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Abstract

Active domain adaptation (ADA) aims to improve the
model adaptation performance by incorporating active
learning (AL) techniques to label a maximally-informative
subset of target samples. Conventional AL methods do not
consider the existence of domain shift, and hence, fail to
identify the truly valuable samples in the context of domain
adaptation. To accommodate active learning and domