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Abstract

Human body trajectories are a salient cue to identify
actions in the video. Such body trajectories are mainly
conveyed by hands and face across consecutive frames in
sign language. However, current methods in continuous
sign language recognition (CSLR) usually process frames
independently, thus failing to capture cross-frame trajec-
tories to effectively identify a sign. To handle this limita-
tion, we propose correlation network (CorrNet) to explic-
itly capture and leverage body trajectories across frames to
identify signs. In specific, a correlation module is first pro-
posed to dynamically compute correlation maps between
the current frame and adjacent frames to identify trajec-
tories of all spatial patches. An identification module is
then presented to dynamically emphasize the body trajec-
tories within these correlation maps. As a result, the gen-
erated features are able to gain an overview of local tem-
poral movements to identify a sign. Thanks to its spe-
cial attention on body trajectories, CorrNet achieves new
state-of-the-art accuracy on four large-scale datasets, i.e.,
PHOENIX14, PHOENIX14-T, CSL-Daily, and CSL. A com-
prehensive comparison with previous spatial-temporal rea-
soning methods verifies the effectiveness of CorrNet. Visu-
alizations demonstrate the effects of CorrNet on emphasiz-
ing human body trajectories across adjacent frames.

1. Introduction
Sign language is one of the most widely-used commu-

nication tools for the deaf community in their daily life.
However, mastering this language is rather difficult and
time-consuming for the hearing people, thus hindering di-
rect communications between two groups. To relieve this
problem, isolated sign language recognition tries to classify
a video segment into an independent gloss1. Continuous
sign language recognition (CSLR) progresses by sequen-
tially translating images into a series of glosses to express a
sentence, more prospective toward real-life deployment.

1Gloss is the atomic lexical unit to annotate sign languages.
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Figure 1. Visualization of correlation maps with Grad-CAM [39].
It’s observed that without extra supervision, our method could well
attend to informative regions in adjacent left/right frames to iden-
tify human body trajectories.

Human body trajectories are a salient cue to identify ac-
tions in human-centric video understanding [44]. In sign
language, such trajectories are mainly conveyed by both
manual components (hand/arm gestures), and non-manual
components (facial expressions, head movements, and body
postures) [10,35]. Especially, both hands move horizontally
and vertically across consecutive frames quickly, with fin-
ger twisting and facial expressions to express a sign. To
track and leverage such body trajectories is of great impor-
tance to understanding sign language.

However, current CSLR methods [5, 6, 16, 33, 34, 36, 54]
usually process each frame separately, thus failing to exploit
such critical cues in the early stage. Especially, they usually
adopt a shared 2D CNN to capture spatial features for each
frame independently. In this sense, frames are processed
individually without interactions with adjacent neighbors,
thus inhibited to identify and leverage cross-frame trajec-
tories to express a sign. The generated features are thus
not aware of local temporal patterns and fail to perceive
the hand/face movements in expressing a sign. To han-
dle this limitation, well-known 3D convolution [4] or its
(2+1)D variants [42, 49] are potential candidates to cap-
ture short-term temporal information to identify body tra-
jectories. Other temporal methods like temporal shift [30]
or temporal convolutions [31] can also attend to short-term
temporal movements. However, it’s hard for them to aggre-
gate beneficial information from distant informative spatial
regions due to their limited spatial-temporal receptive field.
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Besides, as their structures are fixed for each sample dur-
ing inference, they may fail to dynamically deal with dif-
ferent samples to identify informative regions. To tackle
these problems, we propose to explicitly compute correla-
tion maps between adjacent frames to capture body trajec-
tories, referred to as CorrNet. As shown in fig. 1, our ap-
proach dynamically attends to informative regions in adja-
cent left/right frames to capture body trajectories, without
relying on extra supervision.

In specific, our CorrNet first employs a correlation mod-
ule to compute correlation maps between the current frame
and its adjacent frames to identify trajectories of all spa-
tial patches. An identification module is then presented
to dynamically identify and emphasize the body trajecto-
ries embodied within these correlation maps. This proce-
dure doesn’t rely on extra expensive supervision like body
keypoints [53] or heatmaps [54], which could be end-to-
end trained in a lightweight way. The resulting features
are thus able to gain an overview of local temporal move-
ments to identify a sign. Remarkably, CorrNet achieves new
state-of-the-art accuracy on four large-scale datasets, i.e.,
PHOENIX14 [26], PHOENIX14-T [2], CSL-Daily [52],
and CSL [23], thanks to its special attention on body tra-
jectories. A comprehensive comparison with other spatial-
temporal reasoning methods demonstrates the superiority
of our method. Visualizations hopefully verify the effects
of CorrNet on emphasizing human body trajectories across
adjacent frames.

