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Abstract

We present novel solutions to previously unsolved prob-
lems of relative pose estimation from images whose calibra-
tion parameters, namely focal lengths and radial distortion,
are unknown. Our approach enables metric reconstruction
without modeling these parameters. The minimal case for
reconstruction requires 13 points in 4 views for both the
calibrated and uncalibrated cameras. We describe and im-
plement the first solution to these minimal problems. In the
calibrated case, this may be modeled as a polynomial sys-
tem of equations with 3584 solutions. Despite the apparent
intractability, the problem decomposes spectacularly. Each
solution falls into a Euclidean symmetry class of size 16,
and we can estimate 224 class representatives by solving a
sequence of three subproblems with 28, 2, and 4 solutions.
We highlight the relationship between internal constraints
on the radial quadrifocal tensor and the relations among
the principal minors of a 4× 4 matrix. We also address the
case of 4 upright cameras, where 7 points are minimal. Fi-
nally, we evaluate our approach on simulated and real data
and benchmark against previous calibration-free solutions,
and show that our method provides an efficient startup for
an SfM pipeline with radial cameras.
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Figure 1. Four-view Structure-from-Motion with 1D radial
cameras. A radial camera projects a 3D point onto a radial line
passing through its pinhole projection.

1. Introduction

Determining the relative position and orientation of two
or more cameras is a classical problem in computer vi-
sion [33]. It appears in the back-end of many vision sys-
tems, usually to initialize SLAM [54] or further reconstruc-
tion in Structure-from-Motion [70]. Much effort has been
concentrated on the development of methods for 3D recon-
struction using perspective cameras with various additional
lens distortion models [1, 52, 70].
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1.1. Motivation

Any type of geometric estimation usually requires know-
ing the intrinsic calibration, i.e., the mapping from pix-
els in the image to the directions of the incoming viewing
rays. If the intrinsic parameters are unknown, so-called self-
calibration [26] can be attempted where the camera extrin-
sic and intrinsic calibration are jointly estimated. Histori-
cally, this is done in a stratified approach where a projective
reconstruction is first obtained followed by a metric upgrade
step [33]. These approaches are usually limited in the com-
plexity of the cameras that can be handled; often making
the assumption of pure pinhole projection.

An orthogonal line of work aims to recover camera ex-
trinsics without estimating intrinsics. Assuming that the
camera is radially symmetric (unit aspect ratio and distor-
tion that only varies radially), it is possible to extract geo-
metric constraints on camera poses that are invariant to fo-
cal length or radial distortion. The idea, first introduced
by Tsai [78], is to only consider the angle and ignore the
radius for each projection, essentially projecting 3D points
onto radial lines in the image. Enforcing that the radial line
pass through the 2D keypoint then yields a geometric con-
straint on both the 3D point and the camera pose (excluding
the pure forward translation). In this context, the camera
(mapping from 3D point to radial line) is referred to as a 1D
radial camera [47, 76]. Mathematically, this gives a per-
spective camera from P3 to P1, illustrated in Figure 1.

Radial cameras bring an important alternative to classi-
cal uncalibrated (radially distorted) pinhole cameras. With
radial cameras, we can completely avoid (auto-)calibrating
complicated radial distortion models (and focal lengths) of
all cameras involved, just by using 4 instead of 2 cameras
in 3D reconstruction initialization.

1.2. Contribution

Motivated by the 1D radial construction above, we study
problems from the multi-view geometry of P3 99K P1 cam-
eras. In particular, we consider problems containing four
images (the minimum number where constraints can be ob-
tained in a general configuration). Solving these problems
allows us to effectively perform metric reconstruction for
cameras with unknown radial distortion under very weak
assumptions on the distortion, namely that it is radially sym-
metric and centered in the image.

We provide three main technical contributions. First,
we formulate 13-point calibrated minimal problem for 4 ra-
dial cameras and, guided by computational Galois theory,
show that this (seemingly) hard problem with 3584 com-
plex solutions decomposes into subproblems with 28, 2,
and 4 solutions, among which the minimal case for uncal-
ibrated cameras also appears. We present a parallel study
for the 7-point minimal problem for upright radial cam-
eras. Secondly, we present the internal constraints on the

Camera model Method # cam. # pts

P3
99
K
P2 Uncalibrated Linear [34] 2 8

Uncalibrated Minimal [38] 2 7
Calibrated Minimal [58] 2 5
Upright Minimal [29] 2 3

P3
99
K
P1

Uncalibrated Linear / Minimal [75] 3∗ 7
Calibrated Minimal [47] 3∗ 6

Uncalibrated Linear [75] 4 15
Uncalibrated Minimal [OURS] 4 13
Calibrated Minimal [OURS] 4 13
Upright Minimal [OURS] 4 7

∗ Requires intersecting principal axis or planar scene.

