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Abstract

Prior works on improving speech quality with visual in-
put typically study each type of auditory distortion sepa-
rately (e.g., separation, inpainting, video-to-speech) and
present tailored algorithms. This paper proposes to unify
these subjects and study Generalized Speech Regenera-
tion, where the goal is not to reconstruct the exact refer-
ence clean signal, but to focus on improving certain as-
pects of speech while not necessarily preserving the rest
such as voice. In particular, this paper concerns intelli-
gibility, quality, and video synchronization. We cast the
problem as audio-visual speech resynthesis, which is com-
posed of two steps: pseudo audio-visual speech recognition
(P-AVSR) and pseudo text-to-speech synthesis (P-TTS). P-
AVSR and P-TTS are connected by discrete units derived
from a self-supervised speech model. Moreover, we utilize
self-supervised audio-visual speech model to initialize P-
AVSR. The proposed model is coined ReVISE. ReVISE is
the first high-quality model for in-the-wild video-to-speech
synthesis and achieves superior performance on all LRS3
audio-visual regeneration tasks with a single model. To
demonstrates its applicability in the real world, ReVISE
is also evaluated on EasyCom, an audio-visual benchmark
collected under challenging acoustic conditions with only
1.6 hours of training data. Similarly, ReVISE greatly sup-
presses noise and improves quality. Project page: https:
//wnhsu.github.io/ReVISE/.

1. Introduction

Unlike anechoic studio recordings, speech in-the-wild
is rarely clean: outdoor recordings are corrupted with all
sorts of natural and non-natural sounds like wind and traf-
fic noise [6]. Speech recorded indoor often contains rever-
beration, mechanical noise, and overlapping speech from
non-target speakers [54]. On top of those, recording de-
vices and network may also introduce other types of dis-

(a) Speech inpainting

∅

Masked speech Overlapping speech

Noisy speechNo speech

(b) Video-to-speech

(c) Speech separation

(d) Speech denoising

Figure 1. Illustration of AVSE with various distortion.

tortion, such as amplitude clipping, band-pass filtering, and
package loss [1]. Distortion makes it hard for both human
and machines to comprehend speech [10, 31]. Improving
the quality and the intelligibility of corrupted speech is es-
sential for assistive listening and robust speech processing.
Generating clean speech signal based on its corrupted ver-
sion is herein referred to as speech enhancement.

In speech enhancement, one line of research uses vi-
sual speech to provide auxiliary information [14, 17, 19,
57], which is known as audio-visual speech enhancement.
Audio-visual speech (e.g., talking-head videos) can be seen
as a multimodal view of the speech. Since visual modality
is immune to acoustic noise, combining both views enables
more robust estimation of shared generating factors such as
textual content. Meanwhile, despite sharing the same goal
of recovering corrupted speech, prior work often treats en-
hancement from each type of distortion as a separate prob-
lem: speech denoising and dereverberation addresses addi-
tive and convolutive non-speech noises [17], speech separa-
tion focuses on speech noises that exhibit similar character-
istics to the target speech [19], speech inpainting aims to re-
cover dropped audio frames [38], and video-to-speech syn-
thesis is the extreme case of inpainting where all the frames
are dropped [15, 36]. As a result, algorithms designed for
one type of distortion may not be effective for another.

In this paper, we advocate a more holistic approach
to audio-visual speech enhancement, where an algorithm
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should be evaluated on all types of distortion, and a sin-
gle model should also be effective on all types of corrupted
data, shifting from building distortion-specific models to a
universal model. Following [48], we coin the concept uni-
versal speech enhancement. In turn, we also argue that
exact reconstruction of the reference clean speech is not an
appropriate objective especially when the level of distortion
is high. To address the issue, we propose to relax the objec-
tive and solve the generalized speech regeneration (GSR)
problem: instead of focusing on exact reconstruction and
measuring metrics like signal-to-noise ratios (SNRs), the
goal of GSR is to enhance a predefined set of attributes,
such as content intelligibility that can be measured by word
error rates (WERs). In contrast, the model does not need to
preserve other attributes.

This paper focuses on recovering intelligibility, syn-
chronicity and quality. The task of improving those could
be broken down into two steps: predicting the frame-level
content and synthesizing high quality audio from it. In-
spired by the resemblance to audio-visual speech recogni-
tion and speech synthesis, we propose ReVISE, short for
Resynthesis with Visual Input for Speech REgeneration.
ReVISE is composed of a pseudo audio-visual speech
recognition model (P-AVSR) and a pseudo text-to-speech
synthesis model (P-TTS); instead of using text as the out-
put/input of the two models, self-supervised speech units
that encode speech content [23, 44] are adopted to bridge
them, making the system free of text supervision. Fur-
thermore, observing the gain on speech recognition brought
by self-supervised learning, we also initialize the P-AVSR
with a self-supervised audio-visual speech model, AV-
HuBERT [49], which significantly improves the perfor-
mance, especially on low-resource setups.

