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Abstract

This paper presents the first significant object detection
framework, NeRF-RPN, which directly operates on NeRF.
Given a pre-trained NeRF model, NeRF-RPN aims to detect
all bounding boxes of objects in a scene. By exploiting a
novel voxel representation that incorporates multi-scale 3D
neural volumetric features, we demonstrate it is possible to
regress the 3D bounding boxes of objects in NeRF directly
without rendering the NeRF at any viewpoint. NeRF-RPN
is a general framework and can be applied to detect objects
without class labels. We experimented NeRF-RPN with
various backbone architectures, RPN head designs and
loss functions. All of them can be trained in an end-to-
end manner to estimate high quality 3D bounding boxes.
To facilitate future research in object detection for NeRF,
we built a new benchmark dataset which consists of both
synthetic and real-world data with careful labeling and
clean up. Code and dataset are available at https:
//github.com/lyclyc52/NeRF_RPN .

1. Introduction

3D object detection is fundamental to important appli-
cations such as robotics and autonomous driving, which
require scene understanding in 3D. Most existing relevant
methods require 3D point clouds input or at least RGB-
D images acquired from 3D sensors. Nevertheless, recent
advances in Neural Radiance Fields (NeRF) [34] provide
an effective alternative approach to extract highly semantic
features of the underlying 3D scenes from 2D multi-view
images. Inspired by Region Proposal Network (RPN)
for 2D object detection, in this paper, we present the
first 3D NeRF-RPN, which directly operates on the NeRF
representation of a given 3D scene learned entirely from
RGB images and camera poses. Specifically, given the
radiance field and the density extracted from a NeRF model,
our method produces bounding box proposals, which can be
deployed in downstream tasks.

Recently, NeRF has provided very impressive results
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Figure 1. Region proposal results on a NeRF. Top 12 proposals
in eight orientations with highest confidence are visualized. The
NeRF is trained from the Living Room scene from INRIA [38].

in novel view synthesis, while 3D object detection
has become increasingly important in many real-world
applications such as autonomous driving and augmented
reality. Compared to 2D object detection, detection in
3D is more challenging due to the increased difficulty in
data collection where various noises in 3D can be captured
as well. Despite some good works, there is a lot of
room for exploration in the field of 3D object detection.
Image-based 3D object detectors either use a single image
(e.g., [1, 4, 62]) or utilize multi-view consensus of multiple
images (e.g., [29, 51, 63]). Although the latter use multi-
view projective geometry to combine information in the 3D
space, they still use 2D features to guide the pertinent 3D
prediction. Some other 3D detectors based on point cloud
representation (e.g., [31,33,41,73]) heavily rely on accurate
data captured by sensors. To our knowledge, there is still no
representative work on direct 3D object detection in NeRF.

Thus, we propose NeRF-RPN to propose 3D ROIs in
a given NeRF representation. Specifically, the network
takes as input the 3D volumetric information extracted
from NeRF, and directly outputs 3D bounding boxes
of ROIs. NeRF-RPN will thus be a powerful tool for
3D object detection in NeRF by adopting the “3D-to-
3D learning” paradigm, taking full advantages of 3D
information inherent in NeRF and predicting 3D region
proposals directly in 3D space.

As the first significant attempt to perform 3D object
detection directly in NeRFs trained from multi-view
images, this paper’s focus contributions consist of:

• First significant attempt on introducing RPN to NeRF
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for 3D objection detection and related tasks.
• A large-scale public indoor NeRF dataset for 3D

object detection, based on the existing synthetic indoor
dataset Hypersim [46] and 3D-FRONT [11], and
real indoor dataset ScanNet [6] and SceneNN [19],
carefully curated for NeRF training.

• Implementation and comparisons of NeRF-RPNs on
various backbone networks, detection heads and loss
functions. Our model can be trained in 4 hrs using
2 NVIDIA RTX3090 GPUs. At runtime, it can
process a given NeRF scene in 115 ms (excluding
postprocessing) while achieving a 99% recall on our
3D-FRONT NeRF dataset.

• Demonstration of 3D object detection over NeRF and
related applications based on our NeRF-RPN.

