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Abstract

In this work, we propose the complexity-guided
slimmable decoder (cgSlimDecoder) in combination with
skip-adaptive entropy coding (SaEC) for efficient deep
video compression. Specifically, given the target complex-
ity constraints, in our cgSlimDecoder, we introduce a set
of new channel width selection modules to automatically
decide the optimal channel width of each slimmable con-
volution layer. By optimizing the complexity-rate-distortion
related objective function to directly learn the parameters
of the newly introduced channel width selection modules
and other modules in the decoder, our cgSlimDecoder can
automatically allocate the optimal numbers of parameters
for different types of modules (e.g., motion/residual decoder
and the motion compensation network) and simultaneously
support multiple complexity levels by using a single learnt
decoder instead of multiple decoders. In addition, our pro-
posed SaEC can further accelerate the entropy decoding
procedure in both motion and residual decoders by simply
skipping the entropy coding process for the elements in the
encoded feature maps that are already well-predicted by the
hyperprior network. As demonstrated in our comprehensive
experiments, our newly proposed methods cgSlimDecoder
and SaEC are general and can be readily incorporated into
three widely used deep video codecs (i.e., DVC, FVC and
DCVC) to significantly improve their coding efficiency with
negligible performance drop.

1. Introduction
Recently, learning-based video codecs [1, 15, 22, 28]

have achieved promising coding performance and outper-
formed widely used commercial codecs like H.264 [46]
and H.265 [40]. However, learning-based video codecs are
always inefficient due to computationally complex opera-
tions. In practical application scenarios, it is desirable that
the video codecs can decode the videos in real-time. Addi-
tionally, the decoders from different devices can afford dif-
ferent computational complexities under different scenar-
ios. For example, a cloud server can afford higher compu-

tational resource while a smartphone can afford much less
computational resource. Therefore, it is also desirable to
develop a video decoder that can simultaneously support
multiple computational complexities.

In order to achieve practical video codecs, two aspects
should be taken into consideration during decoding. First,
there are different modules in most decoders (see Figure 1
(a)) and the network structure of different modules in each
decoder (e.g., motion decoder, residual decoder and motion
compensation networks) needs to be carefully designed to
meet different complexity constraints. However, different
modules need to handle different types of information (e.g.,
residual information versus motion information) and thus
require different channel widths under different complex-
ity constraints, which makes it hard to manually design the
optimal channel widths for different convolution layers in
different modules. Second, the encoded bit-streams need to
be entropy decoded back into the entire feature map. How-
ever, most elements in the feature map are already precisely
predicted by the hyperprior networks [33]. As a result, it
is less efficient to entropy code the entire feature map as it
will also degrade the decoding efficiency.

Considering these two aspects, in this work, we propose
a complexity-guided slimmable decoder (cgSlimDecoder)
in combination with skip-adaptive entropy coding (SaEC)
for efficient deep video coding. Motivated by the slimmable
neural networks [21,53] for various visual recognition tasks,
for the decoder network, we propose a complexity-guided
slimmable decoder by additionally introducing a set of new
channel width selection modules to automatically decide
the optimal channel width of each slimmable convolution
layer under different complexity constraints. By learning
the parameters from our complexity-guided channel width
selection modules and other modules (e.g., the slimmable
convolution layers) through optimizing the complexity-rate-
distortion based objective function, our slimmable decoder
can automatically select the optimal channel widths for dif-
ferent modules such that the target complexity constraints
can be optimally allocated to different modules (e.g., the
motion/residual decoder and the motion compensation net-
work). When the computational resource is sufficient (resp.,
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limited), larger (resp., smaller) channel width is preferred in
the decoding process to reconstruct high-quality video se-
quences (resp., for more efficient decoding). In addition,
we also propose the SaEC method for more efficient en-
tropy coding of the encoded motion/residual feature map
from the motion/residual encoder. Specifically, we take the
hyperprior information as the input to predict whether each
element can be precisely predicted by the hyperprior net-
works. For each precisely predicted element, we directly
use the mean value of its predicted distribution from the hy-
perprior network, which will save bits and also accelerate
the decoding process by skipping the entropy decoding pro-
cess for these elements. The rest elements are still entropy
coded for more accurate reconstruction.