Table 1. Comparison between relative pose solvers. OURS in-
clude the first minimal solvers for general 1D radial cameras.

radial quadrifocal tensor and show that they are given by
non-trivial relations among the principal minors of a 4 × 4
matrix derived in [39, 53, 55]. Finally, based on the pre-
vious theoretical contributions, we design and implement
stable and practical (78 & 18 ms runtime) Homotopy Con-
tinuation (HC) minimal solvers and show their quality in
simulated and real experiments. We show that our solvers
provide efficient initialization of the radial camera 3D re-
construction pipeline [47]. This provides previously miss-
ing piece for building an efficient radial camera 3D recon-
struction pipelines.

2. Related work

One of our contributions is to fill a gap in the vision lit-
erature by describing and implementing, for the first time,
minimal solutions for radial camera relative pose in the un-
calibrated, calibrated, and upright cases. To put our work in
context, we present in Table 1 a comparison with methods
for relative pose estimation in the classical case of cameras
P3 99K P2 as well as the radial cameras P3 99K P1 studied
here. We also note that there are several works studying the
multifocal constraints and minimal problems associated to
cameras P2 99K P1, including [17, 27, 49, 65, 66, 69]. No-
tably, the existence of inequivalent projective reconstruc-
tions for cameras P2 99K P1 was observed in [65]. This ob-
servation was generalized to cameras Pn 99K P1 using the
formalism of Grassmann tensors [31, 32]. Initial studies of
quadrifocal tensors appeared in [72],[33, Ch. 17], and radial
multifocal tensors were introduced in [75]. A connection
between a flat-landers’s quadrifocal tensor and principal mi-
nors was made in [59], which also studied the relations on
quadrifocal tensors. Equations for the radial quadrifocal
tensor were explicitly described in [48], and some of these
relations were discovered in 1897, in work of Nanson [55].

Minimal problems and their solvers play an outsized
role in structure-from-motion and other geometric problems
from vision [5, 6, 11, 12, 23, 24, 40, 43, 44, 51, 56, 64, 68, 79].

28991



For our purposes, a minimal problem is a system of equa-
tions that is polynomial in both measurements and certain
unknown quantities, and which has an exact solution for
generic, random, or noisy measurements. The inherent dif-
ficulty of solving polynomial systems of equations presents
a challenge for developing minimal solvers. For many tasks,
state-of-the art methods [6, 46, 50] based on symbolic com-
putation offer efficient and stable solutions suitable for use
within RANSAC [28, 67].

A common element shared by many minimal solvers
is that they first compute all solutions over the complex
numbers C, despite the fact that only real solutions are
of interest. They also often exploit a key property of
any minimal problem: namely, that the number of com-
plex solutions is constant over a dense subset of the
space of measurements. This property is also often ex-
ploited by homotopy continuation (HC) methods, which
have been applied to problems from vision in several recent
works [8, 14, 19–21, 24, 25, 36, 40, 42].

Two major obstacles to solving any minimal problem
are 1. when the number of complex solutions is too large,
and 2. when the polynomials themselves are too large.
To get around the first obstacle, a “pick & solve” frame-
work from recent work [40] proposes picking one HC start
solution with a shallow neural network. This approach
was observed to give runtimes suitable for RANSAC for
certain tasks. Its main drawback is that the method is
inherently local, and will likely fail for a large propor-
tion of RANSAC samples. In contrast, tracking all HC
paths over the complex numbers is globally convergent with
probability-one [73, Thm. 7.1.1], and may be viable for
problems where symbolic solutions are lacking. We offer
a substantial contribution towards the challenge of improv-
ing the performance of HC when applied to these problems.

The second obstacle mentioned above is also relevant to
our work. As we explain in Section 4, the internal con-
straints of radial quadrifocal tensors are characterized by
718 polynomial equations of degree 12. This presents a
challenge to approaches based on symbolic computation.
However, with the appropriate setup, HC methods allow us
to work with only two of these equations.

