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Abstract

3D object detection from point clouds is crucial in safety-
critical autonomous driving. Although many works have
made great efforts and achieved significant progress on this
task, most of them suffer from expensive annotation cost
and poor transferability to unknown data due to the do-
main gap. Recently, few works attempt to tackle the do-
main gap in objects, but still fail to adapt to the gap of
varying beam-densities between two domains, which is crit-
ical to mitigate the characteristic differences of the LiDAR
collectors. To this end, we make the attempt to propose a
density-insensitive domain adaption framework to address
the density-induced domain gap. In particular, we first in-
troduce Random Beam Re-Sampling (RBRS) to enhance the
robustness of 3D detectors trained on the source domain to
the varying beam-density. Then, we take this pre-trained de-
tector as the backbone model, and feed the unlabeled target
domain data into our newly designed task-specific teacher-
student framework for predicting its high-quality pseudo la-
bels. To further adapt the property of density-insensitivity
into the target domain, we feed the teacher and student
branches with the same sample of different densities, and
propose an Object Graph Alignment (OGA) module to con-
struct two object-graphs between the two branches for en-
forcing the consistency in both the attribute and relation of
cross-density objects. Experimental results on three widely
adopted 3D object detection datasets demonstrate that our
proposed domain adaption method outperforms the state-
of-the-art methods, especially over varying-density data.
Code is available at https://github.com/WoodwindHu/DTS.

1. Introduction

3D object detection is a fundamental task in various
real-world scenarios, such as autonomous driving [24, 35]
and robot navigation [29], aiming to detect and localize
traffic-related objects such as cars, pedestrians, and cy-
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Figure 1. (a) The significant difference of beam densities among
Waymo, KITTI, and nuScenes datasets. The beam density Dζ

represents the number of beams per unit zenith angle. The beams
are evenly distributed in nuScenes, while the density of beams in
Waymo and KITTI increases as the zenith angle ζ increases, with
the highest density near the horizontal direction. (b) Compared
to previous works (SN [43] and ST3D [51]), our method is more
effective in transferring the knowledge from low density to high
density or high density to low density (N: nuScenes, K: KITTI,
W: Waymo.).

clists in 3D point clouds [16, 25, 26]. With the advent of
deep learning, this task has obtained remarkable advances
[24, 35–37, 49, 56, 60] in recent years, which however re-
quires costly dense annotations of point clouds. Further,
in real-world scenarios, upgrading LiDARs to other prod-
uct models can be time-consuming and labor-intensive to
collect and annotate massive data for each kind of prod-
uct, while it is reasonable to use labeled data from previous
sensors. Also, the number of LiDAR points used in mass-
produced robots and vehicles is usually fewer than that in
large-scale public datasets [44]. To bridge the domain gap
caused by different LiDAR beams, it is essential to develop
methods that address these differences. However, the gen-
eralization ability of existing methods is proved to be lim-
ited [43] when the 3D models trained on a specific dataset
are directly applied to an unknown dataset collected with a
different LiDAR, which prevents the wide applicability of
3D object detection in autonomous driving.

To reduce the domain gap between different datasets,
some works [13, 14, 27, 34, 43, 44, 47, 51, 55, 57] proposed
unsupervised domain adaptation (UDA) methods to transfer
knowledge from a labeled source domain to an unlabeled
target domain. However, most of them focus on reducing
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the domain gap introduced by the bias in object sizes on the
labeled source domain, which neglect another important do-
main gap induced by varying densities of point clouds ac-
quired from different types of LiDAR. We argue that this
domain gap is crucial for 3D object detection in two aspects:
1) As demonstrated in Figure 1(a), different LiDAR col-
lectors generally produce point cloud data with distinctive
densities and distributions, leading to huge density-induced
domain gap. 2) Most 3D detectors are directly trained on a
single environment and thus sensitive to the cross-domain
density variation. As shown in Figure 1(b), existing domain
adaption methods suffer from performance bottlenecks in
cross-density scenarios. Although few works [44] attempt
to downsample point clouds of high density and transfer its
knowledge to the low-density domain, they are limited to
the model design that cannot realize the knowledge trans-
fer from a low-density domain to a high-density domain.
Hence, it is demanded to train robust 3D feature representa-
tions that can adapt to point cloud data of varying densities.

To this end, we make the attempt to propose a novel
Density-insensitive Teacher-Student (DTS) framework to
address the domain gap induced by varying point densities
and distributions. The key idea of DTS is to first pre-train
a density-insensitive object detector on the source domain,
and then employ a self-training strategy [20, 51, 58] to fine-
tune this detector on the unlabeled target domain by itera-
tively predicting and updating its pseudo results. However,
there still remain two concerns: 1) Previous self-training
methods may be prone to its mistake by using single-branch
prediction. 2) How to adapt and improve the property of
density-insensitivity of the pre-trained 3D detector on the
target domain is important. Therefore, we introduce a task-
specific teacher-student framework in order to provide more
reliable and robust supervision, in which the teacher and
student branches are fed with variants of the same sample
in different densities. Further, considering the object pre-
diction should be invariant in the two branches, we propose
to capture their cross-density object-aware consistency for
enhancing the density-insensitivity on the target domain.