To demonstrate the effectiveness of our proposed meth-
ods, we evaluate our cgSlimDecoder in combination with
SaEC based on different baseline frameworks including
DVC [28], FVC [15] and DCVC [22]. The experimental
results demonstrate that our proposed methods are general
and can significantly improve the decoding efficiency with
comparable rate-distortion performance.

Our contributions are summarized as follows:

• We propose a complexity-guided slimmable decoder
for efficient video decoding, which can simultaneously
support multiple complexity levels by simply using
one learned decoder instead of multiple decoders.

• Our newly proposed cgSlimDecoder method can au-
tomatically allocate the optimal complexities (i.e.,
the optimal channel widths for different convolu-
tion layers) for different types of modules (e.g., mo-
tion/residual decoder) to meet the overall complexity
constraints of the entire video decoder. In addition, we
also propose the SaEC coding method for more effi-
cient and effective entropy coding.

• Our proposed methods are general and can be incor-
porated into a set of widely used video compression
methods (i.e., DVC, FVC and DCVC) and improve
their decoding efficiency with negligible performance
drop.

2. Related Work
2.1. Image and Video Codecs

Conventional image and video codecs (e.g., H.264 [46]
and H.265 [40]) heavily rely on hand-crafted opera-
tions. Recently, a large amount of learning-based im-
age codecs [2–4, 6, 8, 9, 13, 33–35, 41–43, 48, 49, 54] have
been proposed, in which some recent works [35, 48, 49, 54]
have outperformed the state-of-the-art conventional image
codecs like the intra codec of VTM [39]. Most of the
recent works [9, 13, 33, 34] focus on how to improve the

hyperprior networks for more accurate feature distribu-
tion prediction. Meanwhile, some learning-based video
codecs [1,7,10,11,15,16,23,24,26–31,36–38,47,52] were
also proposed. Lu et al. [28] proposed the first end-to-
end optimized video codec by replacing all the hand-crafted
modules with learning-based modules. Hu et al. [15] pro-
posed a feature space video coding framework by perform-
ing all major operations in the feature space. In DCVC [22].
Li et al. proposed the contextual coder to replace the resid-
ual coder. More recently, Mentzer et al. [31] proposed the
transformer-based video coding framework without explic-
itly encoding the motion feature.

2.2. Efficient Coding

For the conventional codecs, the simplified versions like
x264 and x265 were proposed for efficient video coding.
Recently, several works studied how to improve the effi-
ciency of learning-based image and video codecs. John-
ston et al. [18] proposed several approaches for improv-
ing the efficiency of image coding. Guo et al. [12] used
a single network to learn complexity and bit-rate adaptive
image codec. Different from [12, 18], our cgSlimDecoder
aims at optimally allocating the given complexity budget to
different types of modules (e.g., motion decoder and resid-
ual decoder), which is not considered in these deep image
compression methods like [12, 18]. Note different types
of modules play different roles in deep video compression,
and the performance drop (due to utilization of computa-
tionally less expensive layers) in some modules (e.g., mo-
tion decoder) may also affect the subsequent modules (e.g.,
residual decoder), so how to allocate the given complexity
budget over different types of modules is a non-trivial task.
Rippel et al. [36] and Le et al. [20] have proposed efficient
video codecs by manually designing the network structure
for both motion and residual decoding networks and these
methods [20, 36] can only support one complexity level. In
contrast to [20, 36], in our work, multiple complexity lev-
els can be readily supported by using one decoder and our
cgSlimDecoder also automatically learns the optimal chan-
nel widths for different types of modules.