To demonstrate the universality and compare with the
literature, we construct four types of corrupted speech us-
ing Lip-reading Sentences 3 (LRS3) [2] and AudioSet [20],
including audio-visual denoising, separation, inpainting,
and video-to-speech. Results suggest that ReVISE is the
first model capable of high-quality in-the-wild video-to-
speech synthesis, while prior models fail to produce intel-
ligible content [21] or generate low-quality audio for in-
the-wild videos [36]. Compared to a strong masking-based
method [19] on denoising and separation, ReVISE achieves
comparable performance on mid-/high-SNR conditions (0-
20dB), and are significantly stronger on lower SNR con-
ditions, reducing WERs by up to 37.5% absolute and im-
proving MOS by up to 1.09. Finally, we also show that a
single ReVISE model can tackle all four types of distor-
tion with similar performance to distortion-specific mod-
els. To further show the data efficiency and effectiveness
of ReVISE on real data, we evaluate it on EasyCom [13],
an audio-visual speech dataset addressing the cocktail party
problem which contains clean close-talking recordings and

noisy distant recordings with background noise, loud in-
terfering speech, and room reverberation. Results show
that ReVISE still shines in this challenging setup, reducing
WER by up to 32% while other methods fail.

2. Background

2.1. Audio-visual speech enhancement tasks

In general, audio-visual speech enhancement is the task
of improving the quality of corrupted speech x̃a given its
corresponding talking head video xv . During training, tu-
ples of (x̃a, xv, xa) are provided where xa is the refer-
ence clean speech. The tasks are further divided depending
on the type of distortion applied to x̃a: speech denoising
and dereverberation considers x̃a[t] = xa[t] ∗ h[t] + n[t]
with impulse response h and additive noise n (t indexes
discrete time steps). Source separation considers x̃a[t] =
xa[t]+x′

a[t] where x′
a is an interfering speech sampled from

the same marginal distribution as xa. For these two sub-
tasks, masking-based methods (in magnitude spectrogram
domain [16, 41], complex spectrogram domain [14, 19, 55],
or on learned basis [33, 34]) are widely adopted where the
enhancement model f predicts a mask M̂ = f(x̃a, xv).
It is feasible because the target speech can be written as
X = M · X̃ where X and X̃ are the clean and noisy speech
in the target domain and M is the ideal ratio mask. On the
other hand, speech inpainting and video-to-speech synthe-
sis considers x̃a[t] = m[t] · xa[t] where m[t] ∈ {0, 1} for
inpainting and m[t] = 0 for the latter. Masking-based meth-
ods are not feasible for these tasks. Hence, previous studies
directly predict spectrogram [36,38] or waveform [7,37,39]
as x̂a = f(x̃a, xv) and optimize the model with regression
and adversarial losses. Nevertheless, previous models have
not been able to generate realistic samples with in-the-wild
datasets like LRS3, because these models are determinis-
tic while the underlying mapping is highly stochastic, espe-
cially when there is a large portion of frames dropped.

To accommodate general distortions, universal enhance-
ment models have to adopt generation-based method [32,
43,45,48,50], otherwise they cannot handle distortions like
package loss (i.e., inpainting). For the same reason, our pro-
posed model is also generation-based. However, it differs
from previous works in two main aspects. First, prior uni-
versal enhancement models are audio-based, which do not
leverage auxiliary input like visual speech. Hence, source
separation and enhancement from silence (i.e., cross-modal
generation) are not attainable and hence have not been in-
cluded. Second, regardless of the training objective (regres-
sion [40], adversarial [43, 45, 50], or score-matching [48]),
previous universal models predict reference clean speech
directly. We consider a different paradigm based on self-
supervised speech resynthesis [44]: our model predicts a
self-supervised representation z = k(xa) of the reference
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clean speech. A separate model is used to convert z back to
audio, which is described in the next section.

2.2. Self-supervised speech resynthesis

Previous studies show that discretized Self Supervised
Learned (SSL) speech features from the Hidden Unit BERT
(HuBERT) model [23] encode mostly phonetic information
and less about speaker and noise characteristics. HuBERT
is pre-trained with a masked cluster prediction objective,
where spans of input waveform are randomly masked and
the model is asked to predict cluster assignment for those
frames. Unlike VQ-VAE [52], HuBERT does not learn to
encode all the factors; instead, it encodes information perti-
nent to inferring the unseen content, such as phonetic infor-
mation. These properties make HuBERT units great candi-
dates for replacing speech for text-free speech generative
models, because they encode less nuisance variation and
a model can predicts these units more easily compared to
predicting speech directly [29, 30]. Such needs motivates
the development of speech resynthesis models that convert
units back to audio, because these generative models still
have to produce speech as their final output.

[44] proposed the first end-to-end model directly gener-
ating waveform from SSL units by adapting HiFi-GAN [27]
which was originally designed as a vocoder converting
spectrogram to waveform. The adpated HiFi-GAN takes
SSL units, pitch, and speaker embedding as input, the lat-
ter two of which are added to capture variation of training
data not encoded in the SSL units. Empirically, [30] demon-
strates that speaker embedding and F0 can be removed if the
model is trained on a high-quality single-speaker dataset.