To be specific, we first introduce Random Beam Re-
Sampling (RBRS) to train the density-invariant 3D object
detector on the labeled source domain, by randomly mask-
ing or interpolating the beams of the point clouds. Then,
we take this pre-trained 3D detector as the backbone model
to build a teacher-student framework to iteratively predict
and update the pseudo labels on the unlabeled target do-
main. To achieve the goal of density-insensitivity, we feed
the student and teacher models with the RBRS-augmented
sample and the original sample, respectively. Moreover, in
order to enforce the consistency in attributes and relations
of detected objects in the teacher and student branches for
more reliable supervision, we construct two graphs based
on the objects predicted from the teacher and student mod-

els, and propose a novel Object Graph Alignment (OGA) to
keep consistent cross-density object-attributes (node-level)
and object-relations (edge-level) between the two graphs.
During the training, the student model is optimized based
on the predictions of the teacher while the weights of the
teacher model are updated by taking the exponential mov-
ing average of the weights of the student model. In this
way, our DTS is effective in reducing the density-induced
domain gap and achieving state-of-the-art performance on
the unknown target data.

In summary, our main contributions include
• We propose a density-insensitive unsupervised domain

adaption framework to alleviate the influence of the
domain gap caused by varying density distributions.
We develop beam re-sampling to randomize the den-
sity of point clouds, which effectively enhances the ro-
bustness of 3D object detection to varying densities.

• We exploit a task-specific teacher-student framework
to fine-tune the pre-trained 3D detector on the tar-
get domain. To adapt and improve the density-
insensitivity on the target domain, we introduce an ob-
ject graph alignment module to keep the cross-density
object-aware consistency.

• Experimental results demonstrate our model signif-
icantly outperforms the state-of-the-art methods on
three widely adopted 3D object detection datasets in-
cluding NuScenes [4], KITTI [11], and Waymo [39].

2. Related Work
Point-cloud-based 3D Object Detection: Point-cloud-
based 3D object detection [6, 10, 23, 24, 30, 35–37, 49, 50,
54, 59, 60] aims to localize and classify objects from point
clouds. Depending on representation learning strategies,
existing works can be divided into three categories: voxel
based, point based, and voxel-point based. Voxel based
methods [10,24,49,59,60] voxelize point clouds into 2D/3D
compact grids and then collapse it to a bird’s-eye-view rep-
resentation. They are computationally effective but the de-
sertion of fine-grained patterns degrades further refinement.
Point based methods [36, 53] directly process point clouds
without voxelization. These methods wholly preserve the
irregularity and locality of a point cloud but have relatively
higher latency. Point-voxel based methods [35, 54] inte-
grate the advantages of both voxel based methods and point
based methods together. Following previous works [44,51],
we adopt voxel based PointPillars [24], SECOND [49] and
point-voxel based PV-RCNN [35] as our detectors.
Unsupervised Domain Adaptation for 2D/3D Object De-
tection: UDA aims to transfer the model trained on the
fully annotated source domain to the unannotated target do-
main. A variety of solutions [5, 7, 9, 15, 19–21, 31–33, 38,
42, 58] have been proposed in the 2D object detection task.
As the pioneer, Ben et al. [2] designed a H∆H-distance
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Figure 2. The overall pipeline of the proposed DTS. Here, we take the case of transferring the high-density domain into low-density domain
as an example. Given the labeled source data and the unlabeled target data with different point density distributions, (a) our DTS first pre-
trains a 3D detector on the source data with random beam re-sampling (RBRS), where the Yellow beams mark the masked/interpolated
beams; (b) then DTS builds a teacher-student self-training framework with the pre-trained 3D detector. During the self-training process,
the student and teacher branches are fed with different density variants of the same input. An object graph alignment module is further
deployed to capture the cross-density object-aware consistency between the two branches.

to measure the divergence between two domains that have
different data distributions and proposed a general frame-
work to perform domain adaptation. Inspired by GAN [12],
many methods in the literature [7, 15, 33, 38, 42] generate a
domain discriminator to correctly classify the source/target
domain while training a detector model to fool the domain
discriminator. Some other methods [21, 31] follow the do-
main randomization strategy to devoid all source-style bias
on the source detector.

