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Abstract

The detector-free feature matching approaches are cur-
rently attracting great attention thanks to their excellent
performance. However, these methods still struggle at
large-scale and viewpoint variations, due to the geomet-
ric inconsistency resulting from the application of the
mutual nearest neighbour criterion (i.e., one-to-one as-
signment) in patch-level matching. Accordingly, we in-
troduce AdaMatcher, which first accomplishes the fea-
ture correlation and co-visible area estimation through
an elaborate feature interaction module, then performs
adaptive assignment on patch-level matching while es-
timating the scales between images, and finally refines
the co-visible matches through scale alignment and sub-
pixel regression module. Extensive experiments show
that AdaMatcher outperforms solid baselines and achieves
state-of-the-art results on many downstream tasks. Ad-
ditionally, the adaptive assignment and sub-pixel refine-
ment module can be used as a refinement network for other
matching methods, such as SuperGlue, to boost their per-
formance further. The code will be publicly available at
https://github.com/AbyssGaze/AdaMatcher.

1. Introduction
Establishing accurate correspondences for local features

between image pairs is an essential basis for a broad range
of computer vision tasks, including visual localization,
structure from motion (SfM), simultaneous localization and
mapping (SLAM), etc. However, achieving reliable and ac-
curate feature matching is still challenging due to various
factors such as scale changes, viewpoint diversification, il-
lumination variations, repetitive patterns, and poor texture.

Existing image matching pipelines are mainly divided
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Figure 1. An illustration of one-to-one assignment and adap-
tive assignment. Under viewpoint changes or scale variations,
one-to-one assignment leads to geometric inconsistency in patch-
level feature matching, while adaptive assignment does not. For
example, with one-to-one assignment, patch pair (pA, pC2 ) is
treated as a negative example, even though both pC1 and pC2 are
projected into pA of IA. Such a matching rule is inconsistent with
two-view and multi-view projective geometry.

into two types: detector-based and detector-free. The for-
mer is to build matches on detected and described sparse
keypoints [8, 19, 20, 23, 26, 32]. However, as the detector-
based matching pipeline relies on the reliability of key-
point detectors and features description, it tends to per-
form poorly under large viewpoint changes or scale vari-
ations. For the latter, the detector-free matching pipeline
can take full advantage of the rich context to establish corre-
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spondence between images end-to-end [6,13,24,25,29–31],
without independent keypoint detection and feature descrip-
tion steps. To achieve efficiency and accurate matching, the
SOTA detector-free matching pipelines [6,11,13,29,30] use
a coarse-to-fine structure, in which the patch-level matches
are first obtained using the mutual nearest neighbor crite-
rion, and then are refined to a sub-pixel level.

Although these methods have improved considerably in
performance, they still perform unsatisfactorily in extreme
cases (e.g., large viewpoint changes and scale changes).
This is due to the fact that applying the mutual nearest
neighbor criterion (ie, one-to-one correspondence) in patch-
level matching leads to geometric inconsistencies and dif-
ficulties in obtaining sufficient high-quality matches under
large-scale or viewpoint variations. As shown in Fig.1,
where IA, IB , IC are from the same scene, pC1 and pC2 of
IC are both projected into pA of IA. However, when the
mutual nearest neighbour criterion is applied in the train-
ing process, the patch pair (pA, pC1 ) is treated as a positive
sample, while the patch pair (pA, pC2 ) is treated as a neg-
ative sample. The incorrect assignment leads to two-view
geometric inconsistency. Deeply, from a multi-view per-
spective, (pA, pB) and (pB , pC2 ) are positive samples while
(pA, pC2 ) is a negative sample, which leads to multi-view
geometric inconsistency between multiple image pairs. For
inference, when there are large viewpoint changes or scale
variations, one-to-one matching is difficult to obtain enough
inliers to ensure accurate camera pose estimation. Further-
more, when applied to multi-view-based downstream tasks
(e.g., SfM and 3D reconstruction), one-to-one patch-level
correspondences do not guarantee the consistency of multi-
view matching, which is likely to make the mapping fail or
the bundle adjustment difficult to converge.

Inspired by the above consideration, we present
AdaMatcher, a geometry aware local feature matching ap-
proach, targeting at mitigating potential geometry mismatch
between image pairs without scale-alignment preprocess-
ing or viewpoint warping. Different from dual-softmax or
optimal transport in [28, 29] which guarantees one-to-one
correspondence, we allow adaptive assignment (including
many-to-one and one-to-one) at patch-level matching dur-
ing training and inference. When the scale or viewpoint
changes significantly, the adaptive assignment can guaran-
tee matching accuracy. The smooth scale transition from
many-to-one matches between image pairs can be adopted
to resolve scale inconsistencies. Furthermore, the structure
of our delicately designed feature interaction module cou-
ples co-visible feature decoding with cross-feature interac-
tion, allowing the probability map of the co-visible region
to be obtained later by a simple module to filter out matches
outside co-visible areas. To summarize, we aim to provide
several critical insights of matching local features across
scales and viewpoints:

• We propose a detector-free matching approach
AdaMatcher that allows a patch-level adaptive assign-
ment followed by a sub-pixel refinement to guaran-
tee the establishment of geometry aware feature cor-
respondences.