3. Method
3.1. Generalized Speech Regeneration

Without loss of generality, we assume that original
speech xa and its auxiliary view xv are generated with a
bijective mapping gm,Y as xm = gm,Y ({yi}i),m ∈ {a, v}
given a set of factors Y = {yi}i (e.g., pitch, speed, textual
content) sampled from pY . Corrupted speech x̃a is gener-
ated with a corruption function gd as x̃a = gd(xa, d) given
xa and distortion parameter d sampled from pd. Audio-
visual speech enhancement can be seen as estimating p(Y |
gd(xa, d), xv). When the level of distortion is low, there are
fewer Y that can result in the same observed x̃a after cor-
ruption. Formulating it as a regression problem and mea-
suring the performance of reconstructing all factors with
metrics like SNR is reasonable. However, when the level of
distortion is high, there exist multiple sets of Y rendering
the same noisy speech x̃a. Take video-to-speech as an ex-
ample: while the content and the timing of each word can
be more accurately inferred, the exact pitch is hard to in-
fer from the video. In other words, p(yi|x̃a, xv) is more

deterministic for some yi but not for the others.
We argue that for these scenarios reconstructing the ex-

act clean reference signal xa is an ill-posed problem. In-
stead, one should consider the generalized speech regenera-
tion problem, where the goal is to generate an enhanced sig-
nal x̂a = f(x̃a, xv) that is on the manifold of clean speech
ga,Y (·) (high quality) and preserves the factors of interest
(partial faithfulness). Let g−1

a,Y,i be the inverse mapping
from speech to factor yi, and {yi}i∈I+ be the list of factors
of interest (which should be a subset of factors that can be
inferred from corrupted speech). Faithfulness is measured
by the discrepancy between g−1

a,Y,i(x̂a) and g−1
a,Y,i(xa) for

i ∈ I+. In case of yi being the textual content, such discrep-
ancy can be measured by the word error rate produced by
an off-the-shelf speech recognizer for example. Quality can
be measured by metrics commonly used for text-to-speech
synthesis such as mean opinion scores, where human raters
rate how realistic and clean the audio sounds regardless of
the textual content. In this paper, we consider {yi}i∈I+

to be textual content and timing (synchronization with the
video) and do not address other factors such as voice, which
is not of primary importance for communication.

3.2. ReVISE

We propose to solve the problem in two stages: (i) pre-
dicting {yi}i∈I+ of the clean reference xa given (x̃a, xv),
and (ii) resynthesizing speech conditioned on {yi}i∈I+ .
The two steps are handled by a pseudo audio-visual speech
recognition module (P-AVSR) and a pseudo text-to-speech
synthesis module (P-TTS), respectively, as shown in Fig. 2.
The discrete SSL units derived from HuBERT [23] as de-
scribed in Sec. 2.2 are used to represent {yi}i∈I+ . Using
SSL units have two main benefits: not restricted by text
availability and better encoding of non-verbal information.

The P-AVSR module performs a task very similar to
speech recognition. Inspired by the recent success of self-
supervised pre-training for audio [4, 23] and audio-visual
speech recognition [49], we initialize P-AVSR with AV-
HuBERT [49], an SSL model achieving state-of-the-art per-
formance on audio, visual, and audio-visual speech recog-
nition. It is composed of a video encoder and an audio
encoder as the modality-specific front-end, followed by a
stack of transformer layers as the shared back-end tak-
ing concatenated audio and video features as input (Fig. 2
right). The model encodes waveform into features at a
frame rate of 25Hz, while the SSL unit from HuBERT
are encoded at 50Hz. To match the rate, a lightweight
transposed convolution layer followed by a softmax layer
is added as the prediction head, which is randomly initial-
ized. The P-AVSR module is trained with a cross-entropy
loss L =

∑
t

∑C
j=1 z

j
t log f

j
t (x̃a, xv), where zt denotes the

one-hot discrete unit label of the t-th frame, ft(x̃a, xv) is
the predicted distribution over discrete units from the en-
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Figure 2. Model diagram.

hancer for the t-th frame and C unit vocabulary size.
We use the unit HiFi-GAN described in Sec. 2.2 for con-

verting predicted z into speech, which aims to faithfully
produce the content and timing encoded in units. In fact,
P-TTS can be trained with a different dataset from P-AVSR
and this dataset determines the audio quality and the voice
of ReVISE. With privacy consideration in mind, we use a
high quality single speaker dataset with the speaker’s con-
sent to train this model. Consequently, ReVISE does not
preserve voice and other fine-grained details and could gen-
erate speech of even higher quality than the original speech.
Note that the P-TTS can be easily extended following [44].

4. Experimental Setup
4.1. Datasets

We consider two datasets for our experiments. The first
one is Lip Reading Sentences 3 (LRS3) [2], which is a
clean dataset based on TED talk videos. It contains 433
hours of audio-visual speech data and their corresponding
text transcripts. Following prior work on speech enhance-
ment, speech data are artificially corrupted to simulate en-
hancement tasks. Four tasks are created: (i) Speech de-
noising: in which we artificially mix a clean speech sig-
nal with a noise sample using randomly sampled Signal-to-
Noise Ratio (SNR) in the range of [-20,20]. Noisy sam-
ples were selected from AudioSet [20]; (ii) Speech source
separation: in which we follow a similar procedure to the
speech denoising setup but instead of mixing the speech sig-
nal with a noisy sample, we mix it with another speech
signal produced by a different speaker; (iii) Speech in-
paiting: under this setup we randomly dropped (i.e., zero
out) spans of s ∈ {20, 30, 40} frames, with probability
p ∈ {0.3, 0.4, 0.5}. Each frame corresponds to 20ms, hence
in case s = 20 we masked 400ms of audio. This process

can be seen as a packet loss simulation; and (iv) Video-to-
speech synthesis: in this setup we use the LRS3 dataset
without any augmentations, where our goal is to synthesize
the audio given a silent video only.

