This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Point2Pix: Photo-Realistic Point Cloud Rendering via Neural Radiance Fields

Tao Hu!

Xiaogang Xu'* Shu Liu?
! The Chinese University of Hong Kong

Jiaya Jial?
2 SmartMore

{taochu, xgxu, leojia}@cse.cuhk.edu.hk, liushuhust@gmail.com

Abstract

Synthesizing photo-realistic images from a point cloud is
challenging because of the sparsity of point cloud represen-
tation. Recent Neural Radiance Fields and extensions are
proposed to synthesize realistic images from 2D input. In
this paper, we present Point2Pix as a novel point renderer
to link the 3D sparse point clouds with 2D dense image pix-
els. Taking advantage of the point cloud 3D prior and NeRF
rendering pipeline, our method can synthesize high-quality
images from colored point clouds, generally for novel in-
door scenes. To improve the efficiency of ray sampling,
we propose point-guided sampling, which focuses on valid
samples. Also, we present Point Encoding to build Multi-
scale Radiance Fields that provide discriminative 3D point
features. Finally, we propose Fusion Encoding to efficiently
synthesize high-quality images. Extensive experiments on
the ScanNet and ArkitScenes datasets demonstrate the ef-
fectiveness and generalization.

1. Introduction

Point cloud rendering aims to synthesize images from
point clouds at given camera parameters, which has been
frequently utilized in 3D visualization, navigation, and aug-
mented reality. There are many advantages to point cloud
representation, such as flexible shape and general 3D prior.
However, since point clouds are generally produced by 3D
scanners (RGBD or LiDAR) [3, 9, 14] or by Multi-View
Stereo (MVS) from images [4, 15, 52], the points are usu-
ally sparsely distributed in 3D scenes. Although traditional
graphics-based renderers [38, 42, 50, 58] can render point
clouds to images without training or finetuning, the quality
is not satisfying with hole artifacts and missing details [10].

Recently, Neural Radiance Fields (NeRF) [29] were pro-
posed for 3D representation and high-fidelity novel view
synthesis. It employs an implicit function to directly map
each point’s spatial information (location and direction) to
attributes (color and density). However, most NeRF-based

*Corresponding author.

methods [23,49,54,55] are scene-specific, thus taking much
time to train from scratch for novel scenes in abundant
multi-view images, which limits the practical applications.

In this work, we bridge the gap between point clouds and
NeRF, thus proposing a novel point cloud renderer, called
Point2Pix, to synthesize photo-realistic images from col-
ored point clouds. Compared with most NeRF-based meth-
ods [23,29,53,54], ours does not necessarily require multi-
view images or fine-tuning procedures for indoor scenes.

First, point clouds are treated as underlying anchors of
NeRF. The training process of NeRF is to learn 3D point at-
tributes from given locations. Because there is no mapping
ground truth for multi-view images, NeRF-based methods
[23,29] indirectly train their networks with a pixel recon-
struction loss. Note that point clouds are exactly made up of
points with location and attributes, thus can provide train-
ing pairs for the mapping function to conduct supervised
learning and improve performance.

Then, point clouds can also improve the efficiency of ray
sampling. NeRF-based methods [23, 29, 54] learn the 3D
shape and structure from multi-view images, which do not
involve geometric prior in novel scenes. Thus, dense uni-
form sampling [5, 46] or coarse-to-fine sampling [29, 54]
were used to synthesize high-quality images. These strate-
gies are inefficient because most of the locations in 3D
scenes are empty [23,31]. Since point clouds represent a
relatively fine shape of 3D scenes, the area around existing
points deserves more attention. Based on this observation,
we propose a point-guided sampling strategy to mainly fo-
cus on the local area of points in the point cloud. It can
significantly reduce the number of required samples while
maintaining decent synthesis accuracy.

Further, point-based networks can provide 3D features
prior to subsequent applications, general for novel scenes.
Although many methods [7, | 8,36,37] have been proposed
for various point cloud understanding tasks, they are usu-
ally designed for existing points. In this work, we propose
Multi-scale Radiance Fields, including Point Encoder and
MLP networks, to extract multi-scale features for any loca-
tion in the scene. These 3D point features are discriminative
and general, ensuring finetuning-free rendering. Also, in-

8349

spired by recent NeRF-based image generators [19,22,57],
we render the 3D point features as multi-scale feature maps.
Our fusion decoder gradually synthesizes high-resolution
images. It can not only fill the possible holes but also im-
prove the quality of rendered images. Our main contribu-
tions are summarized as follows.

* We propose Point2Pix to link point clouds with image
space, which renders point clouds into photo-realistic
images.

* We present an efficient ray sampling strategy and fu-
sion decoder to greatly decrease the number of samples
in each ray and the total number of rays, thus acceler-
ating the rendering process.

* We propose Multi-scale Radiance Fields, which ex-
tract discriminative 3D prior for arbitrary 3D locations.