While a lot of research has been conducted on UDA for
object detection with 2D image data, there is relatively lit-
tle literature in the field of UDA for 3D object detection.
Wang et al. proposed statistical normalization (SN) [43]
to normalize the object sizes of the source and target do-
mains so they could bridge the domain gap introduced by
the difference in object sizes. SPG [48] utilized the se-
mantic point generation to tackle the domain gaps induced
by deteriorated point cloud quality. SF-UDA [34] uses the
temporal coherency to estimate the object size in the tar-
get domain while getting rid of the target domain statistics.
3D-CoCo [55] explores a contrastive co-training framework
including separate 3D encoders to provide more stable su-
pervisions from the labeled source data while avoiding the
biased knowledge of the source domain. MLC-Net [27] im-
plements a mean-teacher paradigm and exploits the point-,
instance- and neural statistics-level consistency to facilitate
the cross-domain transfer. Yang et al. proposed ST3D [51]

which redesigns the self-training pipeline to improve the
quality of pseudo-labels for 3D object detection. Although
these methods successfully achieve performance improve-
ment compared to direct transfer, they neglect the density-
induced domain gap. Observing that ST3D is hard to adapt
detectors from data with more beams to data with fewer
beams, Wei et al. proposed LiDAR Distillation [44], which
downsamples the high-density data to align the point cloud
density of the source and target domains. Then they pro-
gressively distill the knowledge from the high-density data
to the low-density data. Different from LiDAR Distillation
that is limited to transferring from high density to low den-
sity, our proposed DTS is able to transfer knowledge under
various settings of point densities.

3. Method
3.1. Problem Statement and Overview

Unsupervised domain adaption for 3D object detection
aims to transfer a model trained on a labeled source do-
main to an unlabeled target domain. Generally, the source
domain is a point cloud dataset {Xs

i }
Ns
i=1 labeled with

the corresponding class as and bounding box {Y s
i }

Ns
i=1,

while the target domain is an unlabeled point cloud dataset
{Xt

i}
Nt
i=1, where s and t represent source and target do-

mains respectively, and i means the i-th instance. Ns and
Nt are the number of source and target point clouds, re-
spectively. Generally, the label Y s

i is a seven-dimensional
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vector, which is parameterized by its center location c =
{cx, cy, cz}, bounding box size b = {l, w, h}, and the yaw
angle ξ, respectively. Since point clouds of different do-
mains are often collected by different LiDAR equipments
with various density distributions, it is demanded to de-
velop a density-insensitive domain adaptation model to re-
duce this density-induced domain gap.

To this end, we propose a novel Density-insensitive
Teacher-Student (DTS) framework, as shown in Figure 2,
which mainly consists of three components.

• Given the source and target domain data, DTS first pre-
trains a density-insensitive 3D detector on the source
data with Random Beam Re-Sampling (RBRS) to re-
duce the density-induced domain gap.

• Then the pre-trained 3D detector is taken as the
backbone to build a task-specific teacher-student self-
training framework, in which the teacher model gener-
ates the pseudo labels of the target data and provides
high-quality supervision to update network weights of
the student model. To adapt the property of density-
insensitivity on the target domain, we feed the student
and teacher models with the RBRS-augmented and the
original target samples, respectively.

• We further propose an Object Graph Alignment
(OGA) module to capture and learn the cross-density
object-aware consistency between student and teacher
models for improving the density-insensitivity.

In the following, we provide the details of each component.
3.2. Pre-training with Random Beam Re-Sampling

Before transferring the knowledge from the source do-
main into the target domain, we need to pre-train a 3D de-
tector to extract a wealth of knowledge on the annotated
source data {(Xs

i ,Y
s
i )}

Ns
i=1. However, this learned knowl-

edge contains the domain-specific bias due to different ob-
ject sizes and point densities collected by different LiDAR,
leading to the poor generalization ability on the target do-
main. Although Yang et al. [51] seek to overcome the bias
in object sizes via random object scaling (ROS), the density
bias has been seldom investigated. Therefore, we propose
to reduce this density gap among different domains and pro-
vide a density-insensitive 3D detector.

Given point clouds collected with M -beam LiDAR, we
first denote the zenith angle of the j-th beamas as ζ(j). The
density of beams, i.e., the count of beams in the unit zenith
angle, could be approximated by Dζ(j) = 1/(ζ(j + 1) −
ζ(j)). Inspired by the success of ROS in overcoming the
bias in object sizes, we propose random beam re-sampling
(RBRS), a simple yet effective strategy, to train a density-
insensitive 3D detector.
Random Beam Re-Sampling. RBRS aims to randomly
down-sample the dense data and up-sample the sparse data.
Before re-sampling, we first transfer cartesian coordinates
(x, y, z) of points to the spherical coordinates as:

ζ = arctan
z√

x2 + y2
,

ϕ = arcsin
y√

x2 + y2
,

r =
√
x2 + y2 + z2,

(1)

where ζ and ϕ are zenith and azimuth angles, r is the dis-
tance from each point to the LiDAR sensor. By taking the
zenith angle as the vertical coordinate and the azimuth angle
as the horizontal coordinate, point clouds could be trans-
formed to range images (like RBRS blocks in Figure 2).
We use the K-Means algorithm [18, 28] to mark the the ID
of beams in the range images according to its zenith angle
ζ. Then we perform RBRS by randomly down-sampling or
up-sampling the range images and reverse them into point
clouds.