2. Related Work
2.1. NeRF

Neural radiance field (NeRF) [34] has become the
mainstream approach for novel view reconstruction, which
models the geometry and appearance of a given scene
in a continuous and implicit radiance field parameterized
by an MLP. Following this work, instant neural graphics
primitive [36] applies hash encoding to reduce the training
time dramatically. PlenOctrees [67] uses an octree-based
radiance field and a grid of spherical basis functions to
accelerate rendering and appearance decoding. TensoRF [3]
projects a 3D point onto three 2D planes to encode the
positional information. Although these works use different
approaches to model structures, they achieve the same goal
of taking as input xyz coordinates and 3D camera poses to
generate view-dependent RGB color and volume density at
each position to render the images from a given view point.
NeRF not only provides structural details of a 3D scene but
is also conducive to 3D training, where only posed RGB
images are required, thus making this representation also
suitable for 3D object detection.

2.2. Object Detection and Region Proposal Network

Subsequent to [20] and recent GPU advances, deep
convolutional neural network (CNN) has become the
mainstream approach for object detection given single
images. Object detection based on deep learning can
be divided into anchor-based methods and anchor-free
methods. Anchor-based methods, including two-stage
methods [12, 13, 16, 17, 45] and one-stage methods [10,
23, 25–27, 44, 68], first generate a large number of preset
anchors with different sizes and aspect ratios on a given
image, then predict the labels and box regression offsets
of these anchors. For two-stage methods, relatively coarse
region proposals are first generated from anchors, followed
by refining such coarse proposals and inferring the labels.
In contrast to anchor-based methods, anchor-free methods
[8, 9, 22, 28, 57, 71, 72] predict on feature maps directly.

Region Proposal Network (RPN) was first introduced
in [45] to propose regions in an image that may contain
objects for subsequent refinement. RPN uses shared
convolutional layers to slide though local regions on the
feature maps from feature extraction layers and feeds the
transformed features into a box-regression head and a box-
classification head in parallel. In [45], RPN is applied
on the feature map from the last shared convolution layer
only, whereas more recent works such as Feature Pyramid
Networks (FPN) [24] utilize multi-scale feature maps. Our
proposed method adapts the idea of sliding window from
2D RPN and also utilizes FPN in a 3D fashion.

2.3. 3D Object Detection

Based on the input form, current 3D object detectors
can be categorized as point cloud-based and RGB-based
methods. Many point cloud-based methods first transform
point clouds into voxel forms to subsequently operate on the
3D feature volume through convolution [15,33,49,56,73] or
Transformers [33,59]. However, the large memory footprint
of the voxel representation constrains the resolution used.
While sparse convolution [14] and 2D projection have been
adopted to alleviate the issue, works directly operating on
raw point clouds have been proposed recently [21, 31, 35,
40–42, 53, 60]. Most of them partition points into groups
and apply classification and bounding box regression to
each group. Criteria used for grouping include 3D frustums
extruded from 2D detection [41], 3D region proposals [52,
53], and voting [39, 40, 60]. GroupFree3D [31] and
Pointformer [37], on the other hand, use Transformers to
attend over all points instead of grouping.

3D objection detection on single images or posed multi-
view RGB images is more challenging and relatively less
explored. Early attempts in monocular 3D objection
detection first estimate the per-pixel depths [4, 65], pseudo-
LiDAR signals [43, 62, 66], or voxel information [47] from
an RGB image, performing detection on the reconstructed
3D features. Later works have extended 2D object detection
methods to operate in 3D. For instance, M3D-RPN [1] and
MonoDIS [54] use 2D anchors for detection and predict a
2D to 3D transformation. FCOS3D [61] extends FCOS [58]
to predict 3D information. More research recently has been
focused on the multi-view case. ImVoxelNet [51] projects
2D features back to a 3D grid and applies a voxel-based
detector on it. DETR3D [63] and PETR [29] adopt similar
designs as DETR [2], both trying to fuse 2D features and 3D
position information. Although these image-based methods
can assist the region proposal task in NeRF, they do not
utilize the inherent 3D information from NeRF and are thus
limited in their accuracy.