» Extensive experiments and ablation studies on indoor
datasets demonstrate the effectiveness and generaliza-
tion of the proposed method.

2. Related Work

In this section, we briefly review the related works, in-
cluding various point renderers, point-based networks in ex-
tracting 3D point features, and NeRF-based synthesis.

2.1. Point-based Rendering

Traditional Point Rendering [38,42,58] is based on com-
puter graphics, which generates images from point clouds
by simulating the physical process of imaging, considering
geometry [44], material [12], BRDF [16], and lighting [21].
The rendering pipeline is general for arbitrary scenes. But
it cannot fill missing points and thus generate vacant pixels.

In the deep learning era, neural-based point renderers
[10,11,41] made great progress in generating images from
point clouds. They first extract multi-scale projected fea-
tures from point clouds and then use a decoder to gener-
ate images. NPBG [!1] augments each point by a neu-
ral descriptor to encode local geometry and appearance.
NPCR [10] represents point features by 3D Convolution
Neural Network (CNN), and converts the 3D representation
to multi-plane images. Different from these methods, our
Point2Pix combines a more discriminative point encoder
with the renderer pipeline of NeRF, thus achieving better
performance.

2.2. Point-based Networks

Point-based networks have been developed for many
years [7, 8, 17, 18,36, 37]. For general point understand-
ing, PointNet [36] utilizes point-wise Multi-Layer Percep-
tion (MLP) and Pooing to extract features for 3D classifica-
tion and semantic segmentation, while not capturing local

structures. PointNet++ [37] introduces hierarchical feature
learning to encode local point features. Although 3D CNN
can also deal with point cloud data after voxelization, the
maximal resolution of 3D volumes is low because of huge
memory consumption and slow computation. Thus, sparse
3D CNNs [7, 17,20,45] draw more attention. SparseCon-
vNet [18] differs from previous sparse convolutional net-
works since it uses a rectangular grid, instead of dilating the
observation. In this paper, we adopt a more efficient sparse
3D CNN - MinkowskiEngine [7] — as the basic point en-
coder to extract 3D prior from point clouds.

2.3. NeRF-based Synthesis

NeRF [29] well balances neural network and physical
rendering, thus achieving state-of-the-art performance in
novel view synthesis. To handle dynamic scenes where ob-
jects move, a deformable function is learned to align differ-
ent frames [24, 33]. For human reconstruction and synthe-
sis, many methods, such as Neural-Body [35], Neural-Actor
[25], and Anim-NeRF [6], introduce the parameterized hu-
man model SMPL [26] as a strong 3D prior and achieve im-
pressive performance. To generate high-resolution images,
methods of [19,22,32,57] first render low-resolution feature
maps instead of images, then upsample features to the final
images via 2D CNN. NeRF’s input is only multi-view im-
ages and camera parameters, when combined with 3D prior,
such as depth and point cloud, the performance can be fur-
ther improved [1,13,31,51]. Our model also combines deep
learning with physical rendering, while taking more advan-
tage of point clouds as 3D priors to render decent-quality
images in general indoor scenes.

3. Our Approach

For a point cloud P = UK {p,,c;} with K points,
P, = (Tk,Yr,2k) € R3 and corresponding colors ¢, =
(7%, gk, br,) € R3, our goal is to synthesize a high-fidelity
image I at the given camera parameter V via our proposed
renderer (Point2Pix) R, formulated as

I=R(P,V),)

where V is represented by H x W rays r. Each ray starts
from camera center o in pixel direction d.

To begin with, we introduce the background knowledge
of NeRF in Sec. 3.1. Then, we propose an efficient point-
based ray sampling strategy in Sec. 3.2. We also build a
network to extract multi-scale 3D prior from point clouds
in Sec. 3.3. Finally, we show how to combine the point
feature with NeRF to render target images in Sec. 3.4. The
overview of our framework can be seen in Fig. 1.

3.1. Preliminary

Given multi-view camera-calibrated images of a scene,
NeRF [29] synthesizes high-quality novel view images. It

8350

(a) Multi-scale Radiance Fields
Point Encoding

Fl

F? F3 F*

Point-guided Sampling

Fl-1_, A » gl

LayerNorm PixelShuffle //
(b) Fusion & Upsampling

A

MLP

| |
A4 A 4
mLP mLP

v v
NeRF-based Rendering

fl \ fZ l f3 l{4
x2 x2 x2
Image
F1 F? F3 Ft

(c¢) Fusion Decoding

Figure 1. Overview of our proposed Point2Pix. (a) Multi-scale Radiance Fields. For an input point cloud, we first extract multiple 3D
feature volumes in four scales. Next, for any queried point, we first linearly interpolate the coarse features from these feature volumes and
infer the final features through MLP networks. (b) Fusion and Upsampling. Four 2D feature maps are respectively rendered through NeRF.
They are fused with the previous 2D CNN output and then are upsampled by 2 times. (c) Fusion Decoding. We finally design a neural
renderer to gradually synthesize target images from the projected feature maps.

mainly consists of ray sampling, implicit function, and vol-
ume rendering.
Ray Sampling. Starting from the camera center o, ray sam-
pling is the process that obtains a series of positions x; along
ray r with direction d as

X;=0+2z2-d, i1=12..,N, 2)
where z; is the sampling depth and NN is the number of sam-
ples on each ray.
Implicit Function. An implicit function fy is trained as a
mapping from each queried location x; and direction d to
corresponding colors ¢; = (7, g;, b;) and density o, as

(ciagi) == fQ(Xiyd), (3)

where fy is an MLP network, and 0 is its parameter.