Specifically, to down-sample the dense data, for the j-
th beam with the beam density of Dζ(j), RBRS randomly
masks this beam with the probability of ηj according to
the beam density Dζ(j). Considering a beam with a larger
beam density is more likely to be masked, we formulate this
mask probability ηj as ηj = 1 − γ1/Dζ(j), where γ1 is a
factor to control the overall density of the sampled point
cloud.

To up-sample the sparse data, RBRS randomly interpo-
lates artificial beams between the original beams. Specifi-
cally, an artificial beam is interpolated with a probability of
η′j between the j-th beam and the (j + 1)-th beam. Con-
sidering a beam with a larger Dζ(j) has smaller η′j , , the
interpolation probability η′j is set as η′j = γ2/Dζ(j), where
γ2 is the factor, and a larger γ2 indicates more beams to be
interpolated. Then, if a new beam is to be interpolated be-
tween the j-th beam and the (j+1)-th beam, every point in
the j-th beam is selected as datum mark. Taking a point k
in the j-th beam as an example, assuming its spherical co-
ordinate is (ζk, ϕk, rk), we first find a point in the (j+1)-th
beam, marked as k′, which is closest to point k measured
in the azimuth angle. Then the spherical coordinate of the
newly interpolated point is defined as:

ζ =
ζk + ζk′

2
, ϕ =

ϕk + ϕk′

2
, r =

rk + rk′

2
. (2)

Subsequently, the newly interpolated point is transformed
back to Cartesian coordinates for concatenating with the
original points. At last, we utilize this RBRS strategy to
pre-train the 3D detector on the source data.
3.3. Our Basic Teacher-Student Architecture

After obtaining the pre-trained density-insensitive 3D
detector on the source domain, we take it as the back-
bone model to build a self-training framework for fine-
tuning the source domain knowledge into the target domain.
Motivated by the success of the teacher-student paradigm
[3, 8, 40, 45] in semi-supervised learning, we design a task-
specific teacher-student paradigm to fine-tune the 3D detec-
tor on the target domain.
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Figure 3. Illustration of our proposed Node-Level Consistency
(NLC) and Edge-Level Consistency (ELC). We maintain the NLC
to constrain the bounding-box regression and utilize the ELC to
learn the object relations for better discriminating the objects.

Specifically, the teacher-student framework consists of
two separate branches, i.e., a non-trainable teacher detector
DT and a trainable student detector DS , sharing the same
architecture. For each input Xt

i of the unlabeled target do-
main, the teacher detector is fed with its original data Xt

i ,
while the student detector is fed with the augmented version
Xt′

i via our RBRS. This operation is to adapt the property
of density-insensitivity of the source domain into the tar-
get domain. We denote the generated bounding boxes of
the teacher branch and the student branch as Ŷi

T
and Ŷi

S
,

respectively.
During the teacher-student framework learning, the

teacher detector is used to generate pseudo labels of the in-
put Xt and provide the supervision signal to train the stu-
dent detector. In particular, the predictions of the teacher
branch with confidence higher than a threshold cth are cho-
sen to generate the pseudo labels as:

Ỹi = {ŷj ∈ Ŷi
T
|cj > cth}, (3)

where ŷj is the i-th predicted bounding box in Ŷi
T

and cj
is the confidence of ŷj . The student detector takes these
pseudo labels for supervision as:

L = Ldet + Lcons, (4)

where Ldet is the detection loss of the target-domain sam-
ples and is supervised by the pseudo label Ỹi, and Lcons
is the consistency loss between the teacher and the student
branch, which will be elaborated in Section 3.4.

To further improve the quality of the pseudo labels, we
also deploy the exponential moving average (EMA) tech-
nique [40] to update the weight of the teacher detector as:

θT = αθT + (1− α)θS , (5)

where α is a smoothing coefficient hyperparameter. The
moving average in Eq. 5 makes θT evolve more smoothly
than θS . As a result, the teacher can aggregate information
after every step and generate stable predictions of the input.