While it is possible to sample from NeRF and produce
a voxel or point cloud representation on which previous 3D
object detection methods can be applied, such conversion
can be rather ad-hoc, depending on both the NeRF structure
and the reconstruction quality. Noise and poor fine-level
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Figure 2. NeRF-RPN. Our method first samples a grid of points in NeRF and extracts their RGB and density. The extracted volumetric
features are then passed through a 3D backbone network to get deep multi-scale 3D features, which are fused with a 3D FPN and fed to
the 3D RPN head to produce the region proposals.
geometry approximation in these converted representations
also pose challenges to existing 3D object detectors. Note
that unlike point cloud samples, which cover only the
surface (crust) of objects, the density in NeRF distributes
over the interior as well. Clearly, existing methods fail
to utilize this important solid object information, which is
adequately taken into account by our NeRF-RPN. Besides,
there exists no 3D object detection dataset tailored for the
NeRF representation, which also limits the advancement of
3D object detection in NeRF.

3. Method
Similar to the original RPN, our method has two major

components, see Figure 2. The first consists of a feature
extractor that takes a grid of radiance and density sampled
from NeRF as input, and produces a feature pyramid as
output. The second is an RPN head which operates on the
feature pyramid and generates object proposals. The feature
volumes corresponding to the proposals can subsequently
be extracted and processed for any downstream tasks. Our
method is flexible in the form of NeRF input features, the
feature extractor architectures, and the RPN module, which
can be adapted to multiple downstream tasks.

3.1. Input Sampling from NeRF

Our method assumes a fully-trained NeRF model with
reasonable quality model is provided. The first step is to
uniformly sample its radiance and density field to construct
a feature volume. Despite different NeRF variants exist
with different radiance field representations or structures,
they share the same property that radiance and density can
be queried with view directions and spatial locations. As
essentially the radiance and density go through a similar
volumetric rendering process, our method uses them as the
input so that it is agnostic to concrete NeRF structures.

We uniformly sample the radiance and density on a 3D
grid that covers the full traceable volume of the NeRF
model, which is determined by slightly enlarging the
bounding box containing all the cameras and objects in
the scene. The resolution of the grid in each dimension
is proportional to the length of the traceable volume in

that dimension so that the aspect ratio of the objects are
maintained. For NeRF models using plain RGB as radiance
representation, we sample from the same set of viewing
directions according to the camera poses used in NeRF
training and average the results. If such camera poses are
unknown, we uniformly sample directions from a sphere.
Generally, each sample can be written as (r, g, b, α), where
(r, g, b) is the averaged radiance and α is converted from
the density σ:

α = clip (1− exp(−σδ), 0, 1), (1)

where δ = 0.01 is a preset distance. For NeRF models
adopting spherical harmonics or other basis functions as
radiance representation, either the computed RGB values
or the coefficients of the basis functions can be used as
radiance information, depending on the downstream task.

3.2. Feature Extractors

Given the sampled grid, the feature extractor will
generate a feature pyramid. We adopt three backbones:
VGG [55], ResNet [18] and Swin Transformer [30] in our
experiments, but other backbone networks may also be
applicable. Considering the large variation in object sizes
for indoor NeRF scenes as well as the scale differences
between different NeRF scenes, we incorporate an FPN [24]
structure to generate multi-scale feature volumes and to
infuse high-level semantics into higher resolution feature
volumes. For VGG, ResNet, and the FPN layers, we replace
all the 2D convolutions, poolings, and normalization layers
with their 3D counterparts. For Swin Transformer, we
correspondingly employ 3D position embedding and shifted
windows.

3.3. 3D Region Proposal Networks

Our 3D Region Proposal Network takes the feature
pyramid from the feature extractor and outputs a set
of oriented bounding boxes (OBB) with corresponding
objectness scores. As in most 3D object detection works,
we constrain the bounding box rotation to z-axis only
(yaw angle), which is aligned with the gravity vector and
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(a) Anchor-based 3D RPN head and bounding box representation
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(b) Anchor-free 3D RPN head and bounding box representation

Figure 3. 3D RPN Head. These two figures illustrate the
architectures of anchor-based and anchor-free 3D RPN heads
along with their 3D midpoint offset bounding box representations.

perpendicular to the ground. We experiment two types
of region proposal methods: anchor-based and anchor-free
method, see Figure 3.