• We introduce a novel feature interaction structure,
which couples the co-visible feature decoding and
cross-feature interaction. The probability map of the
co-visible area can be obtained later by an additional
module.

• Extensive experiments and analysis demonstrate that
AdaMatcher outperforms various strong baselines and
achieves SOTA results for many downstream vision
tasks.

2. Related Work
2.1. Scale- or Viewpoint-invariant Local Feature

To tackle geometry deformation induced by scale and
viewpoint variation across images, tremendous efforts [2–
4, 7, 8, 18–20, 23, 26] have been made within local fea-
ture matching pipelines. Hand-crafted local features such
as SIFT [19] or ORB [26] adopt scale-space theory [17]
to alleviate potential large-scale variations. However, de-
scriptors extracted locally from low-level image textures
possess poor discrimination ability. Recently, many works
have been devoted to a learning-based approach to tackle
local feature matching under scale variations or viewpoint
changes. Methods directly performing convolution upon the
multi-scale pyramid such as KeyNet [2], R2D2 [23] and
HDDNet [4], or implicitly applying multi-scale detection
such as ASLfeat [20] and DenseNet [18] are intended to
mimic conventional scale space theory. However, the multi-
scale pyramid brings the side effect of ambiguity since cor-
respondence needs to be established among multiple scale
levels. There are also works [8, 22] aiming at invariance
to different scales through an elaborate learning process,
however, which would render them less discriminative [34].
Some works [5,35] in geo-localization aim to achieve view-
point invariance. GeoWarp [5] directly warps pairwise im-
ages to a closer geometrical space to eliminate viewpoint
inconsistencies and then computes their similarities using
dense local features for image retrieval tasks. In addition,
OETR [7] estimates overlap areas as a preprocessing mod-
ule in the existing detector-based matching pipeline to con-
strain keypoint detection in the co-visible areas and elim-
inate scale and viewpoint inconsistencies. However, its
need to scale up the whole image increases the time and
computational consumption of the later feature extraction
and matching steps. In contrast to the above approaches,
our proposed method is inspired by many-to-one matching
caused by viewpoint and scale variations. The adaptive as-
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Figure 2. Architecture of AdaMatcher. A local feature CNN extracts two feature maps with size of 1/2 and 1/8 of the input image
dimension. Afterwards, 1/8 size features of the two images are correlated by our feature interaction module, followed by an extra module
to estimate the co-visible area shared between two images. Then the interacted patch features and co-visible probability maps are fed into
an adaptive assignment and filtering module, yielding sufficient patch-level matches. Finally, proposal-matched features are sampled in the
1/2 size feature maps with a scale alignment to mitigate scale mismatch, followed by sub-pixel refinement.

signment is introduced to handle feature matching under
view and scale variations, and the relative scales between
two images can be estimated from the results of patch-
level adaptive matching, which can be used for feature scale
alignment in the subsequent refinement step. In addition, in-
spired by the overlap estimation of OETR [7], we couple the
co-visible feature decoding into feature interaction to make
the network more focused on the co-visible regions, thus
alleviating the performance degradation in extreme cases.

2.2. Detector-free Image Matching

Recent works [6, 13, 25, 29–31] have shown us that end-
to-end dense feature matching without keypoint detection
can be more robust than detector-based matching methods
in many scenarios. NCNet [25] and its follow-ups [13, 24]
propose a 4D matching cost volume to enumerate all possi-
ble correspondences and obtain dense matches end-to-end.
Although all the potential matches are considered in the 4D
matching tensor, the receptive field of 4D convolution is still
limited to each match’s neighborhood area. Benefiting from
the global receptive field and long-range dependencies from
Transformers, LoFTR [29] and its variants [6, 30] extend
neighborhood consensus to the whole image, setting the
SOTA performance for dense feature matching approaches.
However, [6,13,24,25,29–31] do not handle the case of sig-
nificant viewpoint and scale changes well because they fol-
low one-to-one matching. In comparison, the use of adap-
tive assignment can make the dense feature matching meth-
ods more robust in extreme cases.