Another important consideration is that minimal prob-
lems sometimes decompose into minimal subproblems or
possess various symmetries. A classical example of is that
of the five point problem, which decomposes as essential
matrix estimation followed by recovering a “twisted pair” of
camera matrices. Automatic detection of special classes of
symmetries is addressed in works such as [3,45]. In general,
decomposition of a minimal problem can be detected from
its Galois group, which can be heuristically computed with
HC [21, 37]. For the problems treated in this paper, knowl-
edge of the Galois group led us to discover various algebraic
simplifications. For 13 points in 4 views, we witness a dra-

matic simplification—3584 solutions in calibrated camera
matrices can be reduced to just 28 solutions in quadrifocal
tensors. Correspondingly, our minimal solver computes 28
solutions by tracking 28 HC paths, after which results are
lifted to camera matrices by solving equations of smaller
degree. Moreover, the Galois group contains the symmet-
ric group S28 as a subgroup, indicating that our approach
is algebraically optimal (cf. [4, 57].) Similarly, for the 7-
point problem the Galois group contains S25, and we track
an algebraically optimal 25 paths.

Our work shows that minimal estimation of the radial
quadrifocal tensor has a rich mathematical structure, which
was useful for developing the solutions presented herein.
However, understanding these connections is not necessary
to use or implement the solvers themselves, which we de-
scribe in Section 5.

3. Problem formulations
Throughout, Pn, or P(Rn+1), denotes the n-dimensional

projective space over the field of real numbers R. We use ∼
for equality up to a non-zero scale.

A radial camera [47, 75] may be defined to be a projec-
tive linear map P : P3 99K P1. Thus, a radial camera may
be represented by a 2 × 4 camera matrix. Abusing nota-
tion, we may also denote such a matrix by P , but keeping
in mind that any nonzero scalar multiple of P will repre-
sent the same map. Thus a radial camera P ∈ P(R2×4) has
2× 4− 1 = 7 degrees of freedom.

The radial camera P associates a world point in P3 with
the radial line passing through the center of distortion in an
image and the projection of the world point under the usual
pinhole model. The center of distortion may be assumed to
be [0 : 0 : 1] ∈ P2, so that the equation of the radial line is
parametrized by the projected image point [u : v : 1] ∈ P2

as a direction vector, thus giving a point l = [u : v] ∈ P1.
With these assumptions, a pinhole camera Ppin : P3 99K P2

can be associated with a radial camera P as follows:

P =

[
1 0 0
0 1 0

]
· Ppin. (1)

Suppose we image n points in P3 with four radial cam-
eras P1, P2, P3, P4, so that for each k = 1, . . . , n we obtain
a correspondence l1k, . . . , l4k ∈ P1. Representing each lik
as a 2× 1 vector, we have correspondence constraints

det

[
P1 l1k 0 0 0
P2 0 l2k 0 0
P3 0 0 l3k 0
P4 0 0 0 l4k

]
= 0, k = 1, . . . , n. (2)

These equations are homogeneous in each Pi and lik. The
2× 2× 2× 2 radial quadrifocal tensor [75], defined by

TP1,...,P4 [i, j, k, l] = (−1)i+j+k+l det

[
P1[i,:]
P2[j,:]
P3[k,:]
P4[l,:]

]
, (3)
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gives the coefficients of a quadrilinear form TP1,...,P4 on
(P1)4. Equation (2) becomes

TP1,...,P4(l1k, l2k, l3k, l4k) = 0, k = 1, . . . , n. (4)

For a given set of observations l ∈ (P1)4n, our task is to re-
cover the camera matrices (P1, . . . , P4) from n correspon-
dences up to natural ambiguities.

3.1. 13-point uncalibrated relative pose

In the uncalibrated case, we seek to recover the cam-
era matrices up to projective change of coordinates in the
world. In other words, we want to recover the cameras
(P1, . . . , P4) up to the action of the projective linear group
PGL4(R) = {H ∈ P(R4×4) | detH ̸= 0}. This group
acts (on the right) as H · (P1, . . . , P4) = (P1H, . . . , P4H).
Up to this group action, a generic 4-tuple of camera matri-
ces can be brought to a standard form as in Eq. (5) below
(see SM Proposition 2).

P1 =
[

1 0 0 0
p11 p11 p11 p11

]
, P2 =

[
0 1 0 0

p21 p22 p23 p24

]
,

P3 =
[

0 0 1 0
p31 p32 p33 p34

]
, P4 =

[
0 0 0 1

p41 p42 p43 p44

]
.