Anchor-Based RPNs Conventional RPNs as originally
proposed in Faster R-CNN [45] place anchors of different
sizes and aspect-ratios at each pixel location and predict
objectness scores and bounding box regression offsets for
each anchor. We extend this approach to 3D by placing
3D anchors of different aspect-ratios and scales in voxels
on different levels of the feature pyramid. We add k
levels of 3D convolutional layers after the feature pyramids
(typically k = 2 or 4), on top of which two separate 1×1×1
3D convolutional layers are used to predict the probability p
that an object exists, and the bounding box offsets t for each
anchor, see Figure 3(a). These layers are shared between
different levels of the feature pyramid to reduce the number
of parameters and improve the robustness to scale variation.
The bounding box offsets t = (tx, ty, tz, tw, tl, th, tα, tβ)
are parametrized similarly as in [64] but extended with a
new dimension:

tx = (x− xa)/wa, ty = (y − ya)/la,

tz = (z − za)/ha, tw = log(w/wa),

tl = log(l/la), th = log(h/ha),

tα = ∆α/w, tβ = ∆β/l,

(2)

where x, y, w, l,∆α,∆β describe the OBB projected onto
the xy-plane, and z, h are for the additional dimension
in height. xa, ya, za, wa, la, ha give the position and
size of the reference anchor, see Figure 3(a). Note that
this encoding does not guarantee the decoded OBBs are
cuboids. We follow [64] to transform the projections into
rectangles before using them as proposals.

To determine the label of each anchor, we follow the
process in Faster R-CNN but with parameters adapted under
the 3D setting: we assign a positive label to an anchor

if it has an Intersection-over-Union (IoU) overlap greater
than 0.35 with any of the ground-truth boxes, or if it has
the highest IoU overlap among all anchors with one of the
ground-truth box. Non-positive anchors with IoU below 0.2
for all ground-truth boxes are regarded negative. Anchors
that are neither positive nor negative are ignored in the loss
computation. The loss is similar to that in Faster R-CNN:

L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi, p
∗
i )

+
λ

Nreg

∑
i

p∗iLreg(ti, t
∗
i ),

(3)

where pi, ti are predicted objectness and box offsets, p∗i , t
∗
i

are ground-truth targets, Ncls, Nreg are the number of
anchors involved in loss computation, and λ is a balancing
factor between the two losses. Lcls is the binary cross
entropy loss and Lreg is the smooth L1 loss in [12]. The
regression loss is only computed for positive anchors.

Anchor-Free RPNs Anchor-free object detectors discard
the expensive IoU computation between anchors and
ground-truth boxes and can be used for region proposal in
specific problem scopes (e.g., figure-ground segmentation).
We choose FCOS which is a representative anchor-free
method and extend it to 3D.

Unlike anchor-based methods, our FCOS-based RPN
predicts a single objectness p, a set of bounding box offsets
t = (x0, y0, z0, x1, y1, z1,∆α,∆β), and a centerness score
c for each voxel, see Figure 3(b). We extend the encoding
of box offsets in FCOS and define the regression target
t∗i = (x∗

0, y
∗
0 , z

∗
0 , x

∗
1, y

∗
1 , z

∗
1 ,∆α∗,∆β∗) as following:

x∗
0 = x− x

(i)
0 , x∗

1 = x
(i)
1 − x,

y∗0 = y − y
(i)
0 , y∗1 = y

(i)
1 − y,

z∗0 = z − z
(i)
0 , z∗1 = z

(i)
1 − z,

∆α∗ = v(i)x − x, ∆β∗ = v(i)y − y,

(4)

where x, y, z are the voxel position, x
(i)
0 < x

(i)
1 are

the left and right boundary of the axis-aligned bounding
box (AABB) of i-th ground-truth OBB, and likewise for
y
(i)
0 , y

(i)
1 , z

(i)
0 , z

(i)
1 . v

(i)
x denotes the x coordinate of the

upmost vertex in the xy-plane projection of the OBB,
and v

(i)
y is the y coordinate of the rightmost vertex, see

Figure 3(b). The ground-truth centerness is given by:

c∗ =

√
min(x∗

0, x
∗
1)

max(x∗
0, x

∗
1)

× min(y∗0 , y
∗
1)

max(y∗0 , y
∗
1)

× min(z∗0 , z
∗
1)

max(z∗0 , z
∗
1)

. (5)

The overall loss is then given by

L({pi},{ti}, {ci}) =
1

Npos
Lcls(pi, p

∗
i )