3. Methods
This section describes our proposed matching frame-

work, named AdaMatcher, as shown in Fig.2. Given a
pair of images IA and IB , we first feed them into a CNN
backbone to obtain coarse features and fine features. Then,
the coarse features are passed through our CFI module
(Sec. 3.1) to accomplish feature Interaction and co-visible
area estimation. After that, adaptive assignment (Sec.3.2) is
applied to get the patch-level matches and calculate the rel-
ative scales between image pairs, while the previously esti-
mated co-visible regions are used to filter the matches. Fi-
nally, the patch-level matches are scale-aligned and refined
to sub-pixel precision (Sec. 3.3) according to the estimated
scale.

3.1. Co-visible Feature Interaction

Our ultimate goal is to bring existing detector-free
matching methods to be more robust under scale or view-
point changes. We find that overlap estimation [7] helps to
improve the matching performance in extreme cases. How-
ever, introducing a full network for co-visible region esti-
mation would be computationally and time-consuming. In-
stead, we couple feature interactions with co-visible feature
decoding so that co-visible features can be used to guide
global feature interactions while reducing computation. On
the one hand, co-visibility guidance can suppress features in
non-co-visible regions, facilitating the subsequent matching
step. On the other hand, a simple additional module can be
used to obtain co-visible regions to filter mismatches.
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Feature Interaction with Co-visible Feature Decoding.
As shown in the bottom left part of Fig.2, we first use one set
of self- and cross-attention layer as the feature encoder to
acquire information within and across images. The output
features are denoted as FA1

1/8 and FB1

1/8 respectively. For co-
visible feature initialization, we adopt one query Q∈R1×d

to embed co-visible context, where d is the channel di-
mension, and perform one cross-attention layer to decode
the locations of the co-visible region. QA and QB denote
the features decoded from FA1

1/8 and FB1

1/8 respectively, i.e.,

Qi = transfomer(q = Q, k = v = F i1
1/8), i ∈ {A,B}.

After that, co-visible features can be used to guide global
feature interactions through a cross transformer, of which
the outputs are denoted as FA2

1/8 and FB2

1/8 respectively. Fi-
nally, to make the local features more distinguishable, we
use another set of self- & cross-attention layers to con-
struct a complete graph for feature correlation. The pro-
posed feature interaction structure can be directly applied
to LoFTR [29], QuadTree [30] and ASpanFormer [6], i.e.,
the corresponding variants can be obtained according to dif-
ferent attention mechanisms.
Co-visible area segmentation. After co-visible feature de-
coding, a simple additional module can be used to obtain
the co-viewing regions. Here we consider co-visible area
segmentation as predicting a logit probability map, whose
values at each pixel represent the probability of being in the
co-visible region, as shown in Fig.3. In detail, we project
the decoded features QA,B to construct a weight map using
matrix multiplication and a sigmoid function. The weight
map is used to enhance the co-visible context in feature
maps FA2

1/8, F
B2

1/8. Then a convolution operation with the
kernel size of 3 × 3 and a sigmoid function are applied,
which is detailed in Eq. (1):

weighti = Sigmoid((F i2
1/8)

TQi),

Pi = Sigmoid(Conv(weighti ⊙ F i2
1/8 + F i2

1/8)),
(1)

where i ∈ {A,B}, ⊙ denotes element-wise multiplication
and PA, PB denote the co-visible probability map of image
A and image B. After obtaining PA and PB , a confidence
threshold can be applied to retain the co-visible areas in im-
age A and image B.

3.2. Adaptive Assignment

In this section, we will elaborate on one of the main con-
tributions of our work: adaptive assignment when match-
ing between features across images. As shown in Fig.4(a),
when scale varies or viewpoint changes, centers of several
patches within one image would be projected into only one
patch of the other image, named many-to-one correspon-
dences. For the ground truth patch-level labels obtained
by one-to-one assignment, only the correspondences that
satisfy the mutual nearest neighbors constraint are taken

Figure 3. Co-visible area segmentation visualizations. Visual-
ized with two different scenes, the first column is the origin image
pair, and the second is the co-visible area.

as positive samples, while the others as negative samples.
Such ambiguous label assignment is detrimental to super-
vised training. As shown in Fig.4(b), while a set of patch
centers (or pixels) of image A: {PA

i |pAik, k = 1, 2, ..., N}
are all projected into a patch (or pixel) of image B: pBj
using ground-truth camera poses and depth maps, features
corresponding to {PA

i } are similar to the feature corre-
sponding to pBj . Following mutual nearest neighbors con-
straint, (pAim, pBj ) would be assigned as positive sample,
while {(pAik, pBj )|k = 1, 2, ..., N, k! = m} are assigned
as negative, where m = argmink ∥D(W(pAik), p

