential
of using context dependencies on the target domain as the
used unsupervised target losses are not powerful enough to
enable effective learning of such information.

Therefore, we design a method to explicitly encourage
the network to learn comprehensive context relations of the
target domain during UDA. In particular, we propose a novel
Masked Image Consistency (MIC) plug-in for UDA (see
Fig. 1 ¢), which can be applied to various visual recognition
tasks. Considering semantic segmentation for illustration,
MIC masks out a random selection of target image patches
and trains the network to predict the semantic segmentation
result of the entire image including the masked-out parts. In
that way, the network has to utilize the context to infer the se-
mantics of the masked regions. As there are no ground truth
labels for the target domain, we resort to pseudo-labels, gen-
erated by an EMA teacher that uses the original, unmasked
target images as input. Therefore, the teacher can utilize
both context and local clues to generate robust pseudo-labels.
Over the course of the training, different parts of objects
are masked out so that the network learns to utilize different
context clues, which further increases the robustness. After
UDA with MIC, the network is able to better exploit context
clues and succeeds in correctly segmenting difficult areas
that rely on context clues such as the sidewalk in Fig. 1b).

To the best of our knowledge, MIC is the first UDA ap-
proach to exploit masked images to facilitate learning con-
text relations on the target domain. Due to its universality
and simplicity, MIC can be straightforwardly integrated into
various UDA methods across different visual recognition
tasks, making it highly valuable in practice. MIC achieves
significant and consistent performance improvements for dif-
ferent UDA methods (including adversarial training, entropy-
minimization, and self-training) on multiple visual recog-
nition tasks (image classification, semantic segmentation,
and object detection) with different domain gaps (synthetic-
to-real, clear-to-adverse-weather, and day-to-night) and dif-
ferent network architectures (CNNs and Transformer). It
sets a new state-of-the-art performance on all tested bench-
marks with significant improvements over previous methods
as shown in Fig. 2. For instance, MIC respectively improves
the state-of-the-art performance by +2.1, +4.3, and +3.0 per-
cent points on GTA—Cityscapes(CS), CS—DarkZurich, and

Det. CS—Foggy CS pmm] +3.6 == w/o MIC

Segm. CS—FoggyZ. -_] +3.7 m— w/MIC

Segm. CS—DarkZ. =] +4.3
Segm. Synthia—»CS =] +1.5

Segm. £ A D | 2.4

Segm. GTA-CS  — | +2-1

Cis. OfficeHome E—— 11 9

Cis. visD E— | +3 0

40 60 80 100
Cls. Accuracy, Seg. mloU, or Det. mAP

Figure 2. MIC significantly improves state-of-the-art UDA methods
across different UDA benchmarks and recognition tasks such as
image classification (Cls.), semantic segmentation (Segm.), and
object detection (Det.). Detailed results can be found in Sec. 4.

VisDA-2017 and achieves an unprecedented UDA perfor-
mance of 75.9 mloU, 60.2 mloU, and 92.8%, respectively.

2. Related Work
2.1. Unsupervised Domain Adaptation (UDA)

In UDA, a model trained on a labeled source domain is
adapted to an unlabeled target domain. Due to the ubig-
uity of domain gaps, UDA methods were designed for all
major computer vision problems including image classifica-
tion [19,47,48,55], semantic segmentation [28,30,73,89],
and object detection [7, 8,42, 44]. The majority of the ap-
proaches rely on discrepancy minimization, adversarial train-
ing, or self-training. The first group minimizes the discrep-
ancy between domains using a statistical distance function
such as maximum mean discrepancy [24,47, 50], correla-
tion alignment [68, 69], or entropy minimization [23,49,76].
In adversarial training, a learned domain discriminator pro-
vides supervision in a GAN framework [22] to encourage
domain-invariant inputs [21,27], features [19,28,48,73] or
outputs [52,62,73,76]. In self-training, pseudo-labels [39]
are generated for the target domain based on predictions

obtained using confidence thresholds [53,91,97] or pseudo-
label prototypes [55,89,90]. To increase the robustness of
the self-training, consistency regularization [63,67,71] is
often applied to ensure consistency over different data aug-
mentations [ 1,9, 18, 54], different crops [31, 38], multiple
models [88,93,94], or domain-mixup [30-32,72,95]. Fur-
ther UDA strategies utilize pretext tasks [6,32,77,79], follow
an adaptation curriculum [11, 12,92], exploit the increased
domain-robustness of Transformers [30, 31, 70, 85], align
the domains with contrastive learning [34, 82], use graph