+
λ

Npos
p∗iLreg(ti, t

∗
i ) +

1

Npos
p∗iLctr(ci, c

∗
i ),

(6)
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Figure 4. Binary Classification Network. The binary
classification network architecture with rotated 3D ROI pooling
along with the bounding box representation used in this network.

where Lcls is the focal loss in [25] and Lreg is the IoU
loss for rotated boxes in [70]. Lctr is the binary cross
entropy loss. p∗i ∈ {0, 1} is the ground-truth label of each
voxel in the feature pyramid, which is determined using the
same center sampling and multi-level prediction process as
in [58]; λ is the balancing factor and Npos is the number
of voxels with p∗i = 1. The regression and centerness loss
only account for positive voxels.

To learn p, t, c, we adapt the network in FCOS by adding
k = 2 or 4 3D convolutional layers independently for
the classification and regression branch after the feature
pyramid. We append a convolutional layer on top of the
classification and regression branch, respectively, to output
p and t, and a parallel convolutional layer on the regression
branch for predicting c. Like in our anchor-based method,
we transform the possibly skewed box predictions into
cuboids before further post-processing.

3.4. Additional Loss Functions

Objectness Classification Although NeRF-RPN mainly
targets on high recalls, some downstream tasks may
prefer a low false-positive rate as well. To improve the
precision of ROIs, we add a binary classification network
as a sub-component to achieve foreground/background
classification. More specifically, the network takes 1) the
ROIs from RPN, and 2) the feature pyramid from the feature
extractor as input, and outputs an objectness score and
bounding box refinement offsets for each ROI, see Figure 4.
We extract rotation invariant features for each proposal via
rotated ROI pooling. Each proposal is parameterized by
(xr, yr, zr, wr, lr, hr, θr), where (xr, yr, zr) describes the
center coordinate, wr, lr, hr are the three dimensions, and
θr ∈ [−π

2 ,
π
2 ) is the yaw angle. Referring to [64], we first

enlarge the box and locate it in the corresponding feature
volume, then apply trilinear interpolation to calculate the
value on each feature point, and pad the ROI feature volume
with zero before forwarding it to a pooling layer. The
feature volume is pooled to N×3×3×3 and used for further
regression and classification. Referring to [7], the bounding
box offset g = (gx, gy, gz, gw, gl, gh, gθ) is defined as

gx = ((x− xr) cos θr + (y − yr) sin θr)/wr

gy = ((y − yr) cos θr − (x− xr) sin θr)/lr,

gz = (z − zr)/hr, gw = log(w/wr),

gl = log(l/lr), gh = log(h/hr),

gθ = (θ − θr)/2π

(7)

The classification layer estimates the probability over 2
classes (namely, non-object and object class). ROIs with
IoU overlap greater than 0.25 with any of the ground-truth
boxes are labeled as object, while all the others are labeled
non-object. The loss function is similar to Equation 3,
where the box offsets are replaced by g, g∗.

2D Projection Loss We project 3D bounding box
coordinates bi = (xi, yi, zi) into 2D b′i = (x′

i, y
′
i) and

construct a 2D projection loss as following:

L2d proj({b′i}) =
1

NcamNbox
Lreg(b

′
i, b

′∗
i ), (8)

where Ncam, Nbox are the number of cameras and the
number of proposals. We set 4 cameras at 4 top corners
of the room, pointing to the room center. Refer to the
supplementary material for more discussion.

4. NeRF Dataset for 3D Object Detection
There has been no representative NeRF dataset con-

structed for 3D object detection. Thus, we build the
first NeRF dataset for 3D object detection utilizing
Hypersim [46] and 3D-FRONT [11] datasets. In addition
to these synthetic datasets, we incorporate a subset of the
real-world datasets from SceneNN [19] and ScanNet [6]
to demonstrate that our method is robust to real-world
data. Figure 5 shows some selected examples of the 3D
groundtruth boxes we carefully labeled from 3D-FRONT.
Table 1 summarizes our dataset.

Datasets # Scenes
# Boxes

Total # Average #
(per scene)

# Boxes in size (# voxels)
< 163 163∼323 323∼643 > 643

Hypersim 250 4798 19.2 3836 770 184 8
3D-FRONT 159 1191 7.5 129 703 324 35

ScanNet 90 1086 12.1 508 488 88 2
SceneNN 16 367 22.9 182 112 54 19

Table 1. Statistics of our NeRF dataset for 3D Object Detection.