(5)

For n = 13 equations (2) we have 13 unknowns, and we ex-
pect finitely many solutions. Indeed, Gröbner basis compu-
tations show that equations have 56 solutions over the com-
plex numbers for generic data lij . However, as previously
observed in [32], four radial cameras are not uniquely de-
termined by their radial quadrifocal tensor. With respect to
the standard form (5), this 2-fold Hartley-Schaffilitsky sym-
metry is defined by

HS(P1) = P1, HS(P2) =
[

0 1 0 0
p21 p22

p21p32
p31

p21p42
p41

]
,

HS(P3) =
[

0 0 1 0
p31

p31p23
p21

p33
p31p43

p41

]
,

HS(P4) =
[

0 0 0 1
p41

p41p24
p21

p41p34
p31

p44

]
.

(6)

This may be understood as a rational map

HS : R13 99K R13,

(P1, . . . , P4) 7→ (HS(P1), . . . ,HS(P4)),

which defines a quadratic involution in the sense that
HS ◦HS equals the identity map for all points where
it is defined. Additionally, cameras (P1, . . . , P4) and
(HS(P1), . . . ,HS(P4)) determine the same radial quadri-
focal tensor. See [65] for a similar symmetry for cameras
P2 99K P1, and SM Eq. (30) for an alternate formula.

3.2. 13-point calibrated relative pose

We say a radial camera P is calibrated if Eq. (1) holds
for some calibrated pinhole camera Ppin. That is, if there

exists a matrix representing the radial camera of the form

P =

[
r⊤1 t1
r⊤2 t2

]
with r⊤1 r1 = r⊤2 r2 = 1, r⊤1 r2 = 0.

(7)
The matrix P in (7) has 5 = 3 + 2 degrees of freedom, as
can be seen from the (truncated) Cayley parametrization of
admissible (r⊤1 ; r

⊤
2 ) ∈ R2×3 ∼= R6, which is 1-1:

Cay : R3 99K R2×3

(x, y, z) 7→

[
1+x2−(y2+z2)

1+x2+y2+z2
2(xy−z)

1+x2+y2+z2
2(xz+y)

1+x2+y2+z2

2(xy+z)

1+x2+y2+z2
1+y2−(x2+z2)

1+x2+y2+z2
2(yz−x)

1+x2+y2+z2

]
.

(8)

In the calibrated case, we seek to recover the camera matri-
ces up to action of the similarity group,

S(3) =

{
H ∈ PGL4(R4×4)

∣∣∣∣H ∼
[
R t

0⊤ s

]
, R ∈ SO3(R)

}
.

(9)
Up to the S(3) action, we may assume the following stan-
dard form (see SM Proposition 3.)

P1 = [ 1 0 0 0
0 1 0 0 ] , P2 =

[
Cay(x2, y2, z2) e2

]
,

P3 =
[

Cay(x3, y3, z3) t3
]
,

P4 =
[

Cay(x4, y4, z4) t4
]
.

(10)

Once again, for n = 13 in Eq. (2), we have 13 equations
in 13 unknowns: xi, yi, zi, tj , i = 2, 3, 4, j = 3, 4. Using
monodromy to solve these equations (see eg. [18]), we find
that they have 3584 solutions over the complex numbers.
However, SM Proposition 4 shows that there is a group of
16 similarity transformations that preserve the set of solu-
tions. To “collapse” the orbits of this order-16 symmetry
group, we may consider an alternate formulation of the cal-
ibrated relative pose problem. The basic idea is to first solve
the uncalibrated problem, and then perform a metric up-
grade by estimating the dual absolute quadric [33, § 3.7].
The relevant ideas may be found in previous works such
as [13,47,77]. Briefly, if (P1, . . . , P4) is a 4-tuple of uncal-
ibrated radial cameras, the main task is to compute a 4 × 4
symmetric matrix Q such that

PkQP
⊤
k ∼ I, k = 1, . . . , 4,

det(Q) = 0.
(11)

Having computed such aQ, the metric upgrade proceeds by
computing an eigendecomposition

Q = V diag(λ21, λ
2
2, λ

2
3, 0)V

⊤, (12)

from which we obtain a calibrating homography

H = V diag(λ1, λ2, λ3, 1). (13)
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Proposition 1 (Metric upgrade, see SM Proposition 5). If
H in (13) has full rank, then all four transformed radial cam-
eras P1H, . . . , P4H are calibrated.

Thus, we may formulate the 13-point calibrated rela-
tive pose problem as solving the system of equations given
by (2) and (11), with cameras Pk given as in (5). Imposing
an additional affine-linear equation in Q to remove the scal-
ing ambiguity, this gives us a system of a polynomial equa-
tions with 224 = 4 · 56 solutions. This system of equations
has a “triangular” structure (cf. [10, § 2.3]): we can first
solve the uncalibrated problem, then perform a metric up-
grade for any resulting solution (P1, . . . , P4) ∈ P(R2×4)4.
This triangular structure is reflected in the Galois group—
see SM Section 7.2 for details.