2.3. Slimmable Networks

Slimmable neural networks [21, 53] were recently pro-
posed for balancing the trade-off between accuracy and
model complexity. However, previous slimmable neural
networks are mainly used for one single network and only
consider the complexity-accuracy trade-off. It is still a
non-trivial task to develop a slimmable neural network to
decide the optimal channel widths for different types of
modules (e.g., residual decoder versus motion decoder) in
video codecs by optimizing the complexity-rate-distortion
trade-off. Recently, the slimmable neural networks are also
used in deep image compression [51] and deep video com-
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Figure 1. (a) Overview of the DVC [28] framework. Note other deep video compression frameworks follow the similar pipeline. Only the
modules in blue are performed in the decoder side. In (b), taking DVC [28] as an example, we provide the detailed network structure of our
proposed slimmable motion and residual decoder with skip-adaptive entropy decoding. (c) The details of our proposed complexity-guided
slimmable convolution layer. Taking the complexity vector as the input, the channel width selection module will automatically select the
optimal channel width for each slimmable convolution layer in order to optimally allocate the overall complexity budget to different types
of modules. “Slimmable Convolution (Cin,Cout,K,S)” denotes the slimmable convolution layer with Cin input channels, Cout output
channels, the kernel size K and the stride S. “LReLU” denotes the LeakyReLU operation.

pression [25] to achieve variable bit-rate coding, which is
intrinsically different from our work as we aim to learn
one decoder for efficient deep video compression. In ad-
dition, they manually design the channel width for each
layer and their codec at low complexity level (resp., high
complexity level) can only be used for low bit-rate cod-
ing (resp., high bit-rate coding). In contrast to [25, 51], at
each given bit-rate, our proposed cgSlimDecoder can sup-
port multiple complexity levels by using one single decoder
and our work can also automatically learn the optimal chan-
nel bandwidths from different modules.

3. Methodology
3.1. Overall Framework

Problem Formulation. Taking the video sequence
{X1, X2, ..., Xt, ..., Xn} as the input, the goal of the video
codec is to reconstruct the high quality video sequence un-
der different bit-rate constraints.

In this section, we take DVC [28] as an example to illus-
trate the overall coding procedure of the mainstream deep
video coding framework, which is also shown in Figure 1
(a).

Motion Estimation. At the encoder side, taking the in-
put frame Xt and the reference frame X̂t−1 as the input, the

motion estimation network (e.g., the optical flow estimation
network) will estimate the motion information Mt.

Motion Compression. The motion compression mod-
ule includes the motion encoder, entropy encoding, entropy
decoding and motion decoder. The motion information Mt

from the motion estimation module is encoded by the mo-
tion encoder to generate the encoded motion feature mt.
Then the entropy encoding operation is performed to con-
vert the encoded motion feature mt into motion bit-stream,
which will be sent to the decoder side. At the decoder side,
the motion bit-stream is firstly entropy decoded into the en-
tropy decoded motion feature m̂t, which is then decoded
into the decoded motion information M̂t by using the mo-
tion decoder network.

Motion Compensation. Given the reference frame
X̂t−1 and the decoded motion information M̂t, the mo-
tion compensation module is performed to generate the pre-
dicted frame X̄t.

Residual Compression. The residual information Rt is
generated based on the input frame Xt and the predicted
frame X̄t. The coding procedure of the residual informa-
tion Rt is similar to the coding procedure of the motion in-
formation Mt, which includes the residual encoder, entropy
encoding, entropy decoding and residual decoder.

Video Decoding. In Figure 1 (a), the modules marked in
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blue are used for video decoding. The decoder receives the
motion bit-stream and the residual bit-stream of each frame.
The entropy decoding process is first performed to generate
the entropy decoded motion feature m̂t and the entropy de-
coded residual feature r̂t from the bit-streams. Then the
motion decoder network and the residual decoder network
decode the entropy decoded features m̂t and r̂t back to the
decoded motion information M̂t and the decoded residual
information R̂t, respectively. Then the motion compensa-
tion module is performed to generate the predicted frame
X̄t. Finally, the reconstructed output frame X̂t is generated
by adding the reconstructed residual information R̂t back to
the predicted frame X̄t.

The video decoder consists of multiple modules (e.g.,
motion decoder, residual decoder and motion compensation
networks) and each of them contains multiple convolution
layers, which makes it hard to manually design the optimal
channel width at each layer in different modules to satisfy
different complexity constraints on various devices. Addi-
tionally, the previous works [15,22,28] always directly per-
form the entropy coding operation on the entire feature map
without considering the efficiency issue. Therefore, it is de-
sirable to develop a complexity-guided slimmable decoder
with efficient entropy coding for video codecs.