Hypersim Hypersim is a very realistic synthetic dataset
for indoor scene understanding containing a wide variety
of rendered objects with 3D semantics. However, the
dataset is not specifically designed for NeRF training,
where the object annotations provided are noisy for direct
use in region proposal tasks. Thus, we perform extensive
cleaning based on both the NeRF reconstruction quality
and the usability of object annotations (see supp mtrl).
Finally we keep around 250 scenes after cleanup. The
original 3D object bounding boxes in Hypersim are not
carefully pruned, as some objects are invisible in all
images. Furthermore, many instances are too fine in scale,
while some are of less or little interest, e.g., floors and
windows. We remove ambiguous objects that may interfere
our training. Then, we filter out tiny or thin objects by
checking if the smallest dimension of their AABB is below
a certain threshold. After these automatic pre-processing,
we manually examine each remaining object. Objects that
are visible in less than three images, or with over half of
their AABBs invisible in all images, are removed.
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Figure 5. 3D-FRONT NeRF Dataset Samples. Rows 1–2
show the NeRF reconstruction quality and ground-truth bounding
box quality of our 3D-FRONT NeRF dataset. Rows 3–4 show
groundtruth boxes with diverse object appearance in the dataset.

3D-FRONT 3D-FRONT [11] is a large-scale synthetic
indoor scene dataset with room layouts and textured
furniture models. Due to its size, effort has been spent on
splitting complex scenes into individual rooms and cleaning
up bounding boxes (supp mtrl). A total of 159 usable
rooms are manually selected, cleaned, and rendered in our
dataset. More rooms can be generated for NeRF training
using our code and 3D-FRONT dataset, which will be
released when the paper is accepted for publication. We
perform extensive manual cleaning on the bounding boxes
in each room. Similar to Hypersim, bounding boxes for
construction objects such as ceilings and floors are removed
automatically based on their labels. Moreover, we manually
merge the relevant parts bounding boxes to label the entire
semantic object (e.g., seat, back panel and legs are merged
into a chair box). Refer to Figure 5 for examples.

Real-World Dataset We construct our real-world NeRF
dataset leveraging ScanNet [6], SceneNN [19], and a
dataset from INRIA [38]. ScanNet is a commonly used
real-world dataset for indoor 3D object detection which
contains over 1,500 scans. We randomly select 90 scenes
and for each scene, we uniformly divide the video frames
into 100 bins and select the sharpest frame in each bin
based on the variance of Laplacian. We use the provided
depth and a depth-guided NeRF [48] to train the models.
For object annotations, we compute the minimum bounding
boxes based on the annotated meshes and discard objects of

certain classes and sizes as similarly done for Hypersim.

5. Experiments

5.1. Training & Testing

Training During training, input scenes are randomly
flipped along x, y axes and rotated along z-axis by π

2
with probability 0.5 for each augmentation operation.
Additionally, the scenes are slightly rotated along z-axis
by α ∈ [− π

18 ,
π
18 ] with a probability of 0.5, which we

find can significantly improve the average precision (AP) in
RPN outputs. We optimize our network with AdamW [32]
with an initial learning rate of 0.0003 and a weight decay
of 0.001. In our training, we set λ = 5.0 for Eq. (3)
and λ = 1.0 for Eq. (6). For the anchor-based approach,
we adopt a 4-level FPN and anchors of 13 different aspect
ratios, which are 1:1:1, 1:1:2, 1:1:3, 2:2:1, 3:3:1, and their
permutations. All anchors on the same level of feature
volume share the same size for their shortest side, which
is in {8, 16, 32, 64}, from fine to coarse scale. Following
the RPN training strategy in [45], we randomly sample 256
anchors from each scene in each iteration to compute the
loss, where the ratio of positive and negative anchors is 1:1.
For anchor-free approach, all output proposals are used to
compute the loss.

Testing After obtaining the ROIs with objectness scores, we
first discard the boxes whose geometry centers are beyond
the scene boundary. Then, we select the top 2,500 proposals
on each level of the feature volumes independently. To
remove redundant proposals, we apply Non-Maximum
Suppression (NMS) to the aggregated boxes based on
rotated-IoU with threshold 0.1, after which we select the
2,500 boxes with the highest objectness scores.