3.3. 7-point upright relative pose

For the upright case, take xi = zi = 0 in (10):

P1(y, t) =
[

Cay(0, 0, 0) 0
]
,

P2(y, t) =
[

Cay(0, y2, 0) e2
]
,

P3(y, t) =
[

Cay(0, y3, 0) t3
]
,

P4(y, t) =
[

Cay(0, y4, 0) t4
]
.

(14)

Now, with only 7 unknowns, we expect that only 7 cor-
respondences are needed. Indeed, we find that equations (2)
now have only 50 complex solutions. Unlike the calibrated
case, where we can reduce to the uncalibrated case as a sub-
problem, the decomposition into subproblems is less dra-
matic. However, one of the 15 nontrivial symmetries from
the previous section, sending yi 7→ −yi and fixing transla-
tions, does specialize to the upright setting.

4. Internal constraints on quadrifocal tensors
Let us now describe internal constraints on radial quadri-

focal tensors. We exploit non-trivial results from mathe-
matical literature allowing us to arrive at a practical use of
seemingly very complicated polynomial identities.

4.1. General and calibrated case

Consider the map that associates 4-tuples of radial cam-
era matrices to their quadrifocal tensor:

Ψ : (P7)4 99K P15,

(P1, . . . , P4) 7→ TP1,...,P4 .

By analogy with well-known constraints characterizing es-
sential and fundamental matrices, the space of all valid
quadrifocal tensors must satisfy various constraints given
by polynomial equations. These constraints were studied
in mathematics more than a century ago [53, 55], albeit in
a different setting. Indeed, they can be understood as re-
lations on the principal minors of a 4 × 4 matrix X. The

study of relations among principal minors of various types
of matrices is an active area of research in mathematics and
computer science: see eg. [2, 39, 41, 48, 60].

To see the correspondence between radial quadrifocal
tensors and 4× 4 principal minors, note that by fixing four
points in P3, our camera matrices may take the form

P1 =
[ −1 0 0 0
x11 x12 x13 x14

]
, P2 =

[
0 −1 0 0

x21 x22 x23 x24

]
,

P3 =
[

0 0 −1 0
x31 x32 x33 x34

]
, P4 =

[
0 0 0 −1

x41 x42 x43 x44

]
.

(15)

With cameras as in (15), the tensor entry TP1,...,P4
[i, j, k, l]

is equal to the subdeterminant of X = (xij)1≤i,j≤4 ob-
tained by selecting as rows and columns the positions
of nonzero indices i, j, k, l. For example: the tensor en-
try TP1,...,P4 [1, 0, 1, 0] equals A13(X), the principal mi-
nor obtained by deleting rows 2 and 4 from X . Similarly,
TP1,...,P4

[0, 1, 1, 1] = A234(X), obtained by deleting row 1
from X. Under this correspondence, we see that the image
of Ψ is the image of the projective principal minor map,

Φ : R4×4 99K P15,

X 7→
[
AS(X) | S ⊂ {1, 2, 3, 4}

]
.

The image of the map Φ is a dense subset of a projec-
tive variety of dimension 13 and degree 28, which is cut out
by 718 linearly independent homogeneous polynomials of
degree 12. This accords with our minimal solver, which re-
quires 13 correspondences and must track 28 HC paths. We
refer to Section 7.3 for a detailed discussion.

Although 718 polynomials are needed to define the ra-
dial quadrifocal variety globally, only 2 = 15 − 13 are
needed to define it locally in a neighborhood of any generic
radial quadrifocal tensor. As remarked eg. in [40, SM § 16],
this means we only need 2 equations when running HC
from a set of 28 meaningful start solutions. The two equa-
tions we use are defined in terms of the Nanson matrix
N—see SM Equation (29). Expressing the Nanson matrix
in terms of T , we let fNanson(T ) = deth N[1 : 4, :], and
gNanson(T ) = deth N[2 : 5, :], where •h denotes homoge-
nization ([16, § 8.2]) with respect to the variable T0,0,0,0.