3.2. Complexity-guided Slimmable Decoder

Recently, a large amount of deep video codecs [1, 15,
22, 28] are proposed for better video coding performance.
However, these networks are designed without considering
the complexity constraints on various devices. It is also
impractical to design multiple decoder network structures
for multiple complexity constraints. Therefore, we pro-
pose the complexity-guided slimmable decoder (cgSlimDe-
coder) to satisfy various complexity constraints by using
one single decoder. In Figure 1 (b), we provide the de-
tailed network structure of our proposed complexity-guided
slimmable decoder. In our proposed decoder, each convolu-
tion/deconvolution layer is replaced by the slimmable con-
volution/deconvolution layer for achieving multiple com-
plexity constraints.

The details of the complexity-guided slimmable convo-
lution layers are provided in Figure 1 (c). The complexity
vector is a one-hot vector to represent the current complex-
ity constraint, which is taken as the input of the complexity-
guided channel width selection module. Then the chan-
nel width selection module will decide the optimal chan-
nel width of each convolution layer under the current com-
plexity constraint. In this work, three options are provided
for each convolution layer for achieving different computa-
tional complexities. For example, for the first option, all the
channels are selected with full complexity. When the first
option is selected for all convolution layers, the network
is the same as those networks without using the slimmable

convolution layers. For the second or the third option, only
a subset of the convolution weights is used in the convo-
lution operation to achieve less computational complexity.
In the slimmable convolution layer from Figure 1 (c), the
second option uses 2

3 input channels and only outputs 2
3

output channels. Therefore, the complexity of this option
is only 4

9 of the original complexity. The third option in
Figure 1 (c) only uses 1

3 of the input and output channel,
which achieves 1

9 complexity of the original computational
complexity. Note that when option 2 or 3 is selected, the
channel number of the output feature map is less than the
original output channel number. To address this issue, we
directly set each element of the output feature map as the
element of the input feature map at the corresponding chan-
nel instead of setting them to zeros in order to prevent the
loss of information.

Complexity-guided Channel Width Selection. Taking
the complexity vector as the input, our complexity-guided
channel width selection module will separately decide the
channel width for each convolution layer in the video de-
coder. However, directly selecting the channel width option
with the maximum probability is undifferentiable, which
makes the optimization of the channel width selection mod-
ule infeasible. Therefore, we adopt the Gumbel Softmax
strategy [17] to decide the optimal width of each convolu-
tion layer during the training procedure. During the testing
process, we directly select the channel width option with
the maximum probability.

3.3. Skip-adaptive Entropy Coding

For practical learning-based video coding, the efficiency
of entropy coding should also be considered. Inspired by
[38], we propose skip-adaptive entropy coding (SaEC) by
automatically predicting the skip mode for each element of
the encoded motion feature map.

In Figure 2 (a), we take the encoded motion feature mt

as an example to illustrate the procedure of our proposed
skip-adaptive entropy coding method. We assume the size
of the encoded motion feature mt is c × h × w, which de-
notes that the feature mt has “c” channels with the spatial
size of “h×w”. Therefore, the hyperprior network will pre-
dict the hyperprior information (i.e., the mean and the vari-
ance) for each element of the encoded motion feature mt,
which has the same spatial size h× w with 2× c channels.
We take the hyperprior information as the input of the mode
prediction network. As shown in Figure 2 (b), similar to the
channel width selection module, we also use the Gumbel
Softmax strategy [17] to solve the gradient undifferentiable
issue during training and then select the skip mode for each
element of the encoded feature map mt. The mode predic-
tion module will generate a 0/1 mask for each element of the
feature map mt. “1” in the predicted 0/1 mask denotes the
corresponding element is uncertain and should be entropy
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Figure 2. (a) Details of our proposed skip-adaptive entropy coding
method. Given the encoded motion feature mt and its correspond-
ing hyperprior information (i.e. the mean and variance for each
element in mt), we automatically select the coding mode (i.e., the
skip mode) for each element of the encoded motion feature mt.
(b) The detailed network structure of the mode prediction network.
We use the Gumbel Softmax strategy during training and use the
“Max” operation during testing. “Conv(C,K,S)” denotes the con-
volution layer with “C” output channels, the kernel size “K” and
the stride “S”.

coded. “0” denotes that the symbol is well predicted by the
hyperprior network so we can directly use the mean value
in order to accelerate the entropy coding procedure and save
bits. Our proposed SaEC method in residual compression
follows the same procedure as that in motion compression.