matching [4,41,42], or adapt multi-resolution inputs [31].
To facilitate learning domain-robust context dependen-
cies, several UDA methods propose network components
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that can capture context such as spatial attention pyra-
mids [40], cross-domain attention [86], or context-aware
feature fusion [30]. While these network modules provide
the ability to capture context, the unsupervised loss on the
target domain does not provide sufficient supervision to learn
all relevant target context relations. To improve context learn-
ing, CrDA [35] aligns local context relations with adversarial
training and HRDA [3 1] uses multi-crop consistency train-
ing. However, these mechanisms are not able to capture all
relevant context clues as can be seen for HRDA in Fig. 1 a).
Due to the random patch masking, MIC is able to learn a
larger set of different context clues for robust recognition.

2.2. Masked Image Modeling

Predicting withheld tokens of a masked input sequence
was shown to be a powerful self-supervised pretraining task
in natural language processing [3, | 4]. Recently, this concept
was successfully transferred to self-supervised pretraining
in computer vision, where it is known as masked image
modeling. Given a partly masked image, the network is
trained to reconstruct properties of the masked areas such
as VAE features [2, 15, 43], HOG features [80], or color
information [25, 84]. To sample the mask, block-wise mask-
ing [2], random patch masking [25,84], and attention-guided
masking [37,45] have been explored.

Similarly, our method also uses masked images. However,
we pursue a different purpose than previous works. Instead
of aiming to learn self-supervised representations, MIC uti-
lizes masked images in a novel way to learn context relations
for domain adaptation. Due to this conceptual difference,
we do not have to rely on pretext restoration targets such as
VAE features but can perform the reconstruction in the actual
prediction space of the relevant computer vision task such
as semantic segmentation. To the best of our knowledge,
MIC is the first method to exploit masked images to enhance
context learning for UDA. Particularly, we show that naive
masked image modeling on ImageNet does not improve the
target domain performance (see Sec. 4.3).

3. Methods
3.1. Unsupervised Domain Adaptation (UDA)

A neural network fy can be trained on the source do-
main using images X° = {xf}kle and their labels )° =
{yy },JCV s with a supervised source loss £5. The specific
source loss depends on the computer vision task. For image
classification and semantic segmentation, the (pixel-wise)
cross-entropy is typically used

L0 = H(fo(af), ), (1)
H W C
H(g,y) = — Z Z Yije log Yije , 2
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Figure 3. UDA with the proposed Masked Image Consistency
(MIC). In UDA, a network is typically trained with a supervised loss
on the source domain (blue) and an unsupervised adaptation loss on
the target domain (green). MIC enforces the consistency between
predictions of masked target images (purple) and pseudo-labels
that are generated based on the complete image by an exponential
moving average (EMA) teacher. To minimize the MIC loss, the
network has to learn to infer the predictions of the masked regions
from their context.

where H=W=1 in case of classification. For object de-
tection, a box regression and a box classification loss are
commonly utilized [58].

However, a model trained on the source domain usu-
ally experiences a performance drop when applied to an-
other domain. Therefore, unsupervised domain adaptation
(UDA) methods use unlabeled images from the target do-
main X7 = {mf}kN:Tl to adapt the network. For that purpose,
an additional unsupervised loss for the target domain £7 is
added to the optimization problem with a weight A

1 & 1 &
oL s, L T pT
m;nNS;£k+NT];/\ ch . 3)

The target loss £ is defined according to the UDA strat-
egy such as adversarial training [8, 19, 57,73, 74, 78] or
self-training [30,53,72,89,90,97].

3.2. Masked Image Consistency (MIC)

To recognize an object (or stuff region), a model can uti-
lize clues from different parts of the image. This can be
local information, which originates from the same image
patch as the corresponding cell in the feature map, or context
information, which comes from surrounding image patches
that can belong to different parts of the object or its envi-
ronment [33]. Many network architectures [16, 26] have
the capability to integrate both local and context informa-
tion in their features. While the learning of context clues
can be guided by ground truth in supervised learning, there
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is no ground truth supervision available for the target do-
main in UDA. Current unsupervised losses are not powerful
enough to enable effective learning of context clues as empir-
ically observed such as in Fig. 1 a). Therefore, we propose
to specifically encourage the learning of context relations
on the target domain to provide additional clues for robust
recognition of classes with similar local appearances.