4.2. Upright case

Although calibration does not impose additional internal
constraints on the radial quadrifocal tensor, the same can-
not be said in the case of upright cameras. Here, we study
equations vanishing on the image of the map

Ψup : R7 99K P15,

(y2, y3, t31, t32, y4, t41, t42) 7→ TP1(y,t),...,P4(y,t).

where P1(y, t), . . . , P4(y, t) are parametrized as in Equa-
tion (14). Gröbner bases [16, § 3.3] let us compute equa-
tions vanishing on the image of Ψup. Here, we ended the
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computation early after finding eight relations: six are vari-
ables T0,0,0,0, T1,1,1,1, T1,1,1,0, T1,1,0,1, T1,0,1,1, T0,1,1,1,1,
and the others fup(T ), gup(T ) are homogeneous of degree 5.
In fact, these relations generate all polynomial constraints
on radial quadrifocal tensors—see SM Proposition 6.

5. Solvers
We now describe the construction of our minimal

solvers. All solvers use HC to compute solutions to

f1(x;dtarget) = · · · = fN (x;dtarget) = 0, (16)

where f1, . . . , fN are multivariate polynomial in unknowns
x ∈ CN and given target parameters dtarget ∈ RM . For both
the general and upright case, we consider an explicit formu-
lation where camera matrices are parametrized as in Eq. (5)
or Eq. (14), respectively, and an implicit formulation us-
ing internal constraints described in Section 4.1 or Sec. 4.2.
In all cases, we begin with a set of starting parameters
dstart ∈ CM and the algebraically optimal number of start-
ing solutions x1(0), . . . ,xd(0) ∈ CN . These start solutions
are precomputed offline using monodromy [18]. The homo-
topy function used in all cases is given by

H(x; t) =

[ f1(x;(1−t)dstart+tdtarget)

...
fN (x;(1−t)dstart+tdtarget)

]
= 0. (17)

Each starting solution xi(0) extends uniquely to a solution
curve xi(t) satisfying H(xi(t); t) = 0 for all t from 0 to
1, giving solutions to the target system (16) in the limit
t → 1−. Standard numerical predictor/corrector methods
allow us to approximate these solution curves. Our imple-
mentation is derived from the software MiNuS developed in
previous work of Fabbri et al. [24]. We refer to the text [73]
for further details on solving polynomial systems with HC.

For either of the explicit formulations, dtarget contains
the entries of a coefficient matrix expressing the linear con-
straints on the unknown tensor T in Equation (4). For
both implicit formulations, dtarget contains the entries of
tensors T1, T2, T3 spanning the nullspace of this coeffi-
cient matrix. Thus, the unknown quadrifocal tensor can
be written as T = x1T1 + x2T2 + T3, and N = 2,
x =

[
x1 x2

]
. For the general case, we use the system

fNanson(T ) = gNanson(T ) = 0 described in Section 4.1, and
in the upright we use fup(T ) = gup(T ) = 0.

5.1. 13 pt solver

For either formulation, we start our homotopies from
d = 28 complex start solutions. In the implicit formulation,
we note that although the system defined by two of Nan-
son’s equations has more than 28 complex solutions, any
extraneous solutions are not valid quadrifocal tensors and
do not need to be tracked. We discard all non-real solutions

among the 28 complex target solutions recovered by HC. To
recover at most 56 solutions in camera matrices, we apply
the map HS defined in Equation (6) when using the explicit
formulation (N = 13), and solve quadratic equations (see
SM Sec. 8 for details) when using the implicit formulation.
Having then recovered solutions in uncalibrated cameras,
we then perform the metric upgrade in Proposition 1 to re-
cover at most 224 solutions in calibrated cameras. Cam-
eras that do not satisfy chirality constraints [35] may be
discarded. From here, it would be possible to recover the
16 sets of Cayley parameters associated to each Euclidean
reconstruction. However, this is not necessary, since one
solution in a given symmetry class is chiral if and only if
they all are—see SM Proposition 4.

5.2. 7 pt upright solver

We start our homotopies with 25 complex start solutions
for both formulations, and obtain at most 25 real target so-
lutions. To recover at most 50 solutions in camera matrices,
we apply the symmetry (y2, y3, y4) 7→ (−y2,−y3,−y4)
when using the explicit formulation, and for the implicit
formulation we solve quadratic equations analagously to the
general case. No metric upgrade is necessary.

6. Experiments
Next, we present synthetic and real experiments demon-

strating the numerical stability, noise resistance, and practi-
cal use of our solvers.

6.1. Synthetic experiments

Numerical stability. To evaluate the numerical stability
of the solvers, we generate noiseless instances of the mini-
mal problems with their solutions. We sample n 3D points
Xk ∈ R3 from the the uniform distribution over the cube
[−1, 1] × [−1, 1] × [1, 3], generate 4 upright rotations Rj ,
and translations tj , project the point Xk into camera j as
xjk = RjXk + tj , and compute the radial line ljk pass-
ing through point xjk. We fix the coordinate system so that
R1 = I, t1 = 0, t2 ∼ e2.