3.4. Object-Graph Consistency Learning between
the Teacher and Student Branches

To further enhance the property of density-insensitivity
in the target domain, we propose to capture the cross-
density consistency among the student and teacher
branches. Considering the detected objects of different-
density variants of the same sample should be invariant, we
build a contextual graph based on the predicted objects of
each branch for aligning both node-level (object-attribute)
and edge-level (object-relation) information between the
two branches, as shown in Figure 3. Different from MLC-
Net which also explores the multi-level consistency, we en-
force consistency from objects’ relations for capturing their
similarity, by building graphs to model the object-level con-
sistency via NLC and the relation-level consistency via
ELC, which considers both local and global features.
Object Graph Construction According to the predicted
objects of each branch, we construct a fully-connected undi-
rected graph G = {N , E} to model the object relationship.

For the graph of each branch, N = {yi ∈ Ŷt
T
|ci > cthG}

is the node set where each node represents an object predic-
tion. E is the edge set where each edge represents the rela-
tionship between the connected objects. Here, we utilize a
heuristic method to weigh the edges between the objects by
1) the close-distance objects have a stronger connection; 2)
the objects share similar sizes have a stronger connection;
3) the objects in the same direction indicate they are driving
in the same direction, thus they have a stronger connection.
Based on these, we set the edge weight corresponding to
the above connected objects’ location c, bounding box size
b and yaw angle ξ as:

wij = exp

(
−||ci − cj ||22 + ϵ1||bi − bj ||22 + ϵ2(ξi − ξj)

2

τ2

)
,

(6)
where ϵ1 and ϵ2 control the importance of the object size
and yaw angle, and τ is a temperature hyperparameter.
|| · ||2 is the L2 norm operation. We denote the graphs
of the teacher and the student as GS = {NS , ES} and
GT = {N T , ET }, respectively.
Node-Level Consistency Since the inputs of both teacher
and student branches are generated from the same sample
with different densities, their object predictions should be
density-invariant, i.e., NS and N T is fully matched. There-
fore, we aim to capture the node-level consistency between
the graphs of two branches for aligning the predicted bound-
ing boxes of the same object from inputs of different densi-
ties.

Specifically, we first calculate the IoU between the stu-
dent predictions NS and the teacher prediction N T . If the
IoU is larger than a threshold IoUth, we consider these ob-
ject detection results are matched and belong to the same
object. The detection results with lower IoU are filtered
out. For each matched object, we utilize its bird’s eye
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Algorithm 1 Training Process of our DTS

Require: Labeled source domain data {Xs
i ,Y

s
i }

Ns
i=1, and

unlabeled target domain data {Xt
i}

Nt
i=1

1: Pre-train the object detector on {Xs
i ,Y

s
i }

Ns
i=1 with

RBRS as detailed in Sec. 3.2.
2: Take the pre-trained model as the backbone to build the

teacher-student architecture.
3: for i = 1 to Nt do
4: Forward the teacher-student network demonstrated

in Figure 2 with Xt
i .

5: Generate pseudo labels Ỹi using the teacher’s output
Ŷi with Eq. 3.

6: Calculate the bounding-box supervision Ldet of the
student branch with Ỹi.

7: Construct object graphs over the two branches as de-
tailed in Sec. 3.4

8: Calculate the cross-graph node-level consistency loss
Lnode and edge-level consistency loss Ledge as de-
tailed in Sec. 3.4

9: Back-forward the total loss in Eq. 4 to update the stu-
dent network.

10: Update the teacher’s weight using Eq. 5.
11: end for
12: Go back to Line 3 until convergence.
Output: The object detection model for the target domain.

view (BEV) features sampled via region of interest (ROI)
as the guidance to pull its predicted bounding boxes of two
branches closer. Considering that the matched object fea-
tures of the two branches should be similar, we design the
node-level consistency loss Lnode to maximize their similar-
ity in attributes as:

Lnode =
1

N

N∑
i=1

exp

(
− (fSi )

⊤fTi
||fSi ||2||fTi ||2

)
, (7)

where N is the number of the matched object pairs, fSi ∈
RC and fTi ∈ RC are the C-channel ROI features of the
i-th object from the student and the teacher detectors.
Edge-Level Consistency In addition to the object-level
consistency, the edge-level consistency is also worth explor-
ing since the same object in two branches should contribute
similarly to its neighboring objects. To align the edges of
the graphs in two branches, we consider to not only match
the corresponding edge weights but also constrain the same
feature variation across the edges. Specifically, the edge
weight alignment could be implemented by minimizing the
difference between the teacher’s edge weight and the stu-
dent’s edge weight. Besides, to measure the feature vari-
ation across the edges, we introduce the graph Laplacian
regularization (GLR) [1, 17] as:

GLR = tr(F T (D−W)F ), (8)
where tr(·) calculates the trace of the matrix, F ∈ RN×C

is the concatenated features of nodes, W ∈ RN×N is the

Datasets Size LiDAR Type Vertical Field
Waymo 230K 1× 64 + 4× 200-Beam [−17.6◦, 2.4◦]
KITTI 15K 1× 64-Beam [−23.6◦, 3.2◦]
nuScenes 40K 1× 32-Beam [−30.0◦, 10, 0◦]

Table 1. Datasets overview. The dataset size refers to the number
of annotated point cloud frames.
adjacency matrix with each entry denoting an edge weight
wi,j , D is the degree matrix—a diagonal matrix where
dij =

∑N
j=1 wij . GLR measures the smoothness of fea-

tures with respect to the graph: a smaller GLR represents
smaller variation in node features across edges. Hence, we
define the edge-level consistency loss Ledge as:
Ledge =

1

N2

(
γ||WT −WS ||22 + (1− γ)tr(GLRS −GLRT )

)
,

(9)
where γ strikes a balance between the two terms. The first
term represents the difference in edge weights between the
two graphs, while the second term aims to enforce the fea-
ture variation of the student branch to be similar with that
of the teacher branch.

Overall, the joint consistency loss Lcons is defined as:
Lcons = β1Lnode + β2Ledge, (10)

where β1 and β2 are the hyperparameters to control the in-
volvement of the two consistency losses. The training pro-
cess of the whole DTS is summarized in Algorithm 1.
4. Experiments
4.1. Experimental Settings
Datasets. We conduct experiments on three widely used
autonomous driving datasets: KITTI [11], Waymo [39], and
nuScenses [4]. The KITTI [11] contains 7481 frames of
point clouds for training and validation, and all the data
is collected with 64-beam Velodyne LiDAR. The Waymo
[39] dataset contains 122000 training and 30407 validation
frames of point clouds collected with five LiDAR sensors,
i.e., one 64-beam LiDAR and four 200-beam LiDAR. The
nuScenes dataset [4] contains 28130 training and 6019 val-
idation point clouds collected with a 32-beam roof LiDAR.
Table 1 shows an overview of the three datasets. Note that
there is a huge difference in their densities (also shown in
Figure 1(a)). Following previous works [51, 52], we eval-
uate our DTS by adapting across domains with different
LiDAR-beam densities (Waymo → nuScenes, Waymo →
KITTI and nuScenes → KITTI).
Evaluation metrics. We follow [51] and adopt the KITTI
evaluation metric for evaluating our methods on the com-
monly used car category (the vehicle category in Waymo).
In detail, we use the average precision (AP) as the evalua-
tion metric for both BEV IoUs and 3D IoUs under an IoU
threshold of 0.7 over 40 recall positions. We also adopt the
domain adaptation metric (i.e., Closed Gap) [51] to demon-
strate the effectiveness on domain adaption, which is de-
fined as Closed Gap = APmodel − APsource

APoracle −APsource
× 100%.

Implementation details. We validate the proposed DTS
on three detection backbones SECOND-IoU [51], PV-
RCNN [35] and PointPillars [24]. We adopte the training
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Task Method
SECOND-IoU [51] PV-RCNN [35] PointPillars [24]

APBEV/AP3D Closed Gap APBEV/AP3D Closed Gap APBEV/AP3D Closed Gap

N→K

Source Only 51.8/17.9 -/- 68.2/37.2 -/- 22.8/0.5 -/-
SN† [43] 59.7/37.6 +25.1%/+35.4% 60.5/49.5 +36.8%/+27.1% 39.3/2.0 +26.6%/+2.1%
ST3D [51] 75.9/54.1 +76.6%/+59.5% 78.4/70.9 +49.0%/+74.3% 60.4/11.1 +60.6%/+14.9%
ST3D++ [52] 80.5/ 62.4 +91.1%/+80.0% -/- -/- -/- -/-
3D-CoCo [55] -/- -/- -/- -/- 77.0/47.2 +87.4%/+65.7%
Ours 81.4/66.6 +94.0%/+87.6% 83.9/71.8 +75.8%/+76.4% 79.5/51.8 +91.5%/+72.2%
Oracle 83.3/73.5 -/- 88.9/82.5 -/- 84.8/71.6 -/-

W→K

Source Only 67.6/27.5 -/- 61.2/22.0 -/- 47.8/11.5 -/-
SN† [43] 79.0/59.2 +72.3%/+69.0% 79.8/63.6 +66.9%/+68.7% 27.4/6.4 -55.1%/-8.5%
ST3D [51] 82.2/61.8 +93.0%/+74.7% 84.1/64.8 +82.4%/+70.7% 58.1/23.2 +27.8%/+19.5%
ST3D++ [52] 80.8/65.6 +84.1%/+82.8% -/- -/- -/- -/-
3D-CoCo [55] -/- -/- -/- -/- 76.1/42.9 +76.5%/+52.2%
Ours 85.8/71.5 +115.9%/+95.7% 86.4/68.1 +90.6%/+76.2% 76.1/50.2 +76.5%/+64.4%
Oracle 83.3/73.5 -/- 89.0/82.5 -/- 84.8/71.6 -/-