The second data is Easy Communications (Easy-Com)
dataset [13], which includes real-life noisy speech and is
designed to study the cocktail party problem in conversa-
tional augmented reality. We preprocess the data using of-
ficial time-aligned transcripts and crop image ROIs based
on lip bounding boxes, resulting in 1.64/0.59/0.35 hours for
train/valid/test splits. The dataset is challenging due to mo-
tion blur, barrel distortion, interfering speech, noise, and re-
verberation1. Close-talking microphones are used for clean
reference speech, and beamformed audio is used as model
input, following [5,13,18]. ReVISE is trained using merged
audio from all six channels, including close-talking micro-
phone audio. More details can be found in the Appendix.

4.2. Model

SSL speech tokenizer We use a BASE HuBERT model
which is composed of a convolutional encoder and 12
Transformer layers. Each layer has embedding dimension
of 768, feed-forward layer dimension of 3072, and 12 self-
attention heads. The model is pre-trained for three iterations
on 32 GPUs with 400K updates per iteration, using clus-
ters of MFCC/6-th layer feature from iteration 1/9-th layer
feature from iteration 2 as the target, with a codebook size
of 100/500/1000, respectively, following the recipe of [30].
A total of 221K hours of unlabeled speech data combining
multilingual Librispeech [46], Common Voice [3], and Vox-
Populi [53] in eight languages (En, Es, Fr, De, Nl, It, Pl, Pt)
are used for pre-training. The final SSL units z used in Re-
VISE are generated by clustering the third iteration feature
at the last layer with a codebook size of 2000 with K-means.

P-TTS We use the unit HiFi-GAN described in Sec. 2.2.
The model is trained for 400K updates on 8 GPUs on the
LJSpeech [25] dataset resampled to 16kHz to match the
sample rate of other datasets. Similar to [30], F0 and
speaker embedding are not used.

P-AVSR We use the LARGE AV-HuBERT model by de-
fault from [49]. It takes video and/or audio as input, where
video is head-crop image frames at 25fps, and audio is
23-dimensional Mel filterbank sequence (FBank) computed
with a 10ms frame shift and stacked every four frames to
match the video. The video encoder is a ResNet-18 [35]
model, while the audio-encoder is simply a linear projec-
tion. The features are concatenated frame-by-frame and
passed to a stack of 24 Transformer layers, which has em-
bedding and feed-forward layer dimension of 1024 and

1We refer readers to the supplementary material to listen to the samples.
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4096 with 16 attention heads. For all but EasyCom experi-
ments we use the publicly available checkpoints from [49]
that were pre-trained on LRS3 and filtered VoxCeleb2 for
initialization. For Easycom, a u-HuBERT model [24] pre-
trained additionally with Librilight [26] is used for initial-
ization, which improves upon using [49]. The up-sampling
module is one transposed convolution layer with stride of 2,
kernel size of 4, and 768 channels, followed by GeLU acti-
vation [22]. The P-AVSR models are fine-tuned on 8 GPUs
for less than 45K updates. Detailed fine-tuning configura-
tions for each task are presented in the appendix.

4.3. Evaluation

We evaluate the proposed model and baselines on the
following axes: content, synchronization, quality, and low-
level detail reconstruction. As discussed in Sec. 3.1, we fo-
cus on the first three axes, and the results for the last metric
are included in the appendix for completeness.

For content, we use the WER computed with a speech
recognition model to measure the intelligibility quantita-
tively similar to [36, 37]. The public model from [56] is
used, which reports a WER of 5.6% on LRS3 test split and
35.7% on the EasyCom close-talking validation set. For
synchronization, following [21] we use SyncNet [9] met-
rics, the predicted temporal distance between audio and
video (LSE-D) and the prediction’s confidence (LSE-C) are
averaged over the entire test set. For quality, we follow
the tradition of text-to-speech synthesis evaluation and con-
duct subjective mean opinion score (MOS) studies with a
scale from 1 to 5 and a 0.5 increment. We evaluate 50 ran-
domly sampled files from the test set, where each sample
was evaluated by at least 15 raters using the CrowdMOS
package [47]. Finally, for reconstruction of low-level de-
tails as typically done in speech denoising studies, we in-
clude ESTOI [51] and Mel cepstral distortion (MCD) [28].
While MCD provides an estimate of the similarity of two
signals by measuring the mel cepstra difference, ESTOI put
more emphasis on speech properties.

5. Results
Quantitative results are presented in the section. We

strongly recommend readers to watch the samples provided
in the supplementary material for better understanding of
the sample quality compared to the baselines.