Let Pj,GT be calibrated GT radial cameras, and Pj,est

calibrated estimated radial cameras. We calculate the tensor
error in the Frobenius norm ∥T{Pj,GT } − T{Pj,est}∥, where
T{Pj,GT }, T{Pj,est} are normalized quadrifocal tensors cal-
culated according to (3). We extract rotations Rj,GT , Rj,est

from the radial cameras, and calculate rotation error as
max1≤i≤4 ∠Ri,GT

TRi,est. To measure the translation, we
extract the principal axes pj,GT , pj,est, take the shortest
distance dj between pj,GT , and pj,est, and measure the
translation error as max1≤i≤4 di. We generated random
problem instances and ran the solvers on the noiseless sam-
ples until each solver achieved n = 10000 successful runs.

Fig. 2 shows histograms of tensor, rotation, and trans-
lation errors. All solvers but “13 Implicit” deliver stable
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Figure 2. Histogram of log10 tensor, rotation, and translation error of solvers (Tab. 1) computed from 10000 successful noiseless samples.
Failure rates for each solver are as follows. Linear: 0.05%, 13 Explicit: 0.20%, 13 Implicit: 29.35%, 7 Explicit: 3.02%, 7 Implicit: 0.27%.

tensors, Fig. 2 (Tensor error), with majority results having
errors smaller than 10−6. The performance of “13 Implicit”
solver is mixed, with significantly more failures, perhaps
due to degree-12 polynomial evaluation. Similarly, Fig. 2
shows rotation and translation errors are also small except
for “13 Implicit”, peaking below 10−6. The “13 Implicit”
solver has, again, mixed bimodal performance with major-
ity of good results but a non-negligible mode of bad results.
Hence, we conclude that all solvers but “13 Implicit” are
numerically stable for practical use in RANSAC.
Sensitivity to image noise. To investigate the robustness
of the solvers to noise, we generate problems as before and
perturb the input with noise. Namely, we set the focal length
f = 1000, and add noise σ

f to each projected point xjk. Fig-
ure 3 shows errors of the solvers for different values of σ:
(i) the performance of minimal solvers degrades gracefully
with noise and (ii) all minimal but “13 Implicit” solvers out-
perform “15 Linear” solver. Interestingly, real experiments
presented in Sec. 6.2, show that this instability of “13 Im-
plicit” does not affect its performance in RANSAC.
Sensitivity of upright assumption. To measure the robust-
ness of the 7 point solvers to the deviation α from the up-
right direction, we perturb noiseless data with upright rota-
tions Rj generated above by random rotation matrices RjP

with angle α as Rj = RjPRj . Figure 4 shows the errors
of the solvers for different values of α: both 7 point solvers
provide acceptable performance with more than 40%, resp.
15%, good results at α = 1◦, resp. α = 2◦.

6.2. Real experiments

Evaluation in RANSAC. To show how the solvers perform
in practice, we employ them within the locally-optimized
RANSAC scheme [15]. For the evaluation we consider
two datasets containing significant distortion (fisheye lens),
Grossmunster and Kirchenge from Larsson et al. [47]. We
also evaluate on 11 scenes from ETH3D [71]. For each
dataset we randomly sample 200 sets of 4 images which
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Figure 3. Noise robustness test. Percentage of problems, over
10000 runs, of problems whose left: rotation, right: translation
error is below given thresholds, as a function of the feature noise
σ. Focal length f = 1000px.
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Figure 4. Upright test Percentage of problems, over 1000 runs,
whose left: rotation, right: translation error is below given thresh-
old, as a function of deviation α from the upright direction.

share at least 50 3D-points in the ground truth reconstruc-
tion. Table 2 shows the success-rate (rotation less than 10◦