2. Related Work

2.1. Continuous Sign Language Recognition

Sign language recognition methods can be roughly cate-
gorized into isolated sign language recognition [18, 19, 43]
and continuous sign language recognition [5, 6, 33, 34, 37]
(CSLR), and we focus on the latter in this paper. CSLR
tries to translate image frames into corresponding glosses
in a weakly-supervised way: only sentence-level label is
provided. Earlier methods [12,13] in CSLR always employ
hand-crafted features or HMM-based systems [15, 26–28]
to perform temporal modeling and translate sentences step
by step. HMM-based systems first employ a feature extrac-
tor to capture visual features and then adopt an HMM to
perform long-term temporal modeling.

The recent success of convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) brings huge
progress for CSLR. The widely used CTC loss [14] in re-
cent CSLR methods [5, 6, 33, 34, 36, 37] enables training
deep networks in an end-to-end manner by sequentially
aligning target sentences with input frames. These CTC-
based methods first rely on a feature extractor, i.e., 3D or
2D&1D CNN hybrids, to extract frame-wise features, and
then adopt a LSTM for capturing long-term temporal de-

pendencies. However, several methods [6,37] found in such
conditions the feature extractor is not well-trained and then
present an iterative training strategy to relieve this problem,
but consume much more computations. Some recent stud-
ies [5,16,33] try to directly enhance the feature extractor by
adding alignment losses [16, 33] or adopt pseudo labels [5]
in a lightweight way, alleviating the heavy computational
burden. More recent works enhance CSLR by squeezing
more representative temporal features [21] or dynamically
emphasizing informative spatial regions [22].

Our method is designed to explicitly incorporate body
trajectories to identify a sign, especially those from hands
and face. Some previous methods have also explicitly
leveraged the hand and face features for better recogni-
tion. For example, CNN-LSTM-HMM [25] employs a
multi-stream HMM (including hands and face) to inte-
grate multiple visual inputs to improve recognition accu-
racy. STMC [53] first utilizes a pose-estimation network to
estimate human body keypoints and then sends cropped ap-
pearance regions (including hands and face) for information
integration. More recently, C2SLR [54] leverages the pre-
extracted pose keypoints as supervision to guide the model
to explicitly focus on hand and face regions. Our method
doesn’t rely on additional cues like pre-extracted body key-
points [54] or multiple streams [25], which consume much
more computations to leverage hand and face information.
Instead, our model could be end-to-end trained to dynami-
cally attend to body trajectories in a self-motivated way.

2.2. Applications of Correlation Operation

Correlation operation has been widely used in various
domains, especially optical flow estimation and video ac-
tion recognition. Rocco et al. [38] used it to estimate the ge-
ometric transformation between two images, and Feichten-
hofer et al. [11] applied it to capture object co-occurrences
across time in tracking. For optical flow estimation, Deep
matching [47] computes the correlation maps between im-
age patches to find their dense correspondences. CNN-
based methods like FlowNet [9] and PWC-Net [40] design a
correlation layer to help perform multiplicative patch com-
parisons between two feature maps. For video action recog-
nition, Zhao et al. [51] firstly employ a correlation layer to
compute a cost volume to estimate the motion information.
STCNet [8] considers spatial correlations and temporal cor-
relations, respectively, inspired by SENet [20]. MFNet [29]
explicitly estimates the approximation of optical flow based
on fixed motion filters. Wang et al. [44] design a learnable
correlation filter and replace 3D convolutions with the pro-
posed filter to capture spatial-temporal information. Differ-
ent from these methods that explicitly or implicitly estimate
optical flow, the correlation operator in our method is used
in combination with other operations to identify and track
body trajectories across frames.
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Figure 2. An overview for our CorrNet. It first employs a fea-
ture extractor (2D CNN) to capture frame-wise features, and then
adopts a 1D CNN and a BiLSTM to perform short-term and long-
term temporal modeling, respectively, followed by a classifier to
predict sentences. We place our proposed identification module
and correlation module after each stage of the feature extractor to
identify body trajectories across adjacent frames.