Volume Rendering. Each ray (or pixel) color ¢ is calcu-
lated via volume rendering [28] as

a; = 1 — exp(_0151)7 “4)
i—1

T, = exp(— Y 0;0),
j=1

where d; is the distance between neighbor samples along
the ray r.

3.2. Point-guided Sampling

According to Eq. (4), increasing the number of samples
N along each ray can generate more realistic results [29].
However, the required computing resources and running
time will also linearly grow. Our model is based on a point
cloud with a relatively fine shape prior. Thus, we propose
point-guided sampling to achieve more efficient ray sam-
pling through the guidance of the point cloud.

For any queried point x;, we first find the nearest neigh-
bour point p;, then check whether x; is located in p;’s ball
area with radius r or not, as

®)

If the above condition is satisfied, we treat the queried point
x; as a valid sample and obtain the point feature in Sec. 3.3.
If there is no valid sample along one ray, we adopt uniform
sampling from default near to far depth. As illustrated in
Fig. 2. Compared with previous uniform and coarse-to-fine
sampling [5,29,46], our sampling strategy reduces compu-
tation and memory costs.

3.3. Multi-scale Radiance Fields

| p; — xi [l2< 7.

We extract discriminative 3D point and ray features via
constructing Multi-scale Radiance Fields, including Point
Encoding and NeRF-based Feature Rendering.

Point Encoding. Point Encoding is to output a discrim-
inative 3D point feature for each valid sample x;. We
adopt 3D sparse UNet from the Minkowski Engine (ME)
[7] as the backbone of our point encoder. ME is an auto-
differentiation library to build a 3D CNN for sparse tensors,

8351

Nearest
Point

° d

Valid
Sample
° Invalid
o Sample

Figure 2. The proposed point-guided sampling. For any queried
point x;, we find its nearest point p, in the point cloud. If x; is
located in the ball area (with radius r) of p,, it is a valid sample.
Invalid samples are omitted to improve sampling efficiency.

that are converted from point clouds. As illustrated in Fig.
1, our point encoder extracts multiple 3D feature volumes
from the raw point cloud in L different scales. We select F;
at scale [to construct multi-scale radiance fields.

For each valid sample x; at each scale [, we query fea-
ture in Fj to obtain the interpolated feature F' and employ
an implicit function ®; to infer density o! and final point
feature f! for x; as

(07, £5) = u(F}) = @y (F'[xi]). (©)
NeRF-based Feature Rendering. Then we render the
queried 3D point features to 2D feature maps and gener-
ates images at different scales. At each feature scale [, we
aggregate density o! and feature fll to generate 2D feature
map f! by volume rendering of NeRF [29] as

N
i=1 . (7
wl = exp(— Z 0307) (1 — exp(—0;4;)).
=1

So far, we obtained L rendering feature maps {f'} ¢
RC*HixWi - where H; and W, respectively represent the
feature height and width, and Cj is the number of channels.

3.4. Fusion Decoding

Although we propose an efficient ray sampling strategy
to reduce memory consumption, it still requires more than
20 GB GPU memory to render target images with the size
of 480 x 640, as shown in Tab. 4. In addition, there are still
many holes to be filled in the 2D-rendered image space. To
address these issues, we design a Fusion Decoder as a neural
renderer that synthesizes final images from these rendered
feature maps f',1 € [1, L] by conditional convolution and
upsampling modules.

Fusion. Our conditional convolution is to fuse the previous
layer’s feature JF' =1 with the rendered features fl, which
treats the rendered feature at each scale [as the conditional

input. This module is inspired by SPADE [34], while we use
Layer Normalization [2]. Specifically, as shown in Eq. (9),
for the rendered feature map f , we calculate the conditional
parameters, including scale vy and bias 3, by a Conv2D mod-
ule. Then for feature F'~! from the previous stage, we nor-
malize it by Layer Normalization and scale it by ~y. Finally,
the fused feature F! is obtained by adding the bias 3 as

(7.9) = Com2D(F), ®
F'=1 = 4. LayerNorm(F'~1) + 3.

Upsampling. We adopt PixelShuffle [43] as our upsam-
pling modules that upsample the fused feature F'~! by 2
times at each stage, instead of using bilinear or nearest in-
terpolation. PixelShuffle [43] is frequently adopted in the
super-resolution task, which utilizes a convolution layer to
extend the channel size and reshape them into the spatial
size, as

F' = Pixelshuffle(Conv2D(F'~ 1), 2).)