W→N

Source Only 32.9/17.2 -/- 34.5/21.5 -/- 27.8/12.1 -/-
SN† [43] 33.2/18.6 +1.7%/+7.5% 34.2/22.3 -1.5%/+4.8% 28.3/13.0 +2.4%/+4.7%
ST3D [51] 35.9/20.2 +15.9%/+16.7% 36.4/23.0 +10.3%/+8.8% 30.6/15.6 +13.2%/+18.2%
ST3D++ [52] 35.7/20.9 +14.7%/+20.9% -/- -/- -/- -/-
3D-CoCo [55] -/- -/- -/- -/- 33.1/20.7 +25.0%/+44.8%
L· D [44] 40.7/22.9 +41.1%/+32.2% 43.3/25.6 +47.3%/+24.0% 40.2/19.1 +58.4%/+36.5%
Ours 41.2/23.0 +43.7%/+32.8% 44.0/26.2 +51.1%/+27.5% 42.2/21.5 +67.9%/+49.0%
Oracle 51.9/34.9 -/- 53.1/38.6 -/- 49.0/31.3 -/-

Table 2. Performance comparison of different methods on different domain adaptation tasks. †: SN is weakly supervised with target
domain statistics. Source Only indicates that the model trained on the source dataset is directly tested on the target dataset. Oracle indicates
that the model is trained with labeled target data. We report APBEV and AP3D over 40 recall positions of the car category at IoU = 0.7.
setup of the popular point cloud detection codebase open
pcdet [41] to pre-train our detectors on the source domain.
For the following target domain self-training stage, we use
Adam [22] and one cycle scheduler to fine-tune the detec-
tors for 30 epochs. The learning rate is set to 1.5 × 10−3.
The EMA smoothing coefficient hyperparameter α is set to
0.999. The confidence threshold cth of pseudo labels as
well as the confidence threshold cthG for node construction
are both set to 0.5. We set λ1 and λ2 to 5.0 and 20.0 em-
pirically, which control the participation of object sizes and
yaw angles to build object graphs. The temperature τ is
set to 13.0. The involvement hyperparameters of the two
consistency losses β1 and β2 are set to 0.05 and 0.3 respec-
tively, while γ is set to 0.5. The threshold to match nodes
IoUth is set to 0.1. We set the beam interpolation proba-
bility factor as ϵ2 = 25.0 to up-sample nuScenes and the
beam mask probability factor as ϵ1 = 75.0 and ϵ1 = 100.0
to down-sample KITTI and Waymo respectively.
4.2. Comparison with State-of-the-Arts
Main Results. We compare our proposed DTS with SN
[43], ST3D [51], ST3D++ [52], 3D-CoCo [55] and L.D.
[44]. As shown in Table 2, DTS outperforms all compared
methods by large margins on all domain adaptation settings.
SN, ST3D and ST3D++ overcome the bias of object sizes in
the source domain effectively, however, their ignorance of
the density-induced domain gap sacrifices some of their per-
formance. 3D-CoCo includes separate 3D encoders for the
source and target data, making it hard to utilize the useful

knowledge from the 3D encoder of the source branch, thus
leading to worse performance. Compared to L.D. that only
transfers knowledge from high density into low density, our
DTS is more density-insensitive.

Further, while our method is proposed for UDA, we ob-
served one needs to provide around 50% labels to reach par-
ity with the oracle detector, thus validating the potential ap-
plicability (Supplementary Sec. S3).

Domain Adaption on Different Densities. To demon-
strate the effectiveness of our DTS on overcoming the do-
main gap induced by LiDAR densities, we implement ex-
perimental comparison by adapting the nuScenes-trained
model to different down-sampled KITTI dataset of differ-
ent densities. As nuScenes data is collected with 32-beam
LiDAR, we down-sample KITTI data to 16-, 32-, 48-beams
for simulation of different density situations, including the
high-density to low-density or similar density, and the low-
density to high-density. As shown in Figure 4, we compare
our method with Source Only, SN [43] and ST3D [54] with
the metric AP3D. We observe that, with the increase in den-
sity from 32-beam to 64-beam, the performance of ST3D
has almost no improvement, while the performance of SN
even becomes worse. This is because SN and ST3D suffer
from density gaps since their general detectors are sensitive
to density of points without any special design. Instead,
our DTS trains density-insensitive detectors to overcome
the density-induced domain gap, thus outperforming others
in all density settings.
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Figure 4. Adapting the model trained on nuScenes data to different
down-sampled KITTI data of different densities.