B
j )∥, D(·)

is the projected distance between matching candidates and
W(·) demonstrates the projection function. Such one-to-
one assignment criterion will turn good correspondences
into negative samples, which is inconsistent with the multi-
view geometry theory. Instead, adaptive assignment will
make correspondences {(pAik, pBj )|k = 1, 2, ..., n} being
positive samples since their appearances are similar and
they also conform to geometric constraint. When applied
to multi-view tasks (e.g. SfM), the one-to-one assignment
cannot guarantee the multi-view geometric consistency. In-
stead, when adaptive many-to-one/one-to-many/one-to-one
assignments are allowed at patch-level matching, feature in-
consistency under large-scale or viewpoint changes will be
mitigated.
Matching matrix formulation. Given features FA3

1/8 and

FB3

1/8 output from CFI module, we calculate their similarity
matrix S:

S(i, j) = 1

r
·
〈
FA3

1/8(i), F
B3

1/8(j)
〉
, (2)

where i and j are index of feature patches in IA and IB

respectively, and ⟨·, ·⟩ denotes inner product. Adaptive as-
signment is a one-way operation that consists of many-
to-one and one-to-one assignment, i.e., we assign ”many”
patches on images with a large co-visible area to ”one”
patch on images with a small co-visible area. When lit-
tle scale or viewpoint variation exists, many-to-one assign-
ment is adaptive to become one-to-one. Hence, we apply
softmax operation to similarity matrix S(i, j) on two di-
mensions separately, followed by selecting similar matches
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Figure 4. Comparison of one-to-one and many-to-one assignment. (a) shows patch-level many-to-one matching due to viewpoint and
scale changes; (b) shows the difference between many-to-one and one-to-one assignment: one-to-one only keeps a single match while both
pAi0 and pAi1 correspond to pBj , and many-to-one assignment keeps common area matches to disambiguate positive and negative samples, to
resolve geometry deformation.

with a threshold θm:

Pk = softmax(S(i, ·))j ,

Mk = {(̃i, j̃)|Pk (̃i, j̃) > θm},
(3)

where k ∈ 0, 1, P0 and P1 are the matching probability ma-
trix obtained by softmax operation along the first dimension
and the zeroth dimension, M0 and M1 are the correspond-
ing patch-level match proposals. Then we select the match-
ing probability matrix P and the proposal matches M: P =
Pindex,M = Filtering(Mindex, PA, PB , θco−visible),
where Filtering is to filter out matches outside predicted
co-visible areas, θco−visible is used to select patches in the
co-visible probability maps belong to the co-visible region,
and index = argmaxk{sk|k = 0, 1}. sk is the scale be-
tween images, calculated by

sk =
len(Mk)

len(unique(Mk[:, 1− k]))
, k = 0, 1. (4)

3.3. Sub-pixel Refinement Module

By adaptive assignment we obtain patch-level match
proposals through scales and viewpoints. Then we re-
fine these match proposals to more accurate sub-pixel level
matches, by a scale-alignment and an expectation regres-
sion module.
Scale-alignment. Suppose scale for pAi is larger than pBj ,
match proposals are {pAi∈Ω, p

B
j }, and Ω is the collection of

assigned patches. Patch features can be then sampled in
FA
1/2 and FB

1/2, followed by one self/cross attention layer
to communicate feature messages from assigned patches.
The scale ratio is s = max(s0/s1, s1/s0), where s0 and
s1 could be calculated from Eq. (4). Smaller scale image
features are upsampled by this s to compensate for scale
mismatch between images.
Sub-Pixel level regression. To locate accurate sub-pixel
level matches, we generate a heatmap representing the
matching probability for each pixel. Firstly, we correlate
center features of FA

i∈Ω and the scale-alignment features

F ′B
j to calculate n spatial attention maps. Then we perform

a dot-product operation on the attention maps and F ′B
j to

balance the relevance for each features. Finally, a simple
convolution and softmax is employed to predict probability
distribution, from which the final position i′ with sub-pixel
accuracy on IA is obtained by taking expectation over dis-
tribution. By this scale-aware adaption to match position
refinement, we achieve more accurate sub-pixel matches.