ToRGB. Finally, we introduce the decoder of the present
large-scale generator, like [39], as a post-process to gener-
ate the final rendering image I for the whole point cloud
renderer.

3.5. Loss Function

For the NeRF-based rendering images and neural ren-
dering images, their optimization goals are the ground-truth
images with target camera parameters. We employ point
cloud loss, NeRF rendering loss, neural rendering loss, and
perceptual loss to train the parameters of the proposed point
encoder and fusion decoder as

L=)\pcﬁpc + Xnr L +)\perﬁperv (10)

where Apc, Anr, and Ape, respectively control weights of
these losses.

Point Cloud Loss. All points p;, in raw point clouds pro-
vide groud-truth mapping from locations Xy, to densities 6,
and colors ¢;. Denoting the queried 3D densities and colors
from Point2pix in point p, as ¢, and oy, the point cloud
loss can be represented as

K
. 1
Lpe = I;(n ¢k — ¢ ||* +5 max(0, D —ap)). (1)

We encourage the predicted densities at p, to be greater
than a threshold D.

Neural Rendering Loss. £, is the MSE between rendered
images I from fusion decoder and ground truths I as

Loy =|T-T|3. (12)

8352

Dataset ScanNet [9] ARKitScenes [3]

Metrics PSNR 1 SSIM 1 LPIPS | PSNR?T SSIM*t LPIPS|
Pytorch3D [38] 13.62 0.528 0.779 15.21 0.581 0.756
Pix2PixHD [47] 15.59 0.601 0.611 15.94 0.636 0.605

NPCR [10] 16.22 0.659 0.574 16.84 0.661 0.518
NPBG++ [11] 16.81 0.671 0.585 17.23 0.692 0.511
ADOP [41] 16.83 0.699 0.577 17.32 0.707 0.495
Point-NeRF [51] 17.53 0.685 0.517 17.61 0.715 0.508
Point2Pix (Ours) 18.47 0.723 0.484 18.84 0.734 0.471

Table 1. Comparing our method with different point renderers on the ScanNet [9] and ARkitScenes [3] datasets. There is no finetuning
process in this experiment, which demonstrates the generalization in novel scenes.

Perceptual Loss. £, is a frequently used loss in image
synthesis, which improves the realism of generation, as

L
Lper =Y _ 6" = o(I') |1, (13)
=1

where ¢(-) means extracting VGG features.

4. Experiments

In this section, we conduct experiments to demonstrate
the effectiveness of our proposed method. First, we in-
troduce the indoor datasets and evaluation metrics. Then,
we quantitatively and qualitatively compare the proposed
method with state-of-the-art point cloud renderers to show
our advantages. Next, ablation studies are performed to val-
idate the effect of each proposed module, including point-
guided sampling, point encoder, and fusion decoder. Fi-
nally, we apply our method to point cloud applications.

4.1. Experimental Settings

Datasets. We perform experiments on indoor datasets con-
taining point cloud and multi-view images, including Scan-
Net [9] and ARKitScenes [3]. ScanNet [9] is an RGBD
scanned dataset, which contains 2.5 million images at dif-
ferent views in 1,513 scenes. The dataset has been anno-
tated with calibrated cameras and colored point clouds. We
split the first 1,200 scenes as a training set and the rest as
a testing set. ARKkitScenes [3] is a 3D indoor-scene under-
standing dataset, whose scenes are captured by Apple iPad
Pro. There are around 5,000 scenes, and we choose the first
4,500 scenes for training and the 500 scenes for testing.

Metrics. We adopt three common metrics, including
PSNR, SSIM [48&], and LPIPS [56], to evaluate the perfor-
mance of Point2Pix. They measure the reconstruction accu-
racy between the rendered images and ground-truth images.
Evaluation. We evaluate the rendering quality of differ-
ent methods in two aspects, including non-finetuning and
finetuning. The non-finetuning evaluation means directly
measuring the rendering quality in the testing datasets. As

for the finetuning evaluation, methods can refine their re-
sults on specific scenes to improve performance. Since fine-
tuning evaluation in each case usually consumes much re-
sources and time, we randomly choose 8 testing scenes from
ScanNet datasets and the same number from the ArkitScene
dataset for finetuning evaluation.

Implementation Details. We adopt MinkUnet14A as our
Point Encoder. The radius r for point-guided sampling is
0.08 meters. The maximal number N of samples for each
ray is 128. We extract feature volumes with L = 4 scales.

111
Thus the scales are —, —, 7 and 1 respectively. The reso-

lution of the final rendered images is 640 x 480. During
training, the initial learning rate is 0.004 with AdamW [27]
optimizer. It exponentially decays to 0.0004 till the end (by
500 epochs). We set Ay = 0.1, A = 1.0, and Ape = 0.1
empirically. The density threshold D = 10. We train our
model on 4 NVIDIA Titan-V GPUs, and the batch size is 1
for each GPU.