In order to facilitate the learning of context relations on
the target domain, we introduce a Masked Image Consistency
(MIC) module, which can be easily plugged into various
existing UDA methods. The domain adaptation process with
MIC is illustrated in Fig. 3 and explained below.

MIC withholds local information by randomly masking
out patches of the target image. For that purpose, a patch
mask M is randomly sampled from a uniform distribution
=[v>r]

-/\/l’rnb-‘rl:(m-‘,—l)b7 with v ~ Z/[(O, 1) 5 (4)

nb+1:(n+1)b

where [-] denotes the Iverson bracket, b the patch size, r the
mask ratio,andm € [0 .. W/b—1],n € [0 .. W/b— 1] the
patch indices. The masked target image 2 (see Fig. 3) is
obtained by element-wise multiplication of mask and image

M =Mo", (5)

The masked target prediction §* can only use the limited
information of the unmasked image regions

jM = fo(xM), (6)

making the prediction more difficult. This is also reflected
in Fig. 3, where the prediction misses a part of the sidewalk.
In order to train the network to use the remaining context
clues to still reconstruct the correct label without access to
the entire image, the MIC loss LM is introduced

LM =" H(GY, p"), (7)

where p” denotes a pseudo-label and ¢” its quality weight.
MIC uses pseudo-labels as there is no ground truth available
for the target domain. The pseudo-label is the prediction of
a teacher network g, of the complete target image 2. For
image classification and semantic segmentation,

pg els/sed — o = arg maxg¢( TYijer] - 8)

For object detection pseudo-labels, box predictions from
gs(xT) are filtered with a confidence threshold ¢ and non-
maximum suppression [58].

The teacher network gy is implemented as an EMA
teacher [71]. Its weights are the exponential moving av-
erage of the weights of fy with smoothing factor «

i1 < ady + (1 — a)by, )

where ¢ denotes a training step. The EMA teacher re-
alizes a temporal ensemble of previous student models
fo [71], which increases the robustness and temporal sta-
bility of pseudo-labels. It is a common strategy used in
semi-supervised learning [17,29,71] and UDA [1,30,31,72].
As the teacher is updated based on the student fy, it will
gradually obtain the enhanced context learning capability
from fp. In contrast to the student fy, the teacher g, has
privileged access to the original image 27 (see Eq. 8), so that
it can use both the context and the intact local appearance
information to generate pseudo labels of higher quality.

As the pseudo-labels are potentially wrong (especially at
the beginning of the training), the loss is weighted by the
quality estimate ¢”'. For image classification, we use the
maximum softmax probability as certainty estimate [91]

qT,ClS — H}:E}Xg¢(IT)(-/ . (10)

For semantic segmentation, we follow [30,31,72] and utilize
the ratio of pixels exceeding a threshold 7 of the maximum
softmax probability

H w
T,seg _ 2z Zj:ﬂmaxd 9o(

, ") jery > 7]
q H-W '

Y
And for object detection, we apply the quality estimate from
Eq. 10 to each bounding box in the classification branches.

The MIC consistency training can be easily integrated
into the UDA optimization problem

1 &
mln — Z Ly NT ;(/\Tﬁg

4. Experiments

+AM LMy o (12)

4.1. Implementation Details

Semantic Segmentation: We study synthetic-to-real, clear-
to-adverse-weather, and day-to-nighttime adaptation of street
scenes. As synthetic datasets, we use GTA [59] containing
24,966 images and Synthia [60] with 9,400 images. As real-
world datasets, we use Cityscapes (CS) [10] consisting of
2,975 training and 500 validation images for clear weather,
DarkZurich [65] with 2,416 training and 151 test images for
nighttime, and ACDC [66] containing 1,600 training, 406
validation, and 2,000 test images for adverse weather (fog,
night, rain, and snow). The training resolution follows the
used UDA methods (e.g. half resolution for DAFormer [30]
or full resolution for HRDA [31]).

We evaluate MIC based on a DAFormer network [30]
with a MiT-B5 encoder [83], and a DeepLabV2 [5] with a
ResNet-101 [26] backbone. All backbones are initialized
with ImageNet pretraining. In the default UDA setting, we
follow the HRDA [3 1] multi-resolution self-training strategy
and training parameters, i.e. AdamW [51] with a learning
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rate of 6x 1075 for the encoder and 6x 10~ for the decoder,
40k training iterations, a batch size of 2, linear learning rate
warmup, a loss weight \1,=1, an EMA factor a=0.999,
DACS [72] data augmentation, Rare Class Sampling [30],
and ImageNet Feature Distance [30]. For adversarial train-
ing and entropy minimization, SGD with a learning rate of
0.0025 and AT, =T ,=0.001 is used.