Therefore, by using our proposed SaEC module, the
quantized motion and residual features can be efficiently
and effectively entropy decoded for practical deep video
coding. The previous work C2F [14] proposed a hyperprior-
guided mode prediction network to predict the skip mode
for effective residual coding, which set the skipped elements
as zeros. Different from C2F [14], we use the skip-adaptive
entropy coding for both motion and residual entropy cod-
ing and set the skipped elements as the mean values from
the hyperprior network. Additionally, we also use a much
simpler and more efficient mode prediction network.

3.4. Two-stage Training Strategy for Complexity-
guided Slimmable Decoder (cgSlimDecoder)

Although our newly proposed complexity-guided
slimmable decoder can automatically select the optimal
width for each convolution layer, it is a non-trivial task
to optimize the entire video coding network to achieve
multiple complexity constraints without significantly
degrading the rate-distortion performance. Therefore, we
propose a two-stage optimization strategy to optimize the

video compression method with our cgSlimDecoder.
At the first stage, we randomly initialize the

weight/parameter of each complexity-guided channel
width selection module and train the whole network
without complexity penalty. The loss function at this stage
is formulated as follows,

L = Rm +Rr + λD(X̂t, Xt) (1)

in which the Rm and Rr denote the bit-rate cost for entropy
coding the motion and residual information, respectively.
D(X̂t, Xt) denotes the distortion between the output frame
X̂t and the input frame Xt. λ is the hyper-parameter to con-
trol the trade-off between the bit-rate cost and the distortion.
At this stage, as the channel width selection module is ran-
domly initialized without complexity penalty, the channel
width selection modules will randomly select the channel
width for each layer such that the video coding networks
with different channel width options are trained.

For the second stage, we add the complexity penalty
for achieving different complexity constraints. N complex-
ity targets are predefined as Ctar

1 , Ctar
2 , ..., Ctar

N . For each
training step, we randomly select a complexity target Ctar

i

and feed the corresponding one-hot complexity vector to the
network. For the ith complexity target Ctar

i , the optimiza-
tion function is formulated as follows,

θ∗ = argmin
θ

Rm+Rr+λD(X̂t, Xt), s.t. Ci ≤ Ctar
i (2)

in which Rm, Rr, λ and D(X̂t, Xt) are the same as in
Eq. (1). θ is the network parameters, θ∗ is our target net-
work parameters and Ci is the decoder complexity at the
current step. We solve the optimization problem in Eq. (2)
by using the Lagrangian multiplier based optimization tech-
nology. Therefore, the optimization problem in Eq. (2) can
be rewritten as follows,

θ∗ = argmin
θ

Rm +Rr + λD(X̂t, Xt) + αiCi (3)

where αi is the Lagrangian multiplier. Therefore, the loss
function of the second stage is formulated as follows,

L = Rm +Rr + λD(X̂t, Xt) + αiCi (4)

The details on how to set the weight αi will be discussed in
the supplementary materials.

3.5. Implementation Details

In this work, we incorporate the newly proposed
cgSlimDecoder in combination with the SaEC method
into different baseline frameworks including DVC [28],
FVC [15] and DCVC [22]. For the residual blocks in these
three frameworks, we only use one channel width selection
module to select the channel width for all convolution lay-
ers of one residual block for more stable training. Consider-
ing that the hyperprior networks will only bring negligible
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computational complexity cost, we do not use slimmable
convolution layers in the hyperprior decoder. The details of
different baseline frameworks are also provided.