4.2. Comparison with Point Renderers

We first compare our method with different point render-
ing methods by non-finetuning evaluation. After training,
all methods are directly tested in novel scenes. The com-
petitors include graphics-based point cloud renderer Py-
torch3D [38], previous neural-based point renderers NPBG
[11] and NPCR [10], and image generator Pix2PixHD [47].
For Pix2PixHD, we use it as an image-to-image generator
to translate the rendered images from graphics-based point
renderer [38] to the ground-truth images. The evaluation re-
sults are shown in Tab. 1. Ours achieves significantly higher
accuracy than other solutions, which reflects the great ad-
vantage in practical applications.

4.3. Comparison with NeRF-based Synthesis

We also compare the proposed method with NeRF-based
synthesis in both non-finetuning and finetuning evaluations.
In this experiment, we adopt the same coarse-to-fine ray
sampling as NeRF-based methods [29, 54] for a fair com-
parison. The results are illustrated in Tab. 2.

8353

Pytorch3D

Ours
(non-finetuning)

Pix2PixHD

NCPR

Ground Truth

(finetuning)

Figure 3. Qualitative comparison between different point renderers on the ScanNet [9].

Method Time PSNR(?) SSIM (1) LPIPS({)
Point-NeRF [51] | 0 mins 17.53 0.685 0.517
Point2Pix (Ours) | 0 mins 18.47 0.723 0.484
NeRF [29] ~30 hours 21.33 0.788 0.355
NSVF [23] ~40 hours 22.47 0.791 0.337
PlenOctrees [54] |~30 hours 22.02 0.795 0.341
Instant-NGP [30] | 20 mins 21.94 0.775 0.363
Plenoxels [53] 20 mins 22.35 0.780 0.346
Point-NeRF [51] | 20 mins 22.55 0.792 0.336
Point2Pix (Ours) | 20 mins 23.02 0.815 0.318

Table 2. Comparing our method with NeRF-based methods on the
ScanNet dataset [9]. “Time” means the average finetuning time
for all scenes.

To achieve general view synthesis in novel scenes, MVS-
NeRF [5] and IBRNet [46] combine image prior with NeRF,
while ours combines the point cloud prior. For a fair com-
parison, we also pre-train these two methods on the same
pretraining ScanNet dataset. Our method achieves the high-
est performance among all. Although NeRF [29], NSVF
[23], and PlenOctrees [54] can achieve competitive accu-
racy, their training time is much longer. When training
Instant-NGP [30], Plenoxels [53], Point-NeRF [51], and our
Point2Pix in 20 minutes, ours achieves better performance.
This experiment demonstrates the advantage of point cloud
prior when combined with NeRF.

4.4. Qualitative Comparison

We also qualitatively compare our Point2Pix with other
point renderers and NeRF-based synthesis. The visualiza-
tion is illustrated in Fig. 3 and Fig. 4. The Graphics-
based point renderer Pytorch3D [38] usually generates im-
ages with holes because of sparse points. Due to missing 3D
prior, the generated images are not realistic. Ours achieves
the best visual quality, which shows Point2Pix’s superiority.

4.5. Ablation Studies

Effect of Point-guided Sampling. To prove the efficiency
of our point-guided sampling, we replace our sampling with
other strategies used in NeRF-based methods, including
uniform [5, 46] and coarse-to-fine sampling [29, 54]. Uni-
form sampling means uniformly obtaining N points on each
ray in near-to-far depth. Coarse-to-fine sampling is pro-
posed by the original NeRF [29]. The coarse stage uni-
N

formly samples 5 points and the fine stages samples %

points according to the probability from the coarse stage.
Our point-guided sampling uniformly samples N points
while only inferring the valid samples. The results are
shown in Tab. 3. Since our sampling strategy considers the
point cloud 3D prior, we significantly decrease the average
number of samples and reduce the rendering time and GPU
memory.
Effect of Multi-scale Radiance Fields. Previous meth-

8354

Pytorch3D

Ours
(non-finetuning)

Pix2PixHD

NPBG++

Ours
(finetuning)

Ground Truth

Figure 4. Qualitative comparison between different point renderers and NeRF-based methods on the ArkitScenes [3] dataset.

. Render Time Train Memory
Ray Sampling |# Val. Sampl. PSNR (1) (seconds, |) (GB, |)
Uniform 128 17.96 3.13 8.54
Coarse-to-Fine 128 18.69 5.78 9.17
Point-Guide (Ours) 15.6 18.47 0.92 6.68

Table 3. Comparison between different ray sampling strategies on
ScanNet [9]. In our method, the mean sampling number for each
ray is only 15.6, which is significantly less than the others.

ods, like GIRAFFE [32], HeadNeRF [22], StyleNeRF, and
CIPS-3D [57], also render feature maps via NeRF, which
can effectively reduce the memory and rendering time.
However, different from ours, they only adopt a single scale
of radiance fields. We validate our Multi-scale Radiance
Fields in this experiment and show results in Tab. 4.