3. Method

3.1. Overview

As shown in fig. 2, the backbone of CSLR models con-
sists of a feature extractor (2D CNN2), a 1D CNN, a BiL-
STM, and a classifier (a fully connected layer) to perform
prediction. Given a sign language video with T input
frames x = {xt}Tt=1 ∈ RT×3×H0×W0 , a CSLR model
aims to translate the input video into a series of glosses
y = {yi}Ni=1 to express a sentence, with N denoting the
length of the label sequence. Specifically, the feature ex-
tractor first processes input frames into frame-wise features
v = {vt}Tt=1 ∈ RT×d. Then the 1D CNN and BiLSTM
perform short-term and long-term temporal modeling based
on these extracted visual representations, respectively. Fi-
nally, the classifier employs widely-used CTC loss [14] to
predict the probability of target gloss sequence p(y|x).

The CSLR model processes input frames independently,
failing to incorporate interactions between consecutive
frames. We present a correlation module and an identi-
fication module to identify body trajectories across adja-
cent frames. Fig. 2 shows an example of a common fea-
ture extractor consisting of multiple stages. The proposed
two modules are placed after each stage, whose outputs are
element-wisely multiplied and added into the original fea-
tures via a learnable coefficient α. α controls the contribu-

2Here we only consider the feature extractor based on 2D CNN, be-
cause recent findings [1, 54] show 3D CNN can not provide as precise
gloss boundaries as 2D CNN, and lead to lower accuracy.

x: [T, C, H, W]

··· ···

𝑥𝑥𝑡𝑡𝑥𝑥𝑡𝑡−1 𝑥𝑥𝑡𝑡+1

1×1×1 Conv 1×1×1 Conv

K×K K×K

Figure 3. Illustration for the correlation operator. It com-
putes affinities between a feature patch p(i, j) in xt and patches
pt+1(i

′, j′)/pt−1(i
′, j′) in adjacent frame xt+1/xt−1.

tions of the proposed modules, and is initialized as zero to
make the whole model keep its original behaviors. The cor-
relation module computes correlation maps between con-
secutive frames to capture trajectories of all spatial patches.
The identification module dynamically locates and empha-
sizes body trajectories embedded within these correlation
maps. The outputs of correlation and identification mod-
ules are multiplied to enhance inter-frame correlations.

3.2. Correlation Module

Sign language is mainly conveyed by both manual
components (hand/arm gestures), and non-manual compo-
nents (facial expressions, head movements, and body pos-
tures) [10,35]. However, these informative body parts, e.g.,
hands or face, are misaligned in adjacent frames. We pro-
pose to compute correlation maps between adjacent frames
to identify body trajectories.

Each frame could be represented as a 3D tensor C×H×
W , where C is the number of channels and H×W denotes
spatial size. Given a feature patch pt(i, j) in current frame
xt, we compute the affinity between patch p(i, j) and an-
other patch pt+1(i

′, j′) in adjacent frame xt+1, where (i, j)
is the spatial location of the patch. To restrict the compu-
tation, the size of the feature patch could be reduced to a
minimum, i.e., a pixel. The affinity between p(i, j) and
pt+1(i

′, j′) is computed in a dot-product way as:

A(i, j, i′, j′) =
1

C

C∑
c=1

(pct(i, j) · pct+1(i
′, j′)). (1)

For the spatial location (i, j) in xt, (i′, j′) is often restricted
within a K × K neighborhood in xt+1 to relieve spatial
misalignment. A visualization is given in fig. 3. Thus, for
all pixels in xt, the correlation maps are a tensor of size
H × W × K × K. K could be set as a smaller value to
keep semantic consistency or as a bigger value to attend to
distant informative regions.