3.4. Supervision

Co-visible Area Segmentation Loss. For the co-visible
area segmentation, we treat it as a per-pixel binary classifi-
cation task. The loss Lco−visible can be calculated by Focal
Loss [16] (abbr. as FL hereafter):

Lco−visible = FL(PA, P̂A) + FL(PB , P̂B), (5)

where P̂A and P̂B denote the ground-truth co-visible areas
of image A and image B, respectively, which are calculated
based on depth and camera poses.
Proposal Matching Loss. For the loss function of the adap-
tive matching probability matrix P , we use the same Focal
Loss [16] as in LoFTR [29]:

LM = FL(P, P̃), (6)

where P̃ is the ground-truth labels of the adaptive match-
ing probability matrix calculated from the camera poses and
depth maps, and P is the predicted matching probability
matrix. For the α and γ parameters in Focal Loss [16], we
use the default values, which are set to 0.25 and 2, respec-
tively. For patch-level label generation, we project the patch
centroids of the two images onto each other using depth and
camera poses and then characterize all points projected into
the same patch as positive samples with that patch.
Refinement Loss. Inspired by LoFTR [29], we use the
same loss Lrefine = 1

|Mk
gt|

∑
i,j′

1
σ(i)2

∥∥j′ − j′gt
∥∥ function

for the final predicted matches, where k is the index cal-
culated above. Mk

gt is the ground-truth matches calculated
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from ground-truth depths and camera poses and σ2(·) is the
variance of the corresponding heatmap [29].

Our final loss is balanced as:

L = 0.5 ∗ Lco−visible + 1.0 ∗ LM + 1.0 ∗ Lrefine. (7)

3.5. Implementations

We train AdaMatcher on the MegaDepth datasets fol-
lowing [29], without any data augmentation. We apply
AdaMatcher to LoFTR [29] and its variants (QuadTree At-
tention [30] and ASpanFormer [6]), named AdaMatcher-
LoFTR, AdaMatcher-Quad and AdaMatcher-ASpan, re-
spectively. The only difference between these three variants
is the type of attention mechanism in the feature interac-
tion module, which are linear attention [12], quadtree atten-
tion [30] and attention span [6]. All networks are trained us-
ing AdamW optimizer with initial learning rate of 8×10−3

and batch size of 8. It converges after 2 days of training
on 8 V100 GPUs. The image feature extractor is a stan-
dard ResNet-FPN [10, 15] architecture, which is identical
to LoFTR [29]. θm is set to 0.5, θco−visible is set to 0.2
and the patch window size w for refinement is set to 5. The
number of channels of the F1/8 and F1/2 is 256 and 128, re-
spectively. To save GPU memory usage during training, we
sample 30 percent of matches (max to 2500) from the match
proposals for supervision in sub-pixel refinement module.
More details are provided in Supplementary Material A.

4. Experiments
4.1. Homography Estimation

Dataset. HPatches [1] is the most widely used image
matching evaluation dataset. There are 116 scenes with 57
sequences of large illumination variations and 59 sequences
under significant viewpoint changes to evaluate our method
under different circumstances. All images are resized to
their longer dimensions equal to 1024, and we limit the
maximum amount of matches to 1K for all methods.
Metrics. Following [8, 28, 37] we use corner correctness to
describe the performance of estimated homography. Four
corners in the first reference image are wrapped to the
other image by estimated homography. Then percentange
of correct estimated homographies whose average error of
the four corners is less than 1/3/5 pixels demonstrates the
matching Accuracy. We use OpenCV RANSAC as the ro-
bust estimator following [37].
Results. We split matching methods into ”Detector-based”
and ”Detector-free” as in LoFTR [29]. Tab.1 shows that
AdaMatcher notably performs on par with or better than
other baselines under all error thresholds. Under viewpoint
variations, many-to-one corresponding is more appropriate,
and adaptive assignment eliminates the matching ambigu-
ity, making Adamatcher superior to other methods that use
one-to-one assignment.

Category Method Overall Viewpoint

Accuracy(ϵ <1/3/5px)

Detector-

KeyNet [2]+HardNet [21] 0.30 /0.61 /0.75 0.14 /0.46 /0.64

based

SIFT [19]+HardNet [21] 0.33 /0.59 /0.74 0.20 /0.40 /0.60
SP [8] 0.31 /0.66 /0.78 0.18 /0.51 /0.64
R2D2(MS) [23] 0.29 /0.60 /0.72 0.18 /0.43 /0.58
SP [8]+CAPS [33] 0.27 /0.66 /0.71 0.15 /0.53 /0.65
Patch2Pix [37] 0.34 /0.68 /0.79 0.16 /0.47 /0.63
SP [8]+SG [28] 0.34 /0.67 /0.81 0.21 /0.53 /0.72
SP [8]+SG [28]+Ada 0.35 /0.71 /0.81 0.24 /0.59 /0.72

LoFTR-OT [29] 0.41 /0.70 /0.79 0.15 /0.47 /0.61
LoFTR-DS [29] 0.44 /0.73 /0.82 0.19 /0.54 /0.67

Detector-
AdaMatcher-LoFTR 0.49 /0.75 /0.83 0.26 /0.57 /0.69

free
QuadTree [30] 0.48 /0.70 /0.81 0.20 /0.48 /0.65
AdaMatcher-Quad 0.47 /0.75 /0.83 0.26 /0.58 /0.69
ASpanFormer [6] 0.46 /0.72 /0.82 0.22 /0.51 /0.68
AdaMatcher-ASpan 0.50 /0.75 /0.84 0.27 /0.57 /0.70

Table 1. Homography estimation on HPatches. The better meth-
ods are underlined, and the best overall method is highlighted in
bold. Under viewpoint changes, AdaMatcher has substantial per-
formance improvements compared to the corresponding baselines.