5.1. Ground truth and resynthesis performance

For reference, we first evaluate reference clean speech
(Tgt. audio) and resynthesized clean speech (Tgt. audio
resynthesis) with the proposed metrics and report the re-
sults in Tab. 1. The gap between the two is an approxi-
mation of how much information is lost when tokenizing
speech into SSL units. It shows that intelligibility, synchro-
nization, and quality are all slightly degraded. As ReVISE

Cont Sync Qual Low-Level
Method WER↓ LSE-C↑ LSE-D↓ MOS↑ ESTOI ↑ MCD ↓

Tgt. audio 5.6% 5.20 6.33 4.38±0.02 - -
Tgt. audio resynthesis 10.6% 5.02 6.40 4.16±0.02 41.59 10.01

Silent video to speech
SVTS-L, LRS3 81.5% 5.07 6.46 2.12±0.04 26.87 8.13
SVTS-L, LRS3+VoxEn 67.4% 5.53 6.00 2.23±0.03 30.98 7.59
ReVISE (Ours) 33.9% 5.03 6.44 4.13±0.02 28.51 10.73

Table 1. Full video-to-speech synthesis results on LRS3 test set.

is trained to predict the tokens inferred from clean speech, if
the ReVISE model have 100% prediction accuracy then the
performance will be identical to the “Tgt. audio resynthe-
sis” row here. Hence, the performance on the resynthesized
speech roughly upper-bounds that of the ReVISE model.

5.2. Video-to-speech synthesis

In Tab. 1, we compare ReVISE with SVTS [36],2 which
is the state-of-the-art model on the video-to-speech synthe-
sis task. SVTS is composed of a video-to-spectrogram pre-
dictor and a separately trained neural vocoder. Its video-
to-spectrogram predictor is trained with a regression loss,
which takes as input a lip video and a speaker embedding
extracted from a pre-trained fixed speaker encoder. Speaker
embedding is needed because voice cannot be accurately
inferred from the video. The model demonstrate strong re-
sults on two constrained datasets (LRW [8] and GRID [11])
which contain isolated words and fixed-length sentences
with limited word choices, respectively.

As shown in Tab. 1, because the audio quality generated
by SVTS is mediocre (2.12 and 2.23 MOS),3 these sam-
ples are not very intelligible by machines, reflected by the
high WER (81.5% and 67.4% when trained on LRS3 and
LRS3+VoxCeleb2). In contrast, our proposed model gen-
erates much higher quality audio (4.13 MOS) and yields
significantly lower WER (33.9%). Through manual inspec-
tion, we found a confidence score above 5 and distance be-
low 6 implies good synchronization on LRS3. All methods
generate audio fairly synchronized to the video.

5.3. Audio-visual speech inpainting

We next evaluate ReVISE on the audio-visual speech in-
painting task with three test splits, where 30%, 40%, and
50% of the frames are dropped with dropped spans longer
than 400ms. While there have been several works study-
ing audio-based speech inpainting or audio-visual inpaint-
ing for music [58], [38] is the only work we are aware of
studying the audio-visual setup. However, their model was
only evaluated on the constrained GRID dataset, showing
a phone error rate of 13.7%. SVTS achieves a WER of
17.9%, hinting that [38] is likely worse than SVTS even

2We obtained test set samples of SVTS from the authors for evaluation.
3https://sites.google.com/view/scalable-vts
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Cont Sync Low-Level
Method Inp Mod Test WER↓ LSE-C↑ LSE-D↓ ESTOI ↑ MCD ↓

Audio-visual speech inpainting
30% 44.1% 4.37 7.05 60.75 36.54
40% 53.5% 4.01 7.36 51.69 44.71Inp. audio A
50% 60.3% 3.78 7.60 43.16 52.82
30% 43.9% 4.37 7.04 59.40 35.95
40% 53.5% 4.04 7.34 50.55 43.96Demucs A
50% 60.0% 3.82 7.57 42.20 52.09
30% 51.2% 4.20 7.14 25.27 11.57
40% 60.1% 3.94 7.38 21.55 11.91Resynthesis A
50% 66.3% 3.68 7.63 17.97 12.09
30% 14.9% 5.01 6.42 38.15 10.23
40% 18.1% 4.99 6.44 37.05 10.31ReVISE (Ours) AV
50% 19.2% 5.04 6.41 35.99 10.33

Table 2. Full speech inpainting results on LRS3 test set with
30%/40%/50% of frames dropped.

when having partial audio as input. Accordingly, we de-
cide not to compare with [38] but compare with a pub-
licly available strong generation-based audio enhancement
model, Demucs [12], which was trained on DNS-Challenge,
VCTK, WHAM, and WHAMR, containing 700hr of clean
speech and 6,000hr of noise in total. In addition, we con-
sider resynthesis as another baseline, which encodes and de-
codes the corrupted speech with the same SSL tokenizer and
P-TTS model.