For the DVC [28] framework, in Figure 1 (b), we pro-
vide the detailed network design for the motion decoder
and the residual decoder. The decoder of DVC [28] also
includes the heavy motion compensation network. For the
motion compensation network, we replace all the convolu-
tion layers with slimmable convolution layers. Considering
that DVC does not have the hyperprior network to predict
the mean and variance for the encoded motion and residual
features, we directly take the encoded motion/residual fea-
ture as the input and predict the coding mode for each 4× 4
block, which will be transmitted to the decoder.

For the FVC [15] framework, we remove the time-
consuming multi-frame feature fusion module. All the con-
volution layers in the feature encoder, feature decoder, off-
set decoder, motion compensation and residual decoder are
replaced by using the slimmable convolution layers.

For the DCVC [22] framework, we remove the time-
consuming auto-regressive context model. All the convo-
lution layers in the motion decoder, the motion refinement,
the feature extraction, the context refinement, the context
encoder and the contextual decoder modules are replaced
by using the slimmable convolution layers.

4. Experiments

4.1. Experimental Setup

Training Dataset. We use the Vimeo-90K dataset as the
training [50] set, which consists of 89,800 video sequences.
Each video sequence contains seven frames with the reso-
lution of 448 × 256. We randomly flip and crop the video
sequence to the resolution of 256× 256.

Testing Datasets. We evaluate our methods on the
HEVC Class B, C, D, E datasets [40], the UVG dataset [32]
and the MCL-JCV dataset [44]. The HEVC Class B, C, D,
E datasets consist of video sequences with the resolutions of
1920×1080, 832×480, 416×240 and 1280×720, respec-
tively, which are frequently used for the evaluation of con-
ventional video codecs. The UVG dataset [32] consists of
seven high frame-rate video sequences with the resolution
of 1920× 1080. The MCL-JCV dataset [44] is also widely
used for evaluating the coding performance, which contains
thirty 1080p video sequences with various contents. Due to
space limitation, the results on the HEVC datasets will be
provided in the supplementary materials.

Evaluation Metric. PSNR and MS-SSIM [45] are used
for evaluating the quality of the reconstructed video se-
quence. PSNR is the most widely used metric for evaluat-
ing distortion. MS-SSIM is a more subjective visual quality
evaluation metric. We use the bit per pixel (bpp) to repre-
sent the bit-rate cost. The MACs (multiply–accumulate op-

erations) are used to evaluate the computational complexity
of different models. Considering that we need three metrics
(i.e., MACs, bpp, PSNR/MS-SSIM) to evaluate our method,
we use the BD-PSNR [5] and BD-MSSSIM (dB) to eval-
uate the average PSNR/MS-SSIM(dB) improvement over
two rate-distortion curves.

Training Details. We use the same training proce-
dure for all the baseline methods including DVC [28],
FVC [15] and DCVC [22]. The hyper-parameter λ is set
as 2048, 1024, 512 and 256. For training the video com-
pression model with the highest λ value, we use 2,000,000
steps to train the video compression model with two con-
secutive frames. After that, we randomly sample 5 frames
from the training video sequence and train the model with
200,000 steps. Finally, we fine-tune the models with other
λ values for 50,000 steps. We set the initial learning rate for
DVC, FVC and DCVC as 1e-4, 5e-5 and 1e-4, respectively.
Then the learning rate is decreased by 80% at 1,800,000
and 2,100,000 steps. The same training strategy is used for
the baseline methods equipped with our proposed methods
and we fix the channel width selection module when fine-
tuning the models with lower λ values. As described in
Section 3.4, we additionally indicate the complexity penalty
after the first 500,000 training steps. The initial τ in each
Gumbel Softmax layer is set as 4 and is gradually reduced
to zero. We set the batch size as four and use the Adam [19]
optimizer for training. Our code is implemented based on
Pytorch with CUDA support.

We use the MSE loss as the distortion loss in our loss
functions. For our proposed complexity-guided slimmable
decoder, we use three target complexity levels. For each
slimmable convolution/deconvolution layer, we use three
channel width options including 100%, 50% and 25% of
the original channel width.