4.2. Relative Pose Estimation

Datasets. We use MegaDepth [14] to demonstrate the ef-
fectiveness of AdaMatcher for pose estimation in outdoor
scenes. Following [7], we used a scale-split Megadepth test
set (with 10 scenes), as scale ratio ranges in [1, 2), [2, 3),
[3, 4), [4,+∞). Fig.5 qualitatively shows the matching re-
sult of LoFTR and AdaMatcher in MegaDepth. All images
(both training and test) are resized so that the longest di-
mension equals 840 (ASpanFormer [6] and QuadTree At-
tention [30] use 832 due to their need for an image resolu-
tion divisible by 16).
Metrics. Following [28], we report the AUC of the pose
error under thresholds (5◦, 10◦, 20◦), where the pose error
is set as the maximum angular error of relative rotation and
translation. In our evaluation protocol, the relative poses are
recovered from the essential matrix, estimated from feature
matching with RANSAC.
Comparative methods. We compare AdaMatcher with
traditional and current SOTA methods: 1) detector-
based methods including SIFT [19]+HardNet [21],
KeyNet+HardNet [21], R2D2 [23], ASLFeat [20],
Disk [32], SuperGlue(SG) [28] with SuperPoint(SP) [8]
or Disk [32] detector and SuperGlue [28] with OETR [7]
for pre-processing, 2) detector-free methods including
PDC-Net [31], LoFTR [29], QuadTree Attention [30] and
ASpanFormer [6].
Results on MegaDepth. When the relative scale ratio is
small, AdaMatcher performs slightly better than LoFTR. As
the scale difference increases, AdaMatcher outperforms its
counterparts more obviously. Though SIFT [19] (even com-
bined with HardNet [21] to more discriminative descriptors)
detects keypoint in scale space, R2D2 [23] utilizes multi-
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AdaMatcher-LoFTR: pair-442
P(95.0%):420/442
err_R:2.50, err_t:1.05

LoFTR: pair-139
P(40.3%):56/139
err_R:25.52, err_t:68.09

AdaMatcher-LoFTR: pair-1664
P(95.1%):1583/1664
err_R:0.75, err_t:1.11

LoFTR: pair-525
P(57.9%):304/525
err_R:4.90, err_t:22.86

AdaMatcher-LoFTR: pair-702
P(91.2%):640/702
err_R:2.45, err_t:1.40

LoFTR: pair-172
P(48.8%):84/172
err_R:34.71, err_t:32.51

AdaMatcher-LoFTR: pair-1011
P(94.6%):956/1011
err_R:2.93, err_t:3.07

LoFTR: pair-324
P(47.2%):153/324
err_R:14.83, err_t:10.31

AdaMatcher-LoFTR: pair-847
P(93.9%):795/847
err_R:1.52, err_t:2.86

LoFTR: pair-220
P(25.9%):57/220
err_R:41.58, err_t:56.11

Figure 5. Qualitative results. AdaMatcher-LoFTR (top row) is compared to LoFTR (bottom row) in MegaDepth datasets. Matches with
epipolar error beyond 1× 10−4 are shown in green lines, and the rest are shown in red. Under scale or viewpoint variations, AdaMatcher-
LoFTR performs far superior to LoFTR.

Methods Scale [1,2) Scale [2,3) Scale [3,4) Scale [4,inf)

AUC@5◦ /AUC@10◦ /AUC@20◦

SIFT [19]+HardNet [21] 21.19 33.01 45.43 10.77 18.55 28.64 4.64 9.31 16.21 1.86 4.36 8.76
KeyNet [2]+HardNet [21] 34.84 49.08 61.30 23.78 35.88 47.69 10.91 19.39 29.97 5.32 10.51 18.48
Disk [32] 33.68 49.76 63.31 5.5 8.45 11.64 0.24 0.47 0.78 0.09 0.19 0.35
R2D2(MS) [23] 37.84 55.90 70.66 22.67 36.93 51.88 6.63 13.02 22.01 2.13 4.02 7.18
ASLFeat [20] 33.80 50.33 65.12 21.87 35.41 49.68 8.53 16.01 26.50 2.95 6.32 11.84
Disk [32]+SG [28] 45.31 63.04 76.49 32.69 48.86 63.76 12.38 22.47 35.68 3.18 6.97 12.05
SP [8]+SG [28] 50.43 67.64 79.97 39.41 57.78 72.34 19.72 35.22 51.97 10.09 19.62 33.88
SP [8]+SG [28]+Ada 53.56 70.01 81.90 42.32 59.51 73.77 23.77 39.55 56.08 12.63 23.68 37.59
SP [8]+SG [28]+OETR [7] 51.96 68.51 79.95 39.92 56.70 71.34 25.37 41.26 57.78 15.36 28.45 44.27