Given the correlation map between a pixel and its
neighbors in adjacent frame xt+1, we constrain its range
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into (0,1) to measure their semantic similarity by passing
A(i, j, i′, j′) through a sigmoid function. We further sub-
tract 0.5 from the results, to emphasize informative regions
with positive values, and suppress redundant areas with neg-
ative values as:

A′(i, j, i′, j′) = Sigmoid(A(i, j, i′, j′))− 0.5 (2)

After identifying the trajectories between adjacent
frames, we incorporate these local temporal movements
into the current frame xt. Specifically, for a pixel in xt,
its trajectories are aggregated from its K ×K neighbors in
adjacent frame xt+1, by multiplying their features with the
corresponding affinities as :

T (i, j) =
∑
i′,j′

A′(i, j, i′, j′) ∗ xt+1(i
′, j′). (3)

In this sense, each pixel is able to be aware of its trajecto-
ries across consecutive frames. We aggregate bidirectional
trajectories from both xt−1 and xt+1, and attach a learnable
coefficient β to measure the importance of bi-directions.
Thus, eq. 3 could be updated as :

T (i, j) =β1 ·
∑
i′,j′

A′
t+1(i, j, i

′, j′) ∗ xt+1(i
′, j′)+

β2 ·
∑
i′,j′

A′
t−1(i, j, i

′, j′) ∗ xt−1(i
′, j′)

(4)

where β1 and β1 are initialized as 0.5. This correlation cal-
culation is repeated for each frame in a video to track body
trajectories in videos.

3.3. Identification Module

The correlation module computes correlation maps be-
tween each pixel with its K × K neighbors in adjacent
frames xt−1 and xt+1. However, as not all regions are criti-
cal for expressing a sign, only those informative regions car-
rying body trajectories should be emphasized in the current
frame xt. The trajectories of background or noise should be
suppressed. We present an identification module to dynam-
ically emphasize these informative spatial regions. Specif-
ically, as informative regions like hand and face are mis-
aligned in adjacent frames, the identification module lever-
ages the closely correlated local spatial-temporal features
to tackle the misalignment issue and locate informative re-
gions.

As shown in fig. 4, the identification module first projects
input features x ∈ RT×C×H×W into xr ∈ RT×C/r×H×W

with a 1× 1× 1 convolution to decrease the computations,
by a channel reduction factor r as 16 by default.

As the informative regions, e.g., hands and face, are
not exactly aligned in adjacent frames, it’s necessary to
consider a large spatial-temporal neighborhood to identify

1×1×1

x: [T, C, H, W]

𝑥𝑥𝑟𝑟: [T, C/r, H, W]
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···

𝐾𝐾t × 𝐾𝐾𝑠𝑠 × 𝐾𝐾𝑠𝑠
Dilation=(1,𝑁𝑁𝑠𝑠,𝑁𝑁𝑠𝑠)

Groups=𝐶𝐶/𝑟𝑟

× 𝜎𝜎1 × 𝜎𝜎2 × 𝜎𝜎𝑑𝑑
+

1×1×1

𝑥𝑥𝑚𝑚: [T, C/r, H, W]

Sigmoid

− 0.5

Convolution

Activation 
function

Constant

Math operator

𝑁𝑁𝑡𝑡 × 𝑁𝑁𝑠𝑠 branchs

𝑀𝑀: [T, C, H, W]

··· ··· ···

𝐾𝐾t × 𝐾𝐾𝑠𝑠 × 𝐾𝐾𝑠𝑠
Dilation=(𝑁𝑁𝑡𝑡,1,1)

Groups=𝐶𝐶/𝑟𝑟

𝐾𝐾t × 𝐾𝐾𝑠𝑠 × 𝐾𝐾𝑠𝑠
Dilation=(𝑁𝑁𝑡𝑡,2,2)

Groups=𝐶𝐶/𝑟𝑟
···

𝐾𝐾t × 𝐾𝐾𝑠𝑠 × 𝐾𝐾𝑠𝑠
Dilation=(𝑁𝑁𝑡𝑡,𝑁𝑁𝑠𝑠,𝑁𝑁𝑠𝑠)

Groups=𝐶𝐶/𝑟𝑟

+
× 𝜎𝜎

[T, C, H, W]

Figure 4. Illustration for our identification module.

these features. Instead of directly employing a large 3D
spatial-temporal kernel, we present a multi-scale paradigm
by decomposing it into parallel branches of progressive di-
lation rates to reduce required computations and increase
the model capacity.