5.2. Ablation Study

Backbones and Heads Table 2 tabulates the recall and
average precision of different combinations of feature
extraction backbones and RPN heads. When fixing the
backbones and comparing the RPN heads only, we observe
that anchor-free models achieve a higher AP on all three
datasets. The two RPN methods attain similar recalls on
3D-FRONT and ScanNet, while on Hypersim anchor-free
models are generally higher in recalls. We believe the better
performance of anchor-free models results are twofold:
1) The centerness prediction of anchor-free models helps
suppress proposals that are off from the centers, which
is particularly helpful when the bounding box center is
misaligned with the mass center, or when the NeRF input
is noisy; 2) The limited number of aspect ratios and scales
for anchors limits the performance of anchor-based models
as 3D objects vary greatly in sizes.

Furthermore, when comparing the performance between
different backbones, we notice that models with VGG19
generally achieve better recall and AP compared to others.
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Methods Backbones Hypersim 3D-FRONT ScanNet
Recall25 Recall50 AP25 AP50 Recall25 Recall50 AP25 AP50 Recall25 Recall50 AP25 AP50

Anchor-based
VGG19 57.1 14.9 11.2 1.3 97.8 76.5 65.9 43.2 88.7 42.4 40.7 14.4
ResNet-50 49.8 13.0 9.7 1.3 96.3 70.6 65.7 45.1 86.2 32.0 34.4 9.0
Swin-S 69.8 28.3 24.6 6.2 98.5 63.2 51.8 26.6 93.6 44.3 38.7 12.9

Anchor-free
VGG19 66.7 27.3 30.9 11.5 96.3 69.9 85.2 59.9 89.2 42.9 55.5 18.4
ResNet-50 63.2 17.5 23.2 6.0 95.6 67.7 83.9 55.6 91.6 35.5 55.7 16.1
Swin-S 70.8 21.0 27.7 7.7 96.3 62.5 78.7 41.0 90.6 39.9 57.5 20.5

Table 2. Ablation on different backbones and heads. Recall25 and Recall50 denote the recall scores at an IoU threshold of 0.25 and 0.5,
respectively.

Input NeRF Heat Map Proposals Input NeRF Heat Map Proposals

Figure 6. Qualitative Results. The “Heat Map” columns show the distribution of proposal confidence scores where red means higher
confidence. The “Proposals” columns show a few top bounding boxes after NMS. From top to bottom, left to right, scene 1-3 are from
3D-FRONT, 4-5 from Hypersim, and 6-8 from ScanNet.

(a) (b) (c) (d)

Figure 7. Failure Cases. (a)(b) Missing and merging proposals,
(c) wrong rotation, (d) no proposal for tiny/second-level objects.

The major exception concerns the performance of anchor-
based models on Hypersim, where Swin-S demonstrates
superior recall and AP. Given that the NeRF results on
Hypersim are significantly noiser and the scenes are more
complex, we suspect that the larger receptive fields and
the richer semantics enabled by the shifted windows, and
attention of Swin Transformers are crucial to our anchor-
based method in this case.

NeRF Sampling Strategies While the density field from
NeRF is view-independent, the radiance depends on the
viewing direction and can be encoded with different
schemes. In the supplemental material we investigate the

effect of this view-dependent information, and conclude
that using density alone is the best strategy.

Regression Loss We test three common loss functions for
bounding box regression on the 3D-FRONT dataset using
Swin-S as the backbone in Table 4. IoU loss directly
optimizes the IoU between the predicted and ground-
truth bounding boxes while DIoU loss [69] penalizes
the normalized distance between the two for faster
convergence. We use the variants for oriented boxes of
these two losses as proposed in [70]. Our results illustrate
that IoU loss consistently outperforms the other two for the
anchor-based approach, while for anchor-free models IoU
and DIoU loss produce similar performance.

Additional Loss We discuss the impact of aforementioned
losses in the supplemental material.