4.2. Complexity-Rate-Distortion Performance

Baseline Methods. We use three widely used deep video
codecs including DVC [28], FVC [15] and DCVC [22]
as the baseline methods. We name DVC / FVC / DCVC
in combination with our cgSlimDecoder (resp., cgSlimDe-
coder+SaEC) as cgSlimbDecoder(DVC) / cgSlimbDe-
coder(FVC) / cgSlimbDecoder(DCVC) (resp., cgSlimb-
Decoder+SaEC(DVC) / cgSlimbDecoder+SaEC(FVC) /
cgSlimbDecoder+SaEC(DCVC)). To compare with our
newly proposed cgSlimDecoder in combination with SaEC,
we use a simple baseline method by directly reducing a
fixed ratio (i.e., 25% and 50%) of the original channel width
for each convolution layer in the decoder network. For fair
comparison, the channel numbers of the convolutions in the
hyperprior network are not reduced. The baseline methods
are also well-trained by fine-tuning the pretrained DVC /
FVC / DCVC modules when only using 75% and 50% of
the original channel width. Considering that it is hard to di-
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Figure 3. The experimental results of different methods on the HEVC, UVG and MCL-JCV datasets.

rectly compare the complexity-rate-distortion performance,
we use the corresponding methods DVC, FVC and DCVC
with all original channel widths as the anchor method and
calculate the BD-PSNR [5] results under different complex-
ity constraints to make a fair comparison. BD-PSNR de-
notes the average PSNR improvement when compared with
the anchor method. Therefore, higher BD-PSNR result de-
notes better rate-distortion performance.

As shown in Figure 3, our cgSlimDecoder(DVC) and
cgSlimDecoder(FVC) achieve comparable BD-PSNR re-
sults when compared with the anchor method DVC and
FVC. For example, cgSlimDecoder(DVC) drops less than
0.1dB at the lowest complexity level on both UVG and
MCL-JCV datasets. We observe that the simple base-
line method by directly reducing a fixed ratio of channel
widths brings much more performance drop than our pro-
posed cgSlimDecoder. For example, the performance of
the baseline method FVC at the middle complexity level
drops about 0.4dB on the MCL-JCV dataset, while our pro-
posed cgSlimDecoder(FVC) only drops less than 0.1dB at
the lowest complexity level when compared with the an-

chor method FVC with the original channel widths. DCVC
is a more carefully designed method, which leads to much
more performance drop when less complexity is used in the
decoder. However, our method still achieves much better
performance than the baseline method DCVC. When our
cgSlimDecoder(DCVC) uses about 50% of the total com-
plexity on the MCL-JCV dataset, the performance drops
about 0.4dB, while the baseline method with the mid-
dle complexity level drops about 0.6dB. Additionally, our
cgSlimDecoder in combination with skip-adaptive entropy
coding (SaEC) can further improve the coding performance
with faster entropy decoding speed. On the UVG dataset,
our cgSlimDecoder+SaEC(DCVC) achieves 0.2dB perfor-
mance improvement when compared with our cgSlimDe-
coder(DCVC).

Rate-Distortion Curves. Considering providing all the
RD curves in one plot makes it hard to compare the perfor-
mance, we take FVC as an example and provide the rate-
distortion curves in the last row of Fig. 3. Note FVC (reim-
plement) removes the time-consuming multi-frame feature
fusion and achieves better results than FVC (paper).
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Table 1. The complexity percentages of different modules in the
original DCVC [22] method and our cgSlimDecoder(DCVC) at
different complexity levels based on different input complexity
vectors.

Complexity Levels Original Level 1 Level 2 Level 3
Motion Decoder 7% 1% 2% 3%
Motion Refinement 25% 27% 34% 18%
Feature Extraction 10% 13% 15% 25%
Context Refinement 15% 5% 8% 13%
Context Encoder 5% 3% 4% 4%
Contextual Decoder 39% 51% 38% 37%

Table 2. Skip percentage in both motion and residual entropy cod-
ing of our proposed cgSlimDecoder+SaEC(FVC) on the MCL-
JCV dataset at different λ values.