Image Classification: We evaluate MIC on the VisDA-2017
dataset [56], which consists of 280,000 synthetic and real im-
ages of 12 classes, as well as the Office-Home dataset [75],
which contains 15,500 images from 65 classes for the do-
mains art (A), clipart (C), product (P) and real-world (R).
We conduct the experiments with ResNet-101 [26] and ViT-
B/16 [16]. For UDA training, we follow SDAT [57], which
utilizes CDAN [48] with MCC [36] and a smoothness en-
hancing loss [57]. We use the same training parameters, i.e.
SGD with a learning rate of 0.002, a batch size of 32, and a
smoothness parameter of 0.02.

Object Detection: For object detection UDA, we evaluate
MIC on CS [10] to Foggy CS [64]. The experiments are
performed based on Faster R-CNN [58] with ResNet-50 [26]
and FPN [46]. For UDA, we adopt SADA [8], which utilizes
adversarial training on image and instance level. The same
parameters as in [8] are used, i.e. 0.0025 initial learning
rate, 60k training iterations, A7, =0.1, and a batch size of
2. Following previous works [8,61], we report the results in
mean Average Precision (mAP) with a 0.5 IoU threshold.
MIC Parameters: MIC uses a patch size b=64, a mask
ratio r=0.7, a loss weight A\M =1, an EMA weight a=0.999
following [30,31], and color augmentation (brightness, con-
trast, saturation, hue, and blur) following the parameters

of [30,31,72]. We set the pseudo-label box threshold =0.8
following [13,44] and the quality threshold 7=0.968 follow-
ing [30,31,72]. If a UDA method trains with half resolu-
tion [8,30,72,73,76], the patch size is divided by 2. For

image classification and object detection, we use o=0.9.
For object detection, we reduce the mask ratio r=0.5 as the
objects of interest are more sparse and a high r increases
the risk that they are completely masked out. For target do-
mains with nighttime images (DarkZurich and ACDC), we
forgo color augmentation as it can corrupt the content of dark
nighttime images due to the locally already low brightness
and contrast. The experiments are conducted on an RTX
2080 Ti or a Titan RTX depending on the required memory.

4.2. MIC for Semantic Segmentation

First, we combine MIC with different UDA methods
and network architectures for semantic segmentation on
GTA—CS. Tab. 1 shows that MIC achieves consistent and
significant improvements across various UDA methods with
different network architectures, ranging from +1.2 up to
+4.7 mloU. Specifically, MIC does not only benefit powerful
Transformers such as DAFormer [30] but also CNNs such

Table 1. Segmentation performance (mloU in %) of MIC with
different UDA methods on GTA—CS.

Network UDA Method w/o MIC  w/MIC Diff.
DeepLabV2 [5]  Adversarial [73] 44.2 48.2 +4.0
DeepLabV2 [5]  Entropy Min. [76] 44.3 49.0 +4.7
DeepLabV2 [5] DACS [72] 53.9 56.0 +2.1
DeepLabV2 [5]  DAFormer [30] 56.0 59.4 +3.4
DeepLabV2 [5] HRDA [31] 63.0 64.2 +1.2
DAFormer [30]  DAFormer [30] 68.3 70.6 +2.3
DAFormer [30] HRDA [31] 73.8 759 +2.1

as DeepLabV2 [5]. Across UDA methods, the performance
improvement decreases with a higher UDA performance as
expected due to performance saturation.