Specifically, as shown in fig. 4, with a same small base
convolution kernel of Kt ×Ks ×Ks, we employ multiple
convolutions with their dilation rates increasing along spa-
tial and temporal dimensions concurrently. The spatial and
temporal dilation rate range within (1, Ns) and (1, Nt), re-
spectively, resulting in total Ns ×Nt branches. Group con-
volutions are employed for each branch to reduce parame-
ters and computations. Features from different branches are
multiplied with learnable coefficients {σ1, . . . , σNs×Nt

} to
control their importance, and then added to mix information
from branches of various spatial-temporal receptive fields
as:

xm =

Ns∑
i=1

Nt∑
j=1

σi,j · Convi,j(xr) (5)

where the group-wise convolution Convi,j of different
branches receives features of different spatial-temporal
neighborhoods, with dilation rate (j, i, i).

After receiving features from a large spatial-temporal
neighborhood, xm is sent into a 1 × 1 × 1 convolu-
tion to project its channels back into C. It then passes
through a sigmoid function to generate attention maps M ∈
RT×C×H×W with its values ranging within (0,1). Spe-

2532



cially, M is further subtracted from a constant value of 0.5
to emphasize informative regions with positive values, and
suppress redundant areas with negative values as:

M = Sigmoid(Conv1×1×1(xm))− 0.5. (6)

Given the attention maps M to identify informative re-
gions, it’s multiplied with the aggregated trajectories T (x)
by the correlation module to emphasize body trajectories
and suppress others like background or noise. This refined
trajectory information is finally incorporated into original
spatial features x via a residual connection as:

xout = x+ αT (x) ·M. (7)

As stated before, α is initialized as zero to keep the original
spatial features.

4. Experiments
4.1. Experimental Setup

4.1.1 Datasets.

PHOENIX14 [26] is recorded from a German weather
forecast broadcast with nine actors before a clean back-
ground with a resolution of 210 × 260. It contains 6841
sentences with a vocabulary of 1295 signs, divided into
5672 training samples, 540 development (Dev) samples and
629 testing (Test) samples.

PHOENIX14-T [2] is available for both CSLR and sign
language translation tasks. It contains 8247 sentences with a
vocabulary of 1085 signs, split into 7096 training instances,
519 development (Dev) instances and 642 testing (Test) in-
stances.

CSL-Daily [52] revolves the daily life, recorded indoor
at 30fps by 10 signers. It contains 20654 sentences, divided
into 18401 training samples, 1077 development (Dev) sam-
ples and 1176 testing (Test) samples.

CSL [23] is collected in the laboratory environment by
fifty signers with a vocabulary size of 178 with 100 sen-
tences. It contains 25000 videos, divided into training and
testing sets by a ratio of 8:2.

4.1.2 Training details.

For fair comparisons, we follow the same setting as state-
of-the-art methods [33, 54] to prepare our model. We adopt
ResNet18 [17] as the 2D CNN backbone with ImageNet [7]
pretrained weights. The 1D CNN of state-of-the-art meth-
ods is set as a sequence of {K5, P2, K5, P2} layers where
Kσ and Pσ denotes a 1D convolutional layer and a pool-
ing layer with kernel size of σ, respectively. A two-layer
BiLSTM with hidden size 1024 is attached for long-term
temporal modeling, followed by a fully connected layer for
sentence prediction. We train our models for 40 epochs with

Configurations Dev(%) Test(%)
- 20.2 21.0

Nt=4, Ns=1 19.6 20.1
Nt=4, Ns=2 19.2 19.8
Nt=4, Ns=3 18.8 19.4
Nt=4, Ns=4 19.1 19.7
Nt=2, Ns=3 19.4 19.9
Nt=3, Ns=3 19.1 19.7
Nt=4, Ns=3 18.8 19.4
Nt=5, Ns=3 19.3 19.8
Kt=9, Ks=7 19.9 20.4

Table 1. Ablations for the multi-scale architecture of identification
module on the PHOENIX14 dataset.

initial learning rate 0.001 which is divided by 5 at epoch 20
and 30. Adam [24] optimizer is adopted as default with
weight decay 0.001 and batch size 2. All input frames
are first resized to 256×256, and then randomly cropped
to 224×224 with 50% horizontal flipping and 20% tempo-
ral rescaling during training. During inference, a 224×224
center crop is simply adopted. Following VAC [33], we em-
ploy the VE loss and VA loss for visual supervision, with
weights 1.0 and 25.0, respectively. Our model is trained
and evaluated upon a 3090 graphical card.