We first study the effect of the number of rays. In the
condition of a single scale, if we directly render the image
at the final resolution by NeRF, the memory consumption
is heavy, and the running time is long. Decreasing sampled
rays and increasing upsampling scale can promote the syn-
thesis quality and rendering efficiency. With the increasing
number of NeRF scales, accuracy further improves, which
validates the effectiveness of our multi-scale radiance fields.
We finally adopt the combination in the last column to bal-
ance the accuracy and time.

Selection of Point Encoder. In our Point2Pix, the Point
Encoder is the backbone to provide multi-scale 3D features.

In the literature of point cloud analysis, many point-based
networks [7, 18,36, 37] were proposed. We compare differ-
ent backbones in this experiment.

The candidate networks include PointNet++ [37], Spar-
seConvNet [18], and MinkUnet [7] (MinkUnetl4A and
MinkUnet34C). We evaluate them by only changing the
point encoder, and the results are shown in Tab. 5. Point-
Net++ [37] consumes the largest memory and takes the
longest rendering time, while the final synthesized accuracy
is low. MinkUnet achieves the best results and is faster than
SparseConvNet [18]. We select MinkUnet14A as our point
encoder since it is more efficient than MinkUnet34C.
Effect of Fusion Decoder. Previous neural point encoders
usually adopt image-to-image translator [40,47] to render
images from projected feature maps. We conduct this ex-
periment to analyze the effect of our Fusion Decoder. We
construct different alternatives by combining different de-
coder and fusion strategies, as shown in Tab. 6.

The combination between U-Net [40] and concatenation
strategy is the most frequently adopted [10, 1 1,41], while
its performance is not high. When replacing the decoder
with PixelShuffle [43], accuracy improves. It shows that
the neural renderer does not require large respective fields
as U-Net. When the concatenate strategy is replaced with
our proposed fusion model, the performance is further im-
proved, showing the rationality of our design.

Effect of Point Cloud Loss. We perform this experiment

8355

Scales 1 1 1 2 4
Rays 640 x 480 320 x 240 | 80 x 60 80 x 60 80 x 60
Upsampling x1 X2 X8 x8 X8
PSNR (1) 17.49 17.86 18.05 18.16 18.47
Rendering Time (seconds,) 13.12 3.56 0.85 0.92 0.96
Training Memory (GB, |) 22.93 11.12 6.27 6.68 6.95

Table 4. Effect of different combinations in terms of the number of scales, number of rays and scale of upsampling. We choose the
combination in the last column, which achieves the best performance and is also efficient.

. Training Memory Rendering Time PSNR
Point Encoder (GB. |) (seconds, |) (dB, 1)
PointNet++ [37] 9.14 3.41 16.53
SparseConvNet [18] 8.18 2.18 18.26
MinkUnet14A [7] 6.95 0.96 18.47
MinkUnet34C [7] 8.26 1.45 18.45

Table 5. Comparison between different point encoders. We adopt
MinkUnet14A [7] to extract the basic 3D prior since it achieves
accurate synthesized results and is also lightweight.

. PSNR SSIM LPIPS

Decoder Fusion Strategy RS RS W)
U-Net [40] Concatenate 18.04 0.708 0.511
PixelShuffle [43] Concatenate 18.13 0.712 0.499
PixelShuffle [43] | SPADE (LayerNorm) | 18.47 0.723 0.484

Table 6. Comparison between different neural renderers.

Ape 0.0 0.1 1.0
PSNR (dB, 1) 18.23 18.47 18.30

Table 7. The Effect of point cloud loss.

to validate the effect of point cloud loss. By setting dif-
ferent loss weight \,., we obtain the results in Tab. 7. We
conclude that point cloud loss indeed promotes the mapping
process from point features to 3D attributes, thus improving
the performance. Interestingly, larger \,. does not neces-
sarily achieve better accuracy, which demonstrates the mi-
nor difference between point cloud attributes with NeRF’s
attributes.

4.6. Application: Point Cloud Sampling

Since our point encoder can extract multi-scale point fea-
tures and predict the density and color attributes, we up-
sample the raw point cloud by dense sampling and pre-
dict corresponding 3D attributes in the nearby area of ex-
isting points. As illustrated in Fig. 5, although there are
no ground-truth dense points for us to perform supervised
learning, our Point2Pix can still in-paint the missing points
and insert many details for input point clouds.

5. Conclusion

In this paper, we have proposed a general point renderer,
which can be directly utilized to render photo-realistic im-

Point
Inpainting

Point
Upsamping

a oin‘t Ploud V 0int2Pix (Ors)
Figure 5. Our Point2Pix application in point cloud in-painting and
upsampling. We upsample and fix the missing part of the raw point
cloud by random and dense sampling around existing points.

ages in indoor scenes. We introduce the advantages of point
cloud representation to NeRF where existing points provide
ground truth pairs during training, the point area can guide
the ray sampling process and the 3D prior feature can be
generalized to novel scenes. We propose Multi-scale Ra-
diance Fields to extract discriminative 3D features, point-
guided sampling to efficiently reduce the number of valid
samples, and a Fusion Decoder to synthesize realistic im-
ages. Experiments and ablation studies demonstrate that
our Point2Pix achieves state-of-the-art synthesized perfor-
mance. Our Point2Pix can also be directly employed to up-
sample and in-paint the raw point cloud for indoor scenes.