Second, we evaluate the performance of MIC combined
with the best-performing UDA method HRDA [3 1] for fur-
ther domain adaptation scenarios: synthetic-to-real (GTA—
CS and Synthia—CS), day-to-nighttime (CS—DarkZurich),
and clear-to-adverse-weather (CS—ACDC). Tab. 2 shows
clear performance improvements on each benchmark. Specif-
ically, MIC improves the state-of-the-art performance by
+2.1 mloU on GTA—CS, by +1.5 mloU on Synthia—CS,
by +4.3 mloU on CS—DarkZurich, and by +2.4 mIoU on
CS—ACDC. Considering the class-wise IoU in Tab. 2, MIC
achieves consistent improvements for most classes when
compared to the previous state-of-the-art method HRDA.
Classes that most profit from MIC are sidewalk, fence, pole,
traffic sign, terrain, and rider. These classes have a compara-
bly low UDA performance, meaning that they are difficult to
adapt. Here, context clues appear to play an important role
in successful adaptation. For some classes such as building
or vegetation on synthetic-to-real adaptation, MIC increases
the performance by a smaller margin, probably because the
target context clues play a smaller role for them. In a few
particular cases, the performance of single classes decreases
for MIC such as truck on CS—DarkZurich. These are rare
classes, which are underrepresented in the data, which might
cause MIC to pick up misleading context biases. The obser-
vations from Tab. 2 are also reflected in the example predic-
tions in Fig. 4. While previous methods often recognize only
parts of ambiguous regions, MIC fixes these issues by using
correctly detected parts as context. For instance, the grille of
the bus in Fig. 4 resembles a traffic cabinet (building). How-
ever, a cabinet between two vehicles is unlikely. Probably
using this context prior, MIC can resolve the ambiguity.

4.3. MIC for Image Classification

For image classification UDA, we combine MIC with the
state-of-the-art method SDAT [57]. On VisDA-2017 (Tab. 3),
MIC significantly improves the UDA performance by +2.5
and +3.0 percent points when used with a ResNet and ViT
network, respectively The improvement is consistent over
almost all classes, where difficult classes generally benefit
the most. On Office-Home (Tab. 4), MIC clearly improves
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Table 2. Semantic segmentation performance (IoU in %) on four different UDA benchmarks.

Method [Road S.walk Build. Wall Fence Pole TrLight Sign Veget. Terrain Sky Person Rider Car Truck Bus Train M.bike Bike [ mloU

Synthetic-to-Real: GTA — Cityscapes (Val.)
ADVENT [76] | 89.4 33.1 810 266 268 272 335 247 839 367 788 587 305 848 385 445 1.7 31.6 324 | 455
DACS [72] 89.9 397 879 307 395 385 464 528 88.0 440 888 672 358 845 457 502 0.0 273 340 52.1
ProDA [89] 87.8 560 797 463 448 456 535 535 88.6 452 821 707 392 888 455 594 1.0 489 564 | 575
DAFormer [30] | 95.7 702 894 535 48.1 496 558 594 899 479 925 722 447 923 745 782 65.1 559 61.8| 683
HRDA [31] 9.4 744 910 61.6 515 571 639 693 913 484 942 79.0 529 939 841 857 759 639 67.5]| 73.8
MIC (HRDA) | 974 801 91.7 612 569 597 660 713 91.7 514 943 798 561 946 854 903 804 645 685 | 75.9

Synthetic-to-Real: Synthia— Cityscapes (Val.)

ADVENT[/6] | 856 422 797 87 04 250 54 81 804 — 841 579 1238 733 - 364 - 142 330 412
DACS [72] 80.6 251 819 215 29 372 227 240 837 - 908 67.6 383 829 - 389 - 285 476 483
ProDA [89] 878 457 846 37.1 06 440 546 370 881 - 844 742 243 882 - SLI - 405 456 555
DAFormer [30] | 84.5 407 884 415 65 500 550 546 860 - 898 732 482 872 - 532 - 539 617 60.9
HRDA [31] 852 477 888 495 48 572 657 609 853  — 929 794 528 89.0 - 647 - 639 649 65.8
MIC (HRDA) | 866 505 893 479 78 594 667 634 871 - 946 810 589 901 - 619 - 671 643 67.3

Day-to-Nighttime: Cityscapes— DarkZurich (Test)
ADVENT [/6] | 85.8 379 555 27.7 145 23.1 140 21.1 321 8.7 20 399 166 640 138 0.0 588 285 20.7| 29.7
MGCDAT [65] | 803 493 662 7.8 110 414 389 390 64.1 180 558 52.1 535 747 660 00 375 291 227 425
DANNetf [81] | 90.0 540 748 41.0 21.1 250 268 302 720 262 840 470 339 682 190 03 664 383 23.6| 443
DAFormer [30] | 93.5 655 733 394 192 533 44.1 44.0 595 345 666 534 527 821 527 95 893 505 385 538
HRDA [31] 904 563 720 395 195 578 527 431 593 291 705 600 586 84.0 755 11.2 90.5 51.6 409 | 559
MIC (HRDA) | 948 750 840 551 284 620 355 526 592 468 700 652 61.7 82.1 642 185 913 52.6 44.0 | 60.2