4.1.3 Evaluation Metric.

We use Word Error Rate (WER) as the evaluation met-
ric, which is defined as the minimal summation of the
substitution, insertion, and deletion operations to convert
the predicted sentence to the reference sentence, as:

WER =
#sub +#ins + #del

#reference
. (8)

Note that the lower WER, the better accuracy.

4.2. Ablation Study

We report ablative results on both development (Dev)
and testing (Test) sets of PHOENIX14 dataset.

Study on the multi-scale architecture of identification
module. In tab. 1, without identification module, our base-
line achieves 20.2% and 21.0% WER on the Dev and Test
Set, respectively. The base kernel size is set as 3× 3× 3 for
Kt ×Ks ×Ks. When fixing Nt=4 and varying spatial di-
lation rates to expand spatial receptive fields, it’s observed
a larger Ns consistently brings better accuracy. When Ns

reaches 3, it brings no more accuracy gain. We set Ns as
3 by default and test the effects of Nt. One can see that ei-
ther increasing Kt to 5 or decreasing Kt to 2 and 3 achieves
worse accuracy. We thus adopt Nt as 4 by default. We also
compare our proposed multi-scale architecture with a nor-
mal implementation of more parameters. The receptive field
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Configurations Dev(%) Test(%)
- 20.2 21.0

K=3 19.6 20.4
K=5 19.4 20.2
K=7 19.2 20.0
K=9 19.1 19.8

K= H or W (Full image) 18.8 19.4

Table 2. Ablations for the articulated area of correlation module
on the PHOENIX14 dataset.

Correlation Identification Dev(%) Test(%)
✘ ✘ 20.2 21.0
! ✘ 19.5 20.0
✘ ! 19.4 19.9
! ! 18.8 19.4

Table 3. Ablations for the effectiveness of correlation module and
identification module on the PHOENIX14 dataset.

of the identification module with Nt=4, Ns=3 is identical
to a normal convolution with Kt=9 and Ks=7. As shown
in the bottom of tab. 1, although a normal convolution owns
more parameters and computations than our proposed archi-
tecture, it still performs worse, verifying the effectiveness of
our architecture.

Study on the neighborhood K of correlation module.
In tab. 2, when K is null, the correlation module is dis-
abled. It’s observed that a larger K, i.e., more incorporated
spatial-temporal neighbors, consistently brings better accu-
racy. The performance reaches the peak when K equals
H or W , i.e., the full image is incorporated. In this case,
distant informative objects could be interacted to provide
discriminative information. We set K= H or W by default.

Effectiveness of two proposed modules. In tab. 3, we
first notice that either only using the correlation module or
identification module could already bring a notable accu-
racy boost, with 19.5% & 20.0% and 19.4% & 19.9% ac-
curacy on the Dev and Test Sets, respectively. When com-
bining both modules, the effectiveness is further activated
with 18.8% & 19.4% accuracy on the Dev and Test Sets,
respectively, which is adopted as the default setting.

Effects of locations for CorrNet. Tab 4 ablates the loca-
tions of our proposed modules, which are placed after Stage
2, 3 or 4. It’s observed that choosing any one of these lo-
cations could bring a notable accuracy boost, with 19.6%
& 20.1%, 19.5% & 20.2% and 19.4% & 20.0% accuracy
boost. When combining two or more locations, a larger ac-
curacy gain is witnessed. The accuracy reaches the peak
when proposed modules are placed after Stage 2, 3 and 4,
with 18.8% & 19.4% accuracy, which is adopted by default.

Generalizability of CorrNet. We deploy CorrNet upon

Stage 2 Stage 3 Stage 4 Dev(%) Test(%)
✘ ✘ ✘ 20.2 21.0
! ✘ ✘ 19.6 20.1
✘ ! ✘ 19.5 20.2
✘ ✘ ! 19.4 20.0
! ! ✘ 19.2 19.9
! ! ! 18.8 19.4

Table 4. Ablations for the locations of CorrNet on the
PHOENIX14 dataset.