λ=2048 λ=1024 λ=512 λ=256
Motion 99.60% 99.74% 99.79% 99.83%
Residual 85.90% 91.54% 94.27% 96.21%

4.3. Model Analysis
Complexity Percentage of Different Modules. In Ta-

ble 1, we take the DCVC [22] as an example to provide the
complexity percentages of different modules in the origi-
nal DCVC and our proposed cgSlimDecoder(DCVC) based
on different input complexity levels. It is observed that
at the highest complexity level (i.e., level 1), our method
cgSlimDecoder(DCVC) allocates more than 50% complex-
ity to the contextual decoder. While the motion decoder
only takes less than 5% percentage of the total complex-
ity at all complexity levels. One possible explanation is
that contextual decoding is more important than motion de-
coding, namely, reducing the convolution channel widths in
the motion decoder will have less influence than reducing
the convolution channel widths in the contextual decoder,
which demonstrates that our proposed complexity-guided
slimmable decoder can automatically allocate the optimal
complexity to different modules in order to meet different
complexity constraints.

Skip Percentage for Motion and Residual Entropy
Coding. In Table 2, we also provide the skip percentage of
our proposed skip-adaptive entropy coding (SaEC) at differ-
ent λ values on the MCL-JCV dataset. We take cgSlimDe-
coder+SaEC(FVC) as an example, in which we set the high-
est complexity level for our cgSlimDecoder(FVC). We ob-
serve that more than 99.5% elements are skipped in motion
entropy coding and more than 85% elements are skipped
in residual entropy coding, which can significantly improve
the entropy coding speed. For smaller λ values, lower bit-
rates are required and thus the motion and residual fea-
tures contain less information, which leads to larger skip
percentages for both motion and residual entropy coding.
For example, when setting λ = 256, 99.8% elements are
skipped during motion entropy coding and 96.2% elements
are skipped during residual entropy coding. The results

Table 3. Decoding time of DVC, FVC and DCVC and
our proposed cgSlimDecoder(DVC), cgSlimDecoder(FVC) and
cgSlimDecoder(DCVC) when using the 1080p videos as input.
“Level 1”, “Level 2” and “Level 3” indicate the complexity at the
highest, the middle and the lowest level, respectively.

Original Level 1 Level 2 Level 3
DVC 163ms 140ms 107ms 79ms
FVC 127ms 107ms 89ms 71ms
DCVC 283ms 237ms 189ms 144ms

demonstrate that our proposed SaEC can skip a large per-
centage of elements to avoid motion and residual entropy
coding for these elements, which can also significantly im-
prove the decoding efficiency.

Running Time. The decoding times of our methods
are provided in Table 3. We observe that our proposed
cgSlimDecoder can significantly reduce the decoding time.
For example, our cgSlimDecoder(DCVC)-level 3 reduces
about 50% of the decoding time, which demonstrates the
effectiveness of our cgSlimDecoder.

Running Time Reduction of our SaEC. To demon-
strate the effectiveness of our proposed SaEC, we use the
entropy coder “torchac” for evaluating the speed of entropy
coding. Taking DCVC as an example, when SaEC is not
used in our cgSlimDecoder(DCVC), the entropy decoding
times of motion/residual coding are 147ms/33ms per frame
on the MCL-JCV dataset, while the corresponding time is
only 0.6ms/2ms when SaEC is adopted as most of the el-
ements as skipped. It is observed that our proposed SaEC
can reduce a large percentage of entropy coding time.

5. Conclusion
In this work, we have proposed a complexity-guided

slimmable decoder (cgSlimDecoder) in combination with
skip-adaptive entropy coding (SaEC) for efficient video
coding. To support multiple complexity constraints in a
single decoder, our proposed cgSlimDecoder can automat-
ically select the optimal channel width for different con-
volution layers in different modules (e.g., motion/residual
decoder, motion compensation network). For efficient en-
tropy coding, our SaEC can automatically skip the entropy
coding procedures for a set of selected elements that are al-
ready well-predicted by the hyperprior network and directly
use the predicted mean values from the hyperprior network
for these elements. The experiments demonstrate that our
proposed cgSlimDecoder in combination with SaEC is gen-
eral and can be applied to three widely used video codecs in-
cluding DVC, FVC and DCVC for achieving efficient video
decoding under multiple complexity constraints with negli-
gible rate-distortion performance drop.
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