5.3. Results

We performed experiments with different model con-
figurations on various NeRF datasets constructed from
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Methods Hypersim 3D-FRONT ScanNet
AR25 AR50 AP25 AP50 AR25 AR50 AP25 AP50 AR25 AR50 AP25 AP50

ImVoxelNet 19.7 5.7 9.7 2.3 88.3 71.5 86.1 66.4 51.7 20.2 37.3 9.8
FCAF3D 47.6 19.4 30.7 8.8 89.1 56.9 73.1 35.2 90.2 42.4 63.7 18.5
Ours (anchor-based) 57.1 14.9 11.2 1.3 97.8 76.5 65.9 43.2 88.7 42.4 40.7 14.4
Ours (anchor-free) 66.7 27.3 30.9 11.5 96.3 69.9 85.2 59.9 89.2 42.9 55.5 18.4

Table 3. Quantitative Comparison. Our results are reported on the VGG19 backbone. AR refers to the recall score at the specified IoU
threshold, instead of the average recall.

Methods Loss Recall AP
0.25 0.50 0.25 0.50

Anchor-based
Smooth L1 98.5 63.2 51.8 26.6
IoU 98.5 71.3 61.6 36.7
DIoU 97.1 71.3 59.5 32.8

Anchor-free
Smooth L1 96.3 56.6 76.5 39.9
IoU 96.3 62.5 78.7 41.0
DIoU 97.1 64.0 77.4 40.2

Table 4. Ablation results of the bounding box regression loss.

Figure 8. Application: Scene Editing. Removing an object in a
bounding box proposed by our NeRF-RPN.

Hypersim [46], 3D-FRONT [11], ScanNet [6], SceneNN
[19] and INRIA [38], where [19] and [38] are only used
in test time due to their relatively small numbers of
usable scenes. Detailed quantitative results are shown in
Table 2. Figure 6 shows the qualitative results produced
by the model with VGG19 backbone and anchor-free RPN
head. Figure 7 shows typical failure cases. During our
experiments, we found that bad NeRF reconstruction can
severely hamper the prediction. As aforementioned, the
region proposal task largely depends on 3D geometry in
NeRF. Similar to 2D RPN for images, our method also has
missing/merging proposals or wrong rotation after NMS.
Presently, our dataset handles first-level objects; tiny or
second-level objects are future work.

Application: Scene Editing We can edit the scene in
NeRF given the proposals produced by our NeRF-RPN. See
Figure 8 for a demonstration which sets the density inside
the proposal to zero when rendering.

5.4. Comparison

To demonstrate the effectiveness of our method, we
compare NeRF-RPN to recent 3D object detection methods
like ImVoxelNet [51] and FCAF3D [50], with results shown
in Table 3 and Figure 9. ImVoxelNet takes multi-view RGB
as input, hence NeRF input images are used for training.
FCAF3D is a point cloud-based 3D detector, so we use
the ground-truth depth from Hypersim and ScanNet, NeRF

rendered depth for 3D-FRONT, and the corresponding RGB
images to build point clouds. We adapt the implementation
of these two methods in [5] and train them from scratch
on the three datasets we use. Our method outperforms
ImVoxelNet by a large margin on all datasets except 3D-
FRONT, although ImVoxelNet takes advantage from our
object-centric camera trajectory in 3D-FRONT. NeRF-RPN
also outperforms FCAF3D on 3D-FRONT and Hypersim,
despite ground-truth depth is used for Hypersim, giving
FCAF3D extra advantages.

Ground truth ImVoxelNet FCAF3D Ours

Figure 9. Qualitative Comparison. The first two rows are from
Hypersim and the rest are from 3D-FRONT.

6. Conclusion

We propose the first significant 3D object detection
framework for NeRF, NeRF-RPN, which operates on the
voxel representation extracted from NeRF. By performing
comprehensive experiments on different backbone net-
works, namely, VGG, ResNet, Swin Transformer along
with anchor-based, anchor-free RPN heads, and multiple
loss functions, we validate our NeRF-RPN can regress
high-quality boxes directly from NeRF, without rendering
images from NeRF in any view. To facilitate future
work on 3D object detection in NeRF, we built a new
benchmark dataset consisting of both synthetic and real-
world data, with high NeRF reconstruction quality and
careful bounding box labeling and cleaning. We hope
NeRF-RPN will become a good baseline that can inspire
and enable future work on 3D object detection in NeRFs.
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