Limitation and Future Work. There are still common lim-
itations in our proposed Point2Pix. First, the overall render-
ing time is long compared with recent caching-based ren-
dering [53]. Second, apart from indoor scenes, it is still
difficult to directly render photo-realistic images for arbi-
trary environments. In future work, we will accelerate the
rendering speed by combining it with other 3D scene repre-
sentations, such as octrees. We will also extend our present
work to more real-world situations, like the human body.

Acknowledgments

This work is partially supported by Shenzhen Science
and Technology Program KQTD20210811090149095.

8356

References

(1]

(2]

(3]

(4]

(5]

[6

—_

(7]

[8

—

(9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

Dejan Azinovic, Ricardo Martin-Brualla, Dan B. Goldman,
Matthias NieBner, and Justus Thies. Neural RGB-D surface
reconstruction. In CVPR, 2022. 2

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton.
Layer normalization. arXiv, 2016. 4

Gilad Baruch, Zhuoyuan Chen, Afshin Dehghan, Tal Dimry,
Yuri Feigin, Peter Fu, Thomas Gebauer, Brandon Joffe,
Daniel Kurz, Arik Schwartz, and Elad Shulman. ARK-
itscenes - a diverse real-world dataset for 3d indoor scene
understanding using mobile RGB-d data. In Thirty-fifth Con-
ference on Neural Information Processing Systems Datasets
and Benchmarks Track (Round 1),2021. 1,5,7

Dan Cernea. OpenMVS: Multi-view stereo reconstruction
library. 2020. 1

Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang,
Fanbo Xiang, Jingyi Yu, and Hao Su. Mvsnerf: Fast general-
izable radiance field reconstruction from multi-view stereo.
InICCV,2021. 1,3,6

Jianchuan Chen, Ying Zhang, Di Kang, Xuefei Zhe, Linchao
Bao, Xu Jia, and Huchuan Lu. Animatable neural radiance
fields from monocular rgb videos. arXiv, 2021. 2
Christopher B. Choy, JunYoung Gwak, and Silvio Savarese.
4d spatio-temporal convnets: Minkowski convolutional neu-
ral networks. In CVPR, 2019. 1,2,3,7,8

Ruihang Chu, Yukang Chen, Tao Kong, Lu Qi, and Lei Li.
Icm-3d: Instantiated category modeling for 3d instance seg-
mentation. IEEE Robotics and Automation Letters, 7(1):57—
64,2021. 2

Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Niener. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
CVPR,2017. 1,5,6,7

Peng Dai, Yinda Zhang, Zhuwen Li, Shuaicheng Liu, and
Bing Zeng. Neural point cloud rendering via multi-plane
projection. In CVPR, 2020. 1,2,5,7

Peng Dai, Yinda Zhang, Zhuwen Li, Shuaicheng Liu, and
Bing Zeng. Neural point cloud rendering via multi-plane
projection. In CVPR, 2020. 2, 5,7

Paul E. Debevec, Yizhou Yu, and George Borshukov. Effi-
cient view-dependent image-based rendering with projective
texture-mapping. In Rendering Techniques ’98, Proceedings
of the Eurographics Workshop in Vienna, Austria, June 29 -
July 1, 1998, 1998. 2

Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ra-
manan. Depth-supervised nerf: Fewer views and faster train-
ing for free. In CVPR, 2022. 2

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. Interna-
tional Journal of Robotics Research (IJRR), 2013. 1
Michael Goesele, Brian Curless, and Steven M Seitz. Multi-
view stereo revisited. In CVPR, 2006. 1

Dan B. Goldman, Brian Curless, Aaron Hertzmann, and
Steven M. Seitz. Shape and spatially-varying brdfs from pho-
tometric stereo. IEEE TPAMI, 2010. 2

Ben Graham. Sparse 3d convolutional neural networks. In
BMVC, 2015. 2

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

8357

Benjamin Graham and Laurens van der Maaten. Subman-
ifold sparse convolutional networks. arXiv, 2017. 1, 2, 7,
8

Jiatao Gu, Lingjie Liu, Peng Wang, and Christian Theobalt.
Stylenerf: A style-based 3d-aware generator for high-
resolution image synthesis. In /CLR, 2021. 2

Pedro Hermosilla, Tobias Ritschel, Pere-Pau Vizquez, Alvar
Vinacua, and Timo Ropinski. Monte carlo convolution for
learning on non-uniformly sampled point clouds. ACM TOG,
2018. 2