and translation less than 0.25m) obtained with each solver.
Note that only some of the datasets were captured in an up-
right setting, and thus the failure rates for the 7 point solvers
vary among the datasets. The 13 point solver has consis-
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tently better results than the 15 point linear solver. The
7 point upright solver achieves superior results on scenes
where the upright assumption holds. Interestingly, on aver-
age, the somewhat unstable “13 Implicit” solver performs
slightly better (avg. success rate 0.25) than the second best
“13 Explicit” solver (avg. success rate 0.24), leaving the “15
Linear” solver clearly behind (avg. success rate 0.17).
Comparison with Larsson et al. [47]. The authors of [47]
present an initialization scheme for radial reconstruction
from five images using a trifocal tensor that assumes the
principal axes of three cameras intersect, along with a
“mixed” trifocal tensor incorporating the other cameras.
They also give a detection heuristic for image triplets ap-
proximately satisfying the intersecting axes assumption.
We replicate their initialization experiment on the Lund
Cathedral dataset [62], in which they first generate 1000
potential triplets with intersecting axes and fit radial trifo-
cal tensors via RANSAC. For each of the 100 best triplets,
they then select two additional images to use for initializa-
tion. Figure 5 compares our method with their initialization
scheme using both this heuristic (Right) and with random
5-tuples (Left). After running our method on four images,
we triangulate 3D points and register the fifth image. We
use bundle adjustment to refine the results of both meth-
ods. From the figure, we see that for general data (not nec-
essarily satisfying the intersecting principal axes assump-
tion), our quadrifocal initialization is significantly more ac-
curate. The trifocal method with heuristic triplet-selection,
although slightly better than ours, comes at the cost of com-
puting with many more samples. Also, the results indicate
the stability of our general method under special motions.
Structure-from-Motion. We integrated our radial quadri-
focal tensor solver into the 1D SfM pipeline from Larsson et
al. [47], allowing initialization from images in general con-
figuration. Figure 6 shows an example reconstruction from
the Kirchenge dataset (369 fisheye images).

7. Conclusion
In summary, our work provides the first minimal solu-

tions for 1D radial camera relative pose in the uncalibrated,
calibrated, and upright cases. This resolves an outstanding
problem in calibration-free structure-from-motion. More-
over, experiments demonstrate that these solutions yield
practical results for 3D reconstruction, and compare favor-
ably to previous work. In RANSAC, the minimal solvers
yield more accurate results than the linear solver on aver-
age, and remain feasible despite the increased runtime. On
the theoretical side, we find that these seemingly-difficult
problems possess a significant amount of algebraic struc-
ture that can be exploited for solving. Since the algebraic
degrees of these problems are ultimately only 28 and 25, it
is conceivable that more efficient or more stable solutions
using existing tools are waiting to be discovered.

All data and software will be made publicly available.
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Figure 5. Comparison with trifocal tensor initialization from Lars-
son et al. [47]. The figure shows the cumulative distribution of
the rotation errors. Left: Evaluation on randomly selected images.
Right: Evaluation on images chosen with the heuristic from [47].

Solver 15L 13E 13I 7E 7I

Grossmunster 0.19 0.27 0.25 0.06 0.03
Kirchenge 0.19 0.29 0.27 0.02 0.01

Courtyard 0.06 0.03 0.04 0.06 0.07
Delivery 0.20 0.13 0.22 0.18 0.08
Electro 0.16 0.16 0.16 0.25 0.13
Facade 0.12 0.09 0.13 0.11 0.07
Office 0.17 0.30 0.28 0.00 0.07
Pipes 0.38 0.50 0.50 0.38 0.13
Playground 0.22 0.26 0.26 0.02 0.03
Relief 0.18 0.29 0.34 0.01 0.01
Relief 2 0.14 0.35 0.37 0.07 0.06
Terrace 0.16 0.14 0.13 0.13 0.11
Terrains 0.24 0.31 0.24 0.46 0.39

Average 0.17 0.24 0.25 NA NA

Table 2. Real tests on datasets [47, 71]. We report the fraction
of poses whose rotation error is below 10◦, and translation error is
below 20cm. See Sec. 6.2 for more details.

Figure 6. Structure-from-Motion on the Kirchenge [47] dataset.
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Pajdla, Beyond Gröbner Bases: Basis Selection for Minimal Solvers,
2018 IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, 2018,
pp. 3945–3954. ↑3

[47] V. Larsson, N. Zobernig, K. Taskin, and M. Pollefeys, Calibration-
free structure-from-motion with calibrated radial trifocal tensors,
European Conference on Computer Vision, 2020, pp. 382–399. ↑2,
3, 4, 7, 8, 6

[48] S. Lin and B. Sturmfels, Polynomial relations among principal mi-
nors of a 4× 4-matrix, Journal of Algebra 322 (2009), no. 11, 4121–
4131. ↑2, 5

[49] M. Liu, C. Pradalier, and R. Siegwart, Visual homing from scale
with an uncalibrated omnidirectional camera, IEEE Transactions on
Robotics 29 (2013), no. 6, 1353–1365. ↑2
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