Clear-to-Adverse-Weather: Cityscapes—ACDC (Test)
ADVENT [760] | 729 143 405 166 212 93 174 212 6338 23.8 183 326 195 695 362 345 462 269 36.1| 32.7
MGCDAT [65] | 734 287 699 193 263 368 530 533 754 320 846 510 261 77.6 432 459 539 327 415 487
DANNet' [81] | 843 542 77.6 380 300 189 416 352 713 394 86.6 487 292 762 416 43.0 586 326 439 50.0
DAFormer [30] | 584 51.3 84.0 427 351 507 300 570 7438 528 513 583 326 827 583 549 824 441 50.7| 554
HRDA [31] 883 579 88.1 552 367 563 629 653 742 577 859 68.8 457 885 764 824 877 527 604 | 68.0
MIC (HRDA) | 90.8 67.1 89.2 545 40.5 572 620 684 76.3 61.8 87.0 713 494 89.7 757 868 89.1 569 63.0| 70.4

t Method uses additional daytime/clear-weather geographically-aligned reference images.

Image DAFormer [30] HRDA [31] MIC (HRDA) Ground Truth

truck  bus train m.bike bike n/a.

road build. | wall tr. light tr. sign [[NEEEH terrain rider

Figure 4. Qualitative comparison of MIC with previous methods on GTA—CS (row 1 and 2), CS—ACDC (row 3), and CS—DarkZurich
(row 4). MIC better segments difficult classes such as sidewalk, fence, traffic sign, and bus. Further examples are shown in the supplement.

the UDA performance by +1.9. Domains that are difficult MIM reduces the performance by -1.4. This demonstrates
to adapt such as A~C or P~C benefit most. Tab. 3 further that naive MIM as additional pretraining is not sufficient to
provides a baseline of SDAT with MAE [25] pretraining, capture the relevant target context dependencies, probably
which includes masked image modeling (MIM) and Ima- as the learned context is specific to ImageNet and does not
geNet supervision. Compared to regular SDAT, additional transfer well to the target domain.
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Table 3. Image classification accuracy in % on VisDA-2017 for UDA. The last column contains the mean across classes.

Method [ [Plane Bcycl Bus Car Horse Knife Mcyle Persn Plant Sktb Train Truck [ Mean
CDAN [48] | 82 669 830 508 842 749 8.1 745 834 760 819 38.0 | 73.9
MCC [36] > | 881 803 805 71.5 90.1 932 850 716 894 738 850 369 | 788
SDAT [57] é 958 855 769 69.0 935 974 8.5 782 93.1 916 863 553 | 843
MIC (SDAT) 96.7 885 842 743 960 963 90.2 812 943 954 889 56.6 | 869
TVT [87] 929 856 775 605 936 982 893 764 93.6 92.0 91.7 557 | 839
CDTrans [85] 97.1 90.5 824 775 96.6 96.1 936 886 979 869 903 62.8 | 88.4
SDAT [57] E|o84 909 854 8.1 985 976 963 861 962 967 929 568 | 89.8
SDAT w/ MAE [25] 97.1 884 809 753 954 979 943 855 958 91.0 93.0 654 | 834
MIC (SDAT) 99.0 933 86.5 87.6 989 990 972 898 989 989 965 68.0 | 92.8

Table 4. Image classification acc. in % on Office-Home for UDA.

Method

CDTrans [85]
TVT [87]
SDAT [57]
MIC (SDAT)

[A-C A>P A>R C>A C-P C>R P~A P>C P>R R~A R~C R+P[Avg

63.8 85.0 86.0 815 87.1 87.3 79.6 63.3 83.2 82.0 66.0 90.6|30.5
74.9 86.8 89.5 82.8 87.9 88.3 79.8 71.9 90.1 85.5 74.6 90.6|83.6
70.8 87.0 90.5 85.2 87.3 89.7 84.1 70.7 90.6 88.3 75.5 92.1/84.3

80.2 87.3 91.1 87.2 90.0 90.1 83.4 75.6 91.2 88.6 78.7 91.4|86.2

Table 5. Object detection AP in % on CS—Foggy CS.