PDC-Net(H) [31] 51.16 67.72 79.58 40.35 56.71 69.49 16.64 26.72 36.77 4.28 8.14 12.39
LoFTR [29] 60.15 74.68 84.45 49.69 65.72 77.94 24.86 39.67 55.08 10.16 18.74 29.97
AdaMatcher-LoFTR 60.50 74.91 84.30 54.53 70.02 81.17 35.13 50.75 64.87 20.14 33.18 47.41
ASpanFormer [6] 60.92 75.29 85.01 54.60 70.21 81.19 33.41 51.16 66.88 18.03 30.50 44.63
AdaMatcher-ASpan 61.29 75.65 85.41 55.35 71.21 82.10 36.05 53.21 67.87 22.92 35.64 50.40
QuadTree [30] 62.06 76.19 85.91 53.67 69.83 81.59 31.62 48.54 64.60 14.77 26.17 39.89
AdaMatcher-Quad 62.42 76.03 85.42 56.98 71.75 82.60 41.00 58.67 73.42 26.56 42.05 56.71

Table 2. Evaluation on MegaDepth. Performance gain from AdaMatcher becomes more prominent when scaling variation between image
pairs increases. Also, our proposed method can significantly improve the performance of LoFTR and its variants.

resolution images to inference features and ASLFeat [20]
extracts features from multi-scale score maps, these meth-
ods cannot explicitly model relative scale ratio between im-
ages like AdaMatcher. LoFTR [29] and its variants [6, 30]
are trained using ground-truth matches obtained by one-to-
one assignment, resulting in the inability to learn the ge-
ometry consistency of feature matching. When the scale
differences between image pairs are large, the number
of matches obtained by one-to-one assignment decreases,
which would affect the accuracy of camera pose estima-
tion. Since AdaMatcher eliminates the ambiguity of match-
ing during training, it can achieve significant improvement
when inferring image pairs with large-scale variations. It
can be seen that our proposed method achieves significant
performance gains when applied on LoFTR [29], ASpan-
Former [6] and QuadTree Attention [30].

Refinement Module. As mentioned before, adaptive as-
signment and sub-pixel refinement module could be treated
as a refinement network with different extractors and match-

ers as Patch2Pix [37]. Different from SuperGlue’s mutual
nearest neighbors constraint, we calculate row matches and
column matches separately to get many-to-one and one-to-
many matches, and then, refine the sub-pixel position in the
descriptor feature map. As shown in Tab.2, after adding Ada
as a refinement network for SP [8]+SG [28], we observe a
noticeable improvement in the AUC metric.

4.3. Visual Localization

Datasets. In HPatches and MegaDepth we only recover
relative pose from feature matches. For real-world appli-
cations such as AR navigation or autonomous driving, vi-
sual localization with absolute pose estimation is a critical
geometrical task. Aachen Day-Night v1.1 dataset [36] is
chosen to demonstrate the visual localization ability.
Experimental setup. We use open-sourced hierarchical
localization pipeline HLoc proposed in [27] to evaluate
on day-night query images. To build feature tracks for
detector-free methods, we merge keypoints that are close
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Methods Day Night
(0.25m, 2◦) / (0.5m, 5◦) / (1.0m, 10◦)

SP [8]+SG [28] 89.8 96.1 99.4 77.0 90.6 100.0
SP [8]+SG [28]+Patch2Pix [37] 89.3 95.8 99.2 78.0 90.6 99.0
Patch2Pix [37] 86.4 93.0 97.5 72.3 88.5 97.9

LoFTR-DS [29] - - - 72.8 88.5 99.0
LoFTR-OT [29] 88.7 95.6 99.0 78.5 90.6 99.0
ASpanFormer [6] 89.4 95.6 99.0 77.5 91.6 99.5
AdaMatcher-LoFTR 89.2 96.0 99.3 79.1 90.6 99.5
AdaMatcher-Quad 89.2 95.9 99.2 79.1 92.1 99.5

Table 3. Visual localization evaluation on the Aachen Day-
Night benchmark v1.1.