Yannick Hold-Geoffroy, Kalyan Sunkavalli, Sunil Hadap,
Emiliano Gambaretto, and Jean-Francois Lalonde. Deep out-
door illumination estimation. In CVPR, 2017. 2

Yang Hong, Bo Peng, Haiyao Xiao, Ligang Liu, and Juyong
Zhang. Headnerf: A real-time nerf-based parametric head
model. In CVPR, 2021. 2,7

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. In NeurIPS,
2020. 1,6

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. In NeurIPS,
2020. 2

Lingjie Liu, Marc Habermann, Viktor Rudnev, Kripasindhu
Sarkar, Jiatao Gu, and Christian Theobalt. Neural actor:
Neural free-view synthesis of human actors with pose con-
trol. ACM TOG, 2021. 2

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J. Black. SMPL: A skinned multi-
person linear model. ACM TOG, 2015. 2

Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In /CLR, 2019. 5

Nelson Max. Optical models for direct volume rendering.
IEEE TVCG, 1995. 3

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1, 2, 3,4,5,6

Thomas Miiller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. arXiv, 2022. 6

Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas
Kurz, Joerg H. Mueller, Chakravarty R. Alla Chaitanya, An-
ton S. Kaplanyan, and Markus Steinberger. DONeRF: To-
wards Real-Time Rendering of Compact Neural Radiance
Fields using Depth Oracle Networks. Computer Graphics
Forum, 2021. 1, 2

Michael Niemeyer and Andreas Geiger. GIRAFFE: Rep-
resenting scenes as compositional generative neural feature
fields. In CVPR, 2020. 2,7

Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien
Bouaziz, Dan B Goldman, Steven M. Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
InICCV, 2021. 2

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Semantic image synthesis with spatially-adaptive nor-
malization. In CVPR, 2019. 4

(35]

(36]

(37]

(38]

(39]

(40]

(41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(501

Sida Peng, Yuanqing Zhang, Yinghao Xu, Qiangian Wang,
Qing Shuai, Hujun Bao, and Xiaowei Zhou. Neural body:
Implicit neural representations with structured latent codes

for novel view synthesis of dynamic humans. In CVPR,
2021. 2
Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and

Leonidas J. Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In CVPR, 2017. 1, 2,
-

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J.
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In NeurIPS, 2017. 1,2,7, 8
Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor
Gordon, Wan-Yen Lo, Justin Johnson, and Georgia Gkioxari.
Accelerating 3d deep learning with pytorch3d. arXiv, 2020.
1,2,5,6

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, pages 10674—
10685. IEEE, 2022. 4

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In MICCAI 2015. 7, 8

Darius Riickert, Linus Franke, and Marc Stamminger.
ADOP: approximate differentiable one-pixel point render-
ing. ACM TOG, 2022. 2, 5,7

Radu Bogdan Rusu and Steve Cousins. 3D is here: Point
Cloud Library (PCL). In ICRA, 2011. 1,2

Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz,
Andrew P. Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network. In
CVPR, 2016. 4,7, 8

Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo
tourism: exploring photo collections in 3d. ACM TOG, 2006.
2

Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji,
Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.
Splatnet: Sparse lattice networks for point cloud processing.
In CVPR, 2018. 2

Qiangian Wang, Zhicheng Wang, Kyle Genova, Pratul Srini-
vasan, Howard Zhou, Jonathan T. Barron, Ricardo Martin-
Brualla, Noah Snavely, and Thomas Funkhouser. IBRNet:
Learning multi-view image-based rendering. In CVPR, 2021.
1,3,6

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image syn-
thesis and semantic manipulation with conditional gans. In
CVPR, 2018. 5,7

Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P.
Simoncelli. Image quality assessment: from error visibility
to structural similarity. /EEE TIP, 2004. 5

Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and Vic-
tor Adrian Prisacariu. NeRF—: Neural radiance fields without
known camera parameters. arXiv, 2021. 1

Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner.
OpenGL programming guide: the official guide to learning

(51]

(52]

(53]

[54]

(55]

[56]

[57]

(58]

8358

OpenGL, version 1.2. Addison-Wesley Longman Publishing
Co., Inc., 1999. 1

Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu,
Kalyan Sunkavalli, and Ulrich Neumann. Point-nerf: Point-
based neural radiance fields. In CVPR, 2022. 2, 5, 6

Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan.
Mysnet: Depth inference for unstructured multi-view stereo.
ECCV,2018. 1

Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In CVPR, 2022. 1,
6,8

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. Plenoctrees for real-time rendering of
neural radiance fields. In ICCV, 2021. 1, 5, 6

Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. NERF++: Analyzing and improving neural radiance
fields. arXiv, 2020. 1

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 5

Peng Zhou, Lingxi Xie, Bingbing Ni, and Qi Tian. CIPS-
3D: A 3d-aware generator of gans based on conditionally-
independent pixel synthesis. arXiv, 2021. 2, 7

Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3d: A
modern library for 3d data processing. arXiv, 2018. 1,2