Configurations Dev(%) Test(%)
SqueezeNet [20] 22.2 22.6

w/ CorrNet 20.2 20.4
ShuffleNet V2 [32] 21.7 22.2

w/ CorrNet 19.7 20.2
GoogleNet [41] 21.4 21.5

w/ CorrNet 19.6 19.8

Table 5. Ablations for the generalizability of CorrNet over multi-
ple backbones on the PHOENIX14 dataset.

Methods Dev(%) Test(%)
- 20.2 21.0
w/ SENet [20] 19.8 20.4
w/ CBAM [48] 19.7 20.2
w/ NLNet [46] - -
I3D [4] 22.6 22.9
R(2+1)D [42] 22.4 22.3
TSM [30] 19.9 20.5
CorrNet 18.8 19.4

Table 6. Comparison with other methods of spatial-temporal at-
tention or temporal reasoning on the PHOENIX14 dataset.

multiple backbones, including SqueezeNet [20], ShuffleNet
V2 [32] and GoogLeNet [41] to validate its generalizability
in tab. 5. The proposed modules are placed after three spa-
tial downsampling layers in SqueezeNet, ShuffleNet V2 and
GoogLeNet, respectively. It’s observed that our proposed
model generalizes well upon different backbones, bringing
+2.0% & +2.2%, +2.0% & +2.0% and +1.8% & +1.7% ac-
curacy boost on the Dev and Test Sets, respectively.

Comparisons with other spatial-temporal reasoning
methods. Tab. 6 compares our approach with other meth-
ods of spatial-temporal reasoning ability. SENet [20] and
CBAM [48] perform channel attention to emphasize key
information. NLNet [46] employs non-local means to ag-
gregate spatial-temporal information from other frames.
I3D [4] and R(2+1)D [42] deploys 3D or 2D+1D con-
volutions to capture spatial-temporal features. TSM [30]
adopts temporal shift operation to obtain features from ad-
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Left RightLeft Right

Figure 5. Visualizations of correlation maps for correlation module. Based on correlation operators, each frame could especially attend to
informative regions in adjacent left/right frames like hands and face (dark red areas).

Methods Dev(%) Test(%)
CNN+HMM+LSTM [25] 26.0 26.0
DNF [6] 23.1 22.9
STMC [53] 21.1 20.7
C2SLR [54] 20.5 20.4
CorrNet 18.8 19.4

Table 7. Comparison with other methods that explicitly exploit
hand and face features on the PHOENIX14 dataset.

jacent frames. In the upper part of tab. 6, one can see
CorrNet largely outperforms other attention-based methods,
i.e., SENet, CBAM and NLNet, for its superior ability to
identify and aggregate body trajectories. NLNet is out of
memory due to its quadratic computational complexity with
spatial-temporal size. In the bottom part of tab. 6, it’s ob-
served that I3D and R(2+1)D even degrade accuracy, which
may be attributed to their limited spatial-temporal recep-
tive fields and increased training complexity. TSM slightly
brings 0.3% & 0.3% accuracy boost. Our proposed ap-
proach surpasses these methods greatly, verifying its effec-
tiveness in aggregating beneficial spatial-temporal informa-
tion, from even distant spatial neighbors.

Comparisons with previous methods equipped with
hand or face features. Many previous CSLR methods ex-
plicitly leverage hand and face features for better recog-
nition, like multiple input streams [25], human body key-
points [53, 54] and pre-extracted hand patches [6]. They
require extra expensive pose-estimation networks like HR-
Net [45] or additional training stages. Our approach doesn’t
rely on extra supervision and could be end-to-end trained to
dynamically attend to body trajectories like hand and face
in a self-motivated way. Tab. 7 shows that our method out-
performs these methods by a large margin.

Raw

Raw

Heatmap

Heatmap

Figure 6. Visualizations of heatmaps by Grad-CAM [39]. Top:
raw frames; Bottom: heatmaps of our identification module. Our
identification module could generally focus on the human body
(light yellow areas) and especially pays attention to informative
regions like hands and face (dark red areas) to track body trajecto-
ries.