“Inp. audio” row presents the results evaluated on the
corrupted audio in Tab. 2. We see that intelligibility de-
grades (WER increases from 5.6% to 60.3%) as the per-
centage of dropped frames increases, and so does synchro-
nization (5.20 to 3.78 for confidence and 6.33 to 7.60 for
distance). The two audio-based baselines are not effective,
showing similar or even worse results compared to the cor-
rupted samples before enhancement. The little gain from
Demucs over the inputting-audio baseline shows that exist-
ing enhancement approaches fails to generalize to inpaint-
ing. In contrast, our proposed model is effective on im-
proving both intelligibility and synchronization. The WER
drops from 60.3% to 19.2% after regeneration when half
of the audio is missing in the corrupted audio. Comparing
enhancing from no audio at all (video-to-speech synthesis)
with enhancing from observing half of the audio (inpaint-
ing, 50%), we observe a 14.7% WER reduction (33.9% →
19.2%), showing that the model use the additional audio in-
formation effectively to improve content reconstruction. As
for synchronization, ReVISE restore a similar level regard-
less of the percentage dropped.

5.4. Audio-visual speech denoising

Tab. 3 presents results of audio-visual speech denoising
on four test splits: lvl 1-4, which contain noisy samples of
SNR in [10, 20], [0, 10], [-10, 0], and [-20, -10]. In ad-
dition to the two audio-based baselines from the previous
section, the proposed model is also compared with Visu-
alVoice [19] in this and the next section, which is a state-

Cont Sync Qual Low-Level
Method Mod Test WER↓ LSE-C↑ LSE-D↓ MOS↑ ESTOI ↑ MCD ↓
Tgt. audio - - 5.6% 5.20 6.33 4.36±0.018 - -

Audio-visual speech denoising
lvl 1 7.8% 4.66 6.77 2.95±0.03 87.21 5.07
lvl 2 20.0% 3.80 7.52 2.82±0.03 69.93 8.27
lvl 3 63.9% 2.41 8.68 2.79±0.02 45.91 11.27Inp. audio A

lvl 4 87.7% 1.54 9.39 2.71±0.04 25.55 13.47
lvl 1 13.3% 4.98 6.46 4.33±0.02 41.18 10.02
lvl 2 25.9% 4.78 6.64 4.37±0.02 39.16 10.19
lvl 3 69.4% 3.64 7.61 3.63±0.02 25.71 11.27Resynthesis A

lvl 4 90.8% 2.11 8.85 3.34±0.03 9.20 12.56
lvl 1 6.9% 5.15 6.38 3.58±0.04 92.59 3.73
lvl 2 15.1% 4.95 6.57 3.63±0.03 85.61 4.81
lvl 3 48.0% 4.14 7.28 3.36±0.03 65.94 6.81Demucs [12] A

lvl 4 81.3% 2.43 8.75 2.89±0.04 31.52 10.25
lvl 1 6.6% 5.16 6.35 4.11±0.03 92.20 3.89
lvl 2 8.8% 5.19 6.35 3.94±0.02 86.92 5.07
lvl 3 23.4% 5.07 6.45 3.80±0.02 74.16 6.45VisualVoice [19] AV

lvl 4 58.0% 4.53 6.86 3.25±0.03 50.48 8.01
lvl 1 9.4% 5.03 6.42 4.31±0.02 41.22 10.04
lvl 2 9.7% 5.04 6.41 4.36±0.02 40.93 10.06
lvl 3 11.7% 5.04 6.41 4.41±0.02 39.79 10.14ReVISE (Ours) AV

lvl 4 20.5% 5.07 6.40 4.34±0.02 35.80 10.36

Table 3. Full speech denoising results on LRS3 test set. SNR
ranges for lvl 1/2/3/4 are [10,20]/[0,10]/[-10,0]/[-20,-10] dB.

of-the-art model for audio-visual source separation and de-
noising. VisualVoice predicts a complex IRM given noisy
audio, lip video, and speaker face image as input and the
model is optimized with a combination of mask prediction
loss, cross-modal matching loss (image and enhanced au-
dio embeddings from the same speaker should be close)
and consistency loss (embeddings of enhanced audio for the
same speaker should be close). To have a fair comparison,
we re-train VisualVoice models with the same dataset as Re-
VISE using a similar setup provided by the authors. We use
the same public checkpoint for Demucs.

In terms of intelligibility, we observe that the perfor-
mance of resynthesizing corrupted audio is still bad. De-
mucs performs well for high SNR setup (lvl 1) but lags be-
hind audio-visual models for the rest setups. VisualVoice
achieves the best results on the [0, 20] dB SNR range, but
ReVISE is much more robust to even a higher level of noise,
reporting a WER of 20.5% at lvl 4. Synchronization scores
follow a similar trend to WERs in terms of ranking across
models and test splits. Quality of the proposed model is sig-
nificantly higher (4.31-4.41 MOS) than all baselines, and is
on par with the reference clean speech (4.36 MOS).