Pre-Training Self-Training
APBEV AP3DRBRS RBRS NLC ELC

(a) 73.3 55.8
(b) ✓ 77.6 60.7
(c) ✓ 74.7 60.7
(d) ✓ ✓ 79.0 61.7
(e) ✓ ✓ ✓ 79.5 64.7
(f) ✓ ✓ ✓ ✓ 81.4 66.6

Table 3. Main ablations on the architecture design. NLC and ELC
represent node-level consistency and edge-level consistency.

4.3. Ablation Studies
All ablation studies are conducted on nuScenes →

KITTI, using SECOND-IoU as the network backbone.

Main ablation. As demonstrated in Table 3, we inves-
tigate the contribution of each component. Starting from
the backbone model (a), we pre-train the 3D detector with-
out RBRS in the source domain, then directly fine-tune the
model through our basic teacher-student framework with-
out RBRS and object graph alignment. By applying our
proposed RBRS into the pre-training on the source data, the
variant (b) brings significant improvement since it is bene-
ficial to density-insensitivity. Compared to (b), (c) does not
introduce any boost as there is no annotation supervision in
the target domain. Moreover, by applying the RBRS and
both NLC, ELC of the object graph alignment into the self-
training, the performances of variants (d), (e), (f) improve a
lot, demonstrating the effectiveness of each component.

Ablations on the re-sampling strategy. As in Table 4,
we test different re-sampling strategies on both source only
method and our DTS. Since KITTI is denser than nuScenes,
all strategies are designed to up-sample the nuScenes data or
down-sample the KITTI data to obtain similar density dis-
tribution. In the experiments for Source Only, we see that
RBRS performs better than directly up-sampling the point
cloud. In the experiments for DTS, RBRS also achieves the
best performance among different re-sampling strategies.
We also observe that there is almost no improvement by
simply up-sampling the source domain or down-sampling
the target domain. We think the reason is that a simple
up-sampling or down-sampling strategy could neither in-
troduce more information from data nor train a density-
insensitive detector.

Ablations on the teacher-student framework. To inves-
tigate the effectiveness of our object-graph based teacher-

Source Data Target Data
Method

Beam RBRS Beam Point RBRS
APBEV AP3D

60.5 42.4
✓ 70.9 48.2

Source
Only

✓ 74.7 54.6
73.9 56.8

✓ 74.2 56.4
✓ 80.9 64.0

✓ 74.8 56.0
✓ 74.1 54.4

✓ 80.2 61.9

DTS

✓ ✓ 81.4 66.6

Table 4. Ablation on the re-sampling strategy. Here we take
the case of transferring from low-density into high-density as ex-
ample. The sampling strategies include beam-level up-sampling
and RBRS on the source domain, as well as beam-level down-
sampling, point-level down-sampling and RBRS on the target do-
main.

Self-Training Framework APBEV AP3D

naive Teacher-Student [46] 78.8 55.5
ST3D [51] 78.7 59.1
Ours 81.4 66.6

Table 5. Ablation on different self-training frameworks. All the
frameworks are implemented with RBRS in both the pre-training
stage and self-training stage.

student framework, we also compare our model with differ-
ent self-training pipelines, like naive Teacher-Student [46]
and ST3D [51]. As shown in Table 5, our object-graph
based teacher-student framework outperforms the two com-
pared self-training frameworks, since we explore the object
consistency for learning density-invariant bounding boxes.

Sensitive analysis of node-level consistency and edge-
level consistency. As shown in Table 6, we evaluate dif-
ferent β1 and β2 to control the weights of NLC and ELC.
When β1 and β2 changed, the overall performance remains
relatively good while AP3D is more sensitive to NLC.

β1 β2 APBEV AP3D β1 β2 APBEV AP3D

0.05 0.0 79.5 64.7 0.00 0.3 79.5 62.7
0.05 0.1 81.0 63.9 0.02 0.3 81.1 64.0
0.05 0.2 81.0 64.3 0.04 0.3 81.3 64.5
0.05 0.3 81.4 66.6 0.05 0.3 81.4 66.6
0.05 0.4 81.1 64.1 0.06 0.3 81.0 64.0
0.05 0.5 80.6 61.5 0.08 0.3 81.1 63.8

Table 6. Sensitivity analysis of NLC and ELC.

5. Conclusion
We propose a novel DTS model to bridge the density-

induced domain gap for unsupervised domain adaption on
3D object detection. In particular, we design Random
Beam Re-Sampling to train a density-insensitive detector
on the source domain. To adapt the property of density-
insensitivity into the target domain, we then develop a
teacher-student framework with Object Graph Alignment
to maintain the consistency in both cross-density object
attributes and object relations. Experiments over three
datasets demonstrate the effectiveness of the proposed DTS.
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