Method [Bus Beycl Car Mcycle Persn Rider Train Truck [ mAP
DAFaster [7] [29.2 404 434 19.7 383 285 237 32.7 320
SW-DA [61] |31.8 443 489 21.0 438 28.0 289 358 353
SC-DA [96] |33.8 42.1 52.1 26.8 425 265 292 345 (359
MTOR [4] 38.6 356 44.0 283 30.6 414 40.6 219 |35.1
SIGMA [42] |50.4 40.6 60.3 317 440 439 515 316|442
SADA[S] |503 454 621 324 485 526 315 295 |44.0
MIC (SADA) 524 47.5 67.0 40.6 509 553 33.7 339 |47.6

4.4. MIC for Object Detection

For object detection UDA, we combine MIC with the
state-of-the-art Scale-aware Domain Adaptive Faster-RCNN
(SADA) [8]. On CS—Foggy CS (Tab. 5), MIC obtains
consistent improvements over all categories and achieves
+3.6 mAP gain compared to the baseline SADA. The classes
car, motorcycle, and rider benefit the most. MIC also shows
a clear advantage for most categories compared to more
recent methods such as SIGMA [42].

4.5. In-Depth Analysis of MIC

Context Utilization: To verify that MIC has learned context
priors on the target domain, we mask out an image patch, let
the trained model predict the semantics of the patch from
the visible context, and calculate the mIoU for the patch. As
the patch is masked out, the model can only utilize context
information to infer its semantics. We repeat this process for
all non-overlapping patches of the size 256 x 256 in the CS
val. set. MIC(HRDA) achieves a strong context performance
of 52.5 mloU on GTA—CS while HRDA only reaches 22.8
mloU, showing that MIC indeed enhances context learning.
To further illustrate the learned comprehensive context re-
lations, we visualize predictions of masked images in Fig. 5.
It shows the learned context priors of helmet and bicycle,
which MIC internally exploits to predict the rider’s body.
Where to apply MIC? Tab. 6 shows the performance of
MIC with HRDA using images from different domains as

a) Only a local patch is visible
— Rider is confused with ‘pedestrian’

b) Only context above the patch is visible
— Rider’s body is predicted from helmet

c) Only context below the patch is visible
— Rider’s body is predicted from bicycle

d) The entire image is visible
— All local and context clues can be used

Figure 5. Predictions of MIC for masked variants of the same
image demonstrating the learned context priors of MIC.

Table 6. MIC with HRDA [31] for images from different domain.

MIC Domain ~ mloUg7a-cs  mloUgssacpe(val
- 73.8 65.3
Source 71.1 66.5
Target 75.9 66.9
Source+Target 74.5 68.0

masked input: (1) source, (2) target, and (3) both source and
target. We observe that: for (1) the performance is -2.7 mloU
worse than HRDA for GTA—CS but it increases by +1.2
mloU for CS—ACDC, for (2) the performance increases by
+2.1 for GTA—CS and +1.6 mloU for CS—ACDC, and for
(3) the mloU increases by +0.7 for GTA—CS and +2.7 for
CS—ACDC. Both benchmarks differ in the domain gap of
context relations. While the distributions of context relations
can vary between synthetic (GTA) and real data (CS), the
context relations of CS and ACDC are very similar as both
datasets were recorded in the real world and partly even in
the same city. If the context domain gap is large, context
relations learned on source images do not transfer well to
the target domain and can even hamper the adaptation. How-
ever, if the context gap is small, source context relations
transfer well to the target domain and can boost the adap-
tation performance. Therefore, we also apply MIC to the
source domain, in addition to the default target domain, for
clear-to-adverse-weather and day-to-nighttime adaptation.
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Table 7. MIC ablation study with DAFormer [30] on GTA—CS.

Masked Img. Color Aug. EMA Teacher Pseudo Lbl. Weight mloU

1 - - - - 68.3
2 v v v v 70.6
3 - v v v 50.6
4 v - v v 70.3
5 v v - v 69.9
6 v v v - 69.0

Table 8. Parameter study of the patch size b and the mask ratio r of
MIC with DAFormer [30] on GTA—CS. The color indicates the
difference to the DAFormer performance of 68.3 mloU.