5.5. Audio-visual source separation

Following Sec. 5.4, four noisy test sets are created with
different levels of SNR. Comparing the speech source sep-
aration results in Tab. 4 and denoising results in Tab. 3,
we observe that audio model (the public Demucs) performs
worse with speech noise than with non-speech noise at the
same SNR level. In contrast, audio-visual models report
similar performance on the two tasks at high SNR, and bet-
ter performance on separation at low SNR. These results
suggest that it is easier to remove speech noise if the model
have auxiliary information that it can use to identify the tar-
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Cont Sync Low-Level
Method Mod Test WER↓ LSE-C↑ LSE-D↓ ESTOI ↑ MCD ↓

Audio-visual speech separation
lvl 1 15.7% 4.73 6.74 85.56 3.29
lvl 2 65.7% 3.85 7.48 65.52 5.95
lvl 3 102.3% 2.93 8.27 40.97 8.67Inp. audio A

lvl 4 105.5% 2.46 8.66 22.33 10.51
lvl 1 11.7 5.06 6.46 89.68 3.76
lvl 2 55.7 4.10 7.25 66.80 6.27
lvl 3 101.2 2.77 8.42 26.32 10.22Demucs [12] A

lvl 4 106.2 2.15 8.95 10.15 12.14
lvl 1 6.2% 5.13 6.37 94.69 2.43
lvl 2 7.8% 5.12 6.39 90.29 3.36
lvl 3 15.3% 4.91 6.57 78.82 4.80VisualVoice [19] AV

lvl 4 51.8% 4.20 7.17 53.84 7.02
lvl 1 9.9% 5.05 6.41 41.34 10.05
lvl 2 10.2% 5.05 6.41 40.90 10.07
lvl 3 11.4% 5.05 6.41 40.07 10.11ReVISE (Ours) AV

lvl 4 15.7% 5.04 6.41 37.97 10.21

Table 4. Full source separation results on LRS3 test set. SNR
ranges for lvl 1/2/3/4 are [10,20]/[0,10]/[-10,0]/[-20,-10] dB.

get speech. Comparing VisualVoice and ReVISE which are
trained on the same data, it reveals a similar trend where
ReVISE is still substantially better at low SNR.

5.6. Universal audio-visual speech regeneration

In this section, we build a single ReVISE model
trained on all four types of distortion and compare it
with corruption-specific models presented in earlier sec-
tions (Tab. 5) in terms of WER. Surprisingly, the univer-
sal model beats or matches the distortion-specific model on
almost all tasks. The only exception is video-to-speech syn-
thesis, on which the universal model is 0.5% WER worse.

5.7. AV regeneration on real data — EasyCom

We next study how effective ReVISE on EasyCom, a
real noisy dataset that is much more challenging than LRS3
and has much fewer hours of training data. Tab. 6 com-
pares ReVISE with several baseline methods enhancing sin-
gle channel speech (ch2) or beamformed speech (bf) from
multi-channel sources. Note that we attempted to re-train
VisualVoice on EasyCom but were not successful on get-
ting any meaningful results, likely due to the lack of data as
well as the difficulty. In addition, we use a P-AVSR model
that takes lip crops instead of head crops as input for this
dataset, which provides slightly better performance. Abla-
tion studies are included in the Appendix.

ReVISE substantially enhances the intelligibility of
noisy speech in both setups (WER: 87.5% → 55.0% on
ch2 and 71.5% → 52.1% on bf), while Demucs only man-
aged to reduce the WER by 0.7% and 1.7%, respectively.
Moreover, the WER of the enhanced beamformed speech
from ReVISE is only 4.4% away from resynthesized clean
speech: the target ReVISE is trained to predict. One can ex-
pect the gap to clean speech (14.5% WER) will be reduced
if the quality of the SSL units improves.

Tab. 7 presents the subjective quality evaluation results
for EasyCom. We first note that the quality of resynthesized

target audio (4.13 MOS) is in fact higher than the target au-
dio itself (3.76 MOS). This is because the P-TTS module is
trained on the high-quality LJSpeech, which has better qual-
ity than the EasyCom audio recorded by the close-talking
microphones, as the latter still contain mild background
noise and overlapping speech. Similarly, the predicted au-
dio from the proposed ReVISE model also delivers similar
levels of audio quality (4.19 and 4.11 with ch2 and beam-
formed input, respectively), which are significantly better
than the original distant recordings (2.95 and 2.67) and the
baseline methods (2.95 and 2.39 from Demucs).

The results suggests a crucial advantage of the proposed
ReVISE model compared to previous studies: for ReVISE,
the audio quality is not bounded by the enhancement train-
ing data (LRS3 and EasyCom), but determined by the qual-
ity of P-TTS training data. In contrast, prior works such as
SVTS or VisualVoice could only produce audio that is as
good as the enhancement target.

5.8. Limitations

We see from Tabs. 1 to 4 that while ReVISE outperforms
or is on par with baseline methods on intelligibility, quality,
and synchronization, it performs much worse than SVTS,
Demucs, and VisualVoice on recovering low-level details.
This is because ReVISE does not focus on reconstructing
the exact reference signal; moreover, ReVISE does not aim
to infer the speaker’s voice either since the SSL units are
shown to encode very little speaker information.

In fact, it is not a deficiency that the proposed ReVISE
model does not reconstruct the reference signal exactly. As
shown in Tab. 7, the quality of the reference signal may be
mediocre for real world datasets such as EasyCom. In that
scenario, reconstructing the exact reference signal would
lead to inferior performance compared to the proposed ap-
proach, where the training data for P-AVSR and P-TTS are
decoupled, such that higher quality data can be used for the
unit-to-speech module.