to each other (with distance less than 4 pixels) by taking
their average location, following [37]. It may not be a per-
fect solution with degraded sub-pixel level accuracy, but it
should be a reasonable way to evaluate AdaMatcher.
Results. As shown in Tab. 3, AdaMatcher outperforms all
the other detector-free methods. This should be attributed
to the fact that adaptive assignment eliminates geometric
inconsistency during training and testing. The performance
of the detector-free methods is slightly lower than that of
SP [8] + SG [28] on the day queries, probably due to the
fact that the detector-free methods require quantification of
the matches during the database reconstruction process. On
the other hand, for night queries the lighting conditions are
darker, making the matching process more difficult. How-
ever, with the use of adaptive assignment, the geometric
consistency is increased, and the descriptive ability is im-
proved. The improvement in matching ability compensates
for the loss of quantification during the mapping process,
resulting in higher performance indicators.

4.4. Ablation Study

Sub Modules Pose Estimation AUC Precision

CFI AA Refine @5◦ ∆ @10◦ ∆ @20◦ ∆ @1e-4 ∆

36.22 - 49.70 - 61.86 - 77.61 -
✓ 37.13 +2.5% 51.17 +3.0% 63.56 +2.7% 79.13 +2.0%
✓ ✓ 38.23 +5.5% 52.16 +4.9% 64.22 +3.8% 78.24 +0.8%

✓ 39.98 +10.4% 54.25 +9.2% 66.52 +7.5% 84.20 +8.5%
✓ ✓ 40.06 +10.6% 54.39 +9.4% 66.73 +7.9% 84.39 +8.7%
✓ ✓ ✓ 42.54 +17.4% 57.18 +15.1% 69.40 +12.2% 84.99 +9.5%

Table 4. Ablation of AdaMatcher. AdaMatcher recovers more
accurate relative pose compared to baseline method LoFTR and
all parts are useful modules that bring noticeable performance gain
for AdaMatcher.

To fully understand different modules in AdaMatcher
and evaluate different design choices, we repeat outdoor ex-
periments on MegaDepth with scale ranges in [1,+∞), as
shown in Tab.4. The first row is the result of our baseline
method LoFTR [29], ’CFI’ represents the LoFTR module
(four sets of self-cross attention layers) is replaced by our

Co-visible Feature Interaction (Section 3.1), ’AA’ denotes
replacing LoFTR’s coarse-level matching with our adap-
tive assignment (Section 3.2), and ’Refine’ denotes replac-
ing LoFTR’s fine-level matching with our sub-pixel refine-
ment module (Section 3.3). We also report match precision
in normalized camera coordinates, with epipolar distance
threshold of 1e−4 [8, 9, 28]. By using CFI module, we can
get more accurate matches. When the adaptive assignment
is allowed in patch-level matching, the accuracy of relative
pose estimation and the precision of matching are greatly
improved, which means that adaptive assignment plays a vi-
tal role here. And the performance can be further enhanced
by adding sub-pixel refinement module.

4.5. Runtime Evaluation

To test the timing of inference, we repeated the outdoor
experiments on the Megadepth test set with 4000 image
pairs, limiting the maximum number of matches to 1024,
and the input images are resized to their longer dimensions
equal to 640. As shown in Tab.5, since Adamatcher can get
more high-quality matches, its inference speed is slightly
slower than LoFTR and SP+SG, but the overall execution
time (matching + RANSAC) is reduced due to the improve-
ment of inlier ratio and the matching accuracy.

Runtime Adamatcher-LoFTR LoFTR PDCNet SP+SG
(ms/pair) CFI AA Refine All

Matching 23.1 17.3 71.6 157.0 104.9 577.4 86.2
+RANSAC - - - 321.4 324.0 776.9 347.1

Table 5. Inference time.

5. Conclusions
In this paper, we find the conventional mutual near-

est neighbour standard should bottleneck final performance
during patch-level or pixel-level matching. The proposed
AdaMatcher allows for adaptive assignment during patch-
level matching, which overcomes the ambiguous underly-
ing ground-truth label assignments, and enable estimation
of the scale ratio between given image pair. We observe
a noticeable performance boost, especially when the scale
or viewpoint between image pairs varies. We couple co-
visible feature decoding and feature interaction, enabling an
additional module to be used later to obtain co-visible area.
Particularly, by plugging a dedicated sub-pixel refinement
module, we can effectively achieve scale alignment and ac-
curate sub-pixel position regression. We have conducted ex-
tensive experiments to study the effect of our findings and
demonstrated the superiority of our proposed AdaMatcher.
We believe that AdaMatcher will bring new insights to the
feature matching community.
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