Mask Ratio r
0.3 0.5 0.7 0.9
o 32/ 693 69.9 69.7 69.3
5 64 69.2 69.7
5 128 68.7 0.4 68.2
[ 256 66.2 69.5 69.8 68.0

Table 9. Comparison of UDA on GTA—CS and supervised training
on CS. “Rel.” indicates mIoUypa /mIoUgyper .

mloUyps  mloUgpen,  Rel.
DAFormer [30] 68.3 77.6 88.0%
MIC (DAFormer)  70.6 77.9 90.6%
Improvement +2.3 +0.3 +2.6%

Component Ablation: To gain further insights, we ablate
the components of MIC and evaluate the performance with
DAFormer [30] (due to the faster training) on GTA—CS
in Tab. 7. The complete MIC achieves 70.6 mIoU (row 2),
which is +2.3 mloU better than DAFormer (row 1). First,
the masking of the image is ablated, meaning that the con-
sistency training is done with unmasked but still augmented
target images (see “MIC Parameters” in Sec. 4.1). Without
masking out image patches, the performance heavily de-
creases by -20.0 mloU (cf. rows 2 and 3). On the other side,
color augmentation is not essential for MIC as its ablation
only reduces the performance by -0.3 mloU (cf. rows 2 and
4). This demonstrates the importance of context learning
with masked images. Replacing the EMA predictions with
the regular model predictions decreases the performance of
MIC by -0.7 mIoU (cf. rows 2 and 5). Without the pseudo-
label confidence loss weight, the mloU drops by -1.6 (cf.
rows 2 and 6) showing that it is important to reduce the
weight of uncertain samples for MIC training.

Patch Size and Mask Ratio: Tab. 8 shows the influence
of the mask patch size b and mask ratio . Compared to
DAFormer, MIC achieves significant improvements in a
range of b between 64 and 128 and r between 0.5 and 0.7.
The best performance is achieved for b=64 and r=0.7. Only
for a very large b of 256, which is a quarter of the image
height, MIC decreases the performance. Note that b is inter-
nally divided by 2 as DAFormer uses half resolution.

MIC for Supervised Training: We compare the UDA and
the supervised performance of DAFormer with and without

Table 10. Runtime and memory consumption during training and
inference on an RTX 2080 Ti (row 1-4) or Titan RTX (row 5-6).

Training Inference
Throughput GPU Memory Throughput GPU Memory

Adversarial [73] 1.40 it/s 5.38 GB 11.2 img/s 0.5 GB
MIC (Adversarial)  0.81 it/s 5.55GB 11.2 img/s 0.5 GB
DAFormer [30] 0.711it/s 9.64 GB 8.6 img/s 1.0 GB
MIC (DAFormer) 0.57 it/s 9.74 GB 8.6 img/s 1.0GB
HRDA [31] 0.36 it/s 22.46 GB 0.8 img/s 9.4 GB
MIC (HRDA) 0.29 it/s 22.55GB 0.8 img/s 9.4 GB

MIC in Tab. 9. Also for supervised training, MIC achieves
a slight improvement of +0.3 mloU. However, the improve-
ment for UDA is much more significant with +2.3 mloU,
showing that MIC is particularly useful for UDA. Therefore,
MIC is able to increase the relative UDA performance (col-
umn “Rel”) by +2.6 percent points, so that UDA with MIC
achieves remarkable 90.6% of the performance of a network
trained with full supervision on the target domain.
Runtime/Memory: Tab. 10 shows the runtime and GPU
memory footprint of representative UDA methods with and
without MIC. For methods without an EMA teacher such
as adversarial training, MIC reduces training speed by 75%
due to the additional calculations for MIC and increases the
GPU memory consumption by 3% due to the EMA teacher.
The memory increase is small as the loss terms £5, LT, and
LM are backpropagated separately. For UDA methods that
already use an EMA teacher such as DAFormer or HRDA,
the teacher and its predictions can be re-used, so that the
training speed only increases by 24% and the memory foot-
print by 1%. Importantly, MIC is only used during training
and does not increase the inference time at all.
Supplement: The supplement provides results on CS—
FoggyZurich, further results of MIC with DAFormer and
HRDApeepLabv2, additional parameter and behavior studies,
an extended qualitative analysis, and further discussions.

5. Conclusions

In this paper, we presented Masked Image Consistency
(MIC), a UDA module to improve the learning of target do-
main context relations. By enforcing consistency of predic-
tions from partly masked and complete images, the network
is trained to utilize robust context clues. MIC can be uti-
lized for UDA across various visual recognition tasks such
as image classification, semantic segmentation, and object
detection as well as multiple domain adaptation scenarios
such as synthetic-to-real, clear-to-adverse-weather, and day-
to-nighttime. In a comprehensive evaluation, we have shown
that MIC achieves significant performance improvements
in all of these UDA tasks. For instance, MIC respectively
improves the state-of-the-art performance by +2.1 and +3.0
on GTA—CS and VisDA-2017. We hope that, due to its
simplicity, MIC can be used as part of future UDA methods
to narrow the gap between UDA and supervised learning.
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