5.9. Ablation studies

We conduct ablation studies to evaluate the importance
of pre-training P-AVSR, P-AVSR model size, selection of
audio SSL units, and visual input. WER are reported here
because intelligibility exhibits the highest variation across
models reported earlier. Tab. 8 compares different SSL
speech units on two tasks: clean speech resynthesis and
video-to-speech generation. The two alternative types of
units are derived from the BASE AV-HuBERT model trained
on LRS3+VoxCeleb2 [49] and the BASE HuBERT model
trained on Librispeech [23]. The corresponding P-TTS
model are also trained on the same LJSpeech dataset. We
see that performance on the two tasks are correlated, where
units that loss less content information (lower Resyn WER)
are better prediction targets for the P-AVSR model (lower
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video-to-speech speech inpainting WER↓ speech denoising WER↓ source separation WER↓ Avg.↓
WER↓ 20% 30% 40% lvl 1 lvl 2 lvl 3 lvl 4 lvl 1 lvl 2 lvl 3 lvl 4

Separate ReVISE 33.9% 14.9% 18.1% 19.2% 9.4% 9.7% 11.7% 20.5% 9.9% 10.2% 11.4% 15.7% 19.0%
Universal ReVISE 34.5% 14.9% 17.9% 19.2% 8.7% 9.4% 11.5% 20.3% 9.1% 9.7% 10.9% 15.5% 18.9%

Table 5. Comparing corruption-specific ReVISE with universal ReVISE on intelligibility measured by WER (%).

Method Mod
WER↓ (ch2)

(dev/test)
WER↓ (bf)
(dev/test)

Tgt. audio A 35.7% / 37.6%
Tgt. audio resynthesis A 43.2% / 47.7%

Audio-visual speech enhancement
Inp. audio A 74.2% / 87.5% 60.7% / 71.5%
Demucs [12] A 76.9% / 86.8% 63.4% / 69.8%
Resynthesis A 79.6% / 91.0% 68.7% / 77.6%
ReVISE (Ours) AV 50.3% / 55.0% 47.6% / 52.1%

Table 6. Audio-visual speech enhancement results on EasyCom
(ch2: channel 2, bf: beamforming). Synchronization results are
not reported because SyncNet fails even on clean reference xa.

Method Mod MOS↑ (ch2) MOS↑ (bf)

Tgt. audio A 3.76±0.04

Tgt. audio resynthesis A 4.13±0.03

Audio-visual speech enhancement
Inp. audio A 2.95±0.04 2.67±0.03

Demucs [12] A 2.95±0.04 2.39±0.03

Resynthesis A 3.97±0.04 3.98±0.03

ReVISE (Ours) AV 4.19±0.02 4.11±0.04

Table 7. Subjective quality evaluation of audio-visual speech en-
hancement results on EasyCom test set (ch2: channel 2, bf: beam-
forming).

Unit Resyn WER↓ V2S WER↓

AV-HuBERT (LRS3+VC2) [49] 20.7 41.2
HuBERT (LS960) [23] 17.4 35.2
HuBERT (VP+MLS+CV) 10.6 33.9

Table 8. Ablation studies on SSL unit choices. Clean audio resyn-
thesis (Resyn) and video-to-speech (V2S) WERs are reported.

V2S WER). Tab. 9 (Left) shows pre-training brings signif-
icant gains (38.9% for BASE and 43.1% for LARGE) and
LARGE model performs better with a 7.4% WER reduction.

Finally, we study the importance of visual input by com-
paring an audio-visual ReVISE with an audio-only version
of it. We consider the universal speech regeneration model
setup but remove video-to-speech data as it is incompati-
ble to the audio-only model. Tab. 9 (Right) presents ag-
gregated results averaged over testing splits for each task.

P-AVSR V2S WER↓
Size scratch PT

BASE 81.0 42.9
LARGE 78.6 35.5

WER↓
Mod Den Sep Inpaint V2S

AV 12.6 11.4 17.4 34.8
A 29.2 39.8 44.6 n/a

Table 9. (Left) Ablation studies on model sizes and pre-training.
Performance on video-to-speech is reported. (Right) Comparison
of ReVISE and its audio-only counterpart.

We observe that the model using both audio and video as
input outperform the counterpart consistently with a large
margin. Specifically, the level of degradation varies sub-
stantially across task: denoising is least effected (16.6%),
followed by inpainting (27.2%) and separation (28.4%) —
this shows that models rely heavily on visual information to
determine the target speaker as well as infill the missing in-
formation from dropped frames. Last but not least, we note
that the audio-visual ReVISE perform decently on video-to-
speech synthesis despite not being trained on the task at all,
suggesting zero-shot generalization to unseen distortion.

6. Conclusion

This paper presents ReVISE, a novel paradigm for audio-
visual speech regeneration that is universal and benefits
greatly from the recent advances in self-supervised speech
pre-training. Empirical studies demonstrate effectiveness
of ReVISE on a popular benchmark with synthetic noise
(LRS3) as well as on a conversational benchmark with
real noisy data collected from extremely challenging acous-
tic conditions (EasyCom). In particular, audio enhanced
by ReVISE is significantly more intelligible and of higher
quality compared to those from the previous work.

While this paper studies universal regeneration, it only
concerns audio but not video distortion. For future work, we
hope to study more general multimodal speech regeneration
where the model can recover distortion in both modalities.
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