4.3. Visualizations

Visualizations for correlation module. Fig. 5 shows
the correlation maps generated by our correlation mod-
ule with adjacent frames. It’s observed that the reference
point could well attend to informative regions in adjacent
left/right frame, e.g., hands or face, to track body trajecto-
ries in expressing a sign. Especially, they always focus on
the moving body parts that play a major role in expressing
signs. For example, the reference point (left hand) in the up-
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Methods Backbone
PHOENIX14 PHOENIX14-T

Dev(%) Test(%) Dev(%) Test(%)del/ins WER del/ins WER
SFL [34] ResNet18 7.9/6.5 26.2 7.5/6.3 26.8 25.1 26.1
FCN [5] Custom - 23.7 - 23.9 23.3 25.1

CMA [36] GoogLeNet 7.3/2.7 21.3 7.3/2.4 21.9 - -
VAC [33] ResNet18 7.9/2.5 21.2 8.4/2.6 22.3 - -

SMKD [16] ResNet18 6.8/2.5 20.8 6.3/2.3 21.0 20.8 22.4
TLP [21] ResNet18 6.3/2.8 19.7 6.1/2.9 20.8 19.4 21.2
SEN [22] ResNet18 5.8/2.6 19.5 7.3/4.0 21.0 19.3 20.7
SLT∗ [2] GoogLeNet - - - - 24.5 24.6

CNN+LSTM+HMM∗ [25] GoogLeNet - 26.0 - 26.0 22.1 24.1
DNF∗ [6] GoogLeNet 7.3/3.3 23.1 6.7/3.3 22.9 - -

STMC∗ [53] VGG11 7.7/3.4 21.1 7.4/2.6 20.7 19.6 21.0
C2SLR∗ [54] ResNet18 - 20.5 - 20.4 20.2 20.4

CorrNet ResNet18 5.6/2.8 18.8 5.7/2.3 19.4 18.9 20.5

Table 8. Comparison with state-of-the-art methods on the PHOENIX14 and PHOENIX14-T datasets. ∗ indicates extra clues such as face
or hand features are included by additional networks or pre-extracted heatmaps.

per left figure specially attends to the quickly moving right
hand to capture sign information.

Visualizations for identification module. Fig. 6 shows
the heatmaps generated by our identification module. Our
identification module could generally focus on the human
body (light yellow areas). Especially, it pays major atten-
tion to regions like hands and face (dark red areas). These
results show that our identification module could dynami-
cally emphasize important areas in expressing a sign, e.g.,
hands and face, and suppress other regions.

4.4. Comparison with State-of-the-Art Methods

PHOENIX14 and PHOENIX14-T. Tab. 8 shows a
comprehensive comparison between our CorrNet and other
state-of-the-art methods. The entries notated with ∗ indi-
cate these methods utilize additional factors like face or
hand features for better accuracy. We notice that CorrNet
outperforms other state-of-the-art methods by a large mar-
gin upon both datasets, thanks to its special attention on
body trajectories. Especially, CorrNet outperforms previous
CSLR methods equipped with hand and faces acquired by
heavy pose-estimation networks or pre-extracted heatmaps
(notated with *), without additional expensive supervision.

CSL-Daily. CSL-Daily is a recently released large-
scale dataset with the largest vocabulary size (2k) among
commonly-used CSLR datasets, with a wide content cover-
ing family life, social contact and so on. Tab. 9 shows that
our CorrNet achieves new state-of-the-art accuracy upon
this challenging dataset with notable progress, which gen-
eralizes well upon real-world scenarios.

CSL. As shown in tab. 10, our CorrNet could achieve
extremely superior accuracy (0.8% WER) upon this well-
examined dataset, outperforming existing CSLR methods.

Methods Dev(%) Test(%)
LS-HAN [23] 39.0 39.4

TIN-Iterative [6] 32.8 32.4
Joint-SLRT [3] 33.1 32.0

FCN [5] 33.2 32.5
BN-TIN [52] 33.6 33.1

CorrNet 30.6 30.1

Table 9. Comparison with other methods on the CSL-Daily
dataset [52].

Methods WER(%)
SF-Net [50] 3.8

FCN [5] 3.0
STMC [53] 2.1
VAC [33] 1.6

C2SLR [54] 0.9
CorrNet 0.8

Table 10. Comparison with other methods on the CSL dataset [23].

5. Conclusion

This paper introduces a correlation module to capture
trajectories between adjacent frames and an identification
module to locate body regions. Comparisons with previous
CSLR methods with spatial-temporal reasoning or hand and
face features demonstrate the superiority of CorrNet. Visu-
alizations show that CorrNet could generally attend to hand
and face regions to capture body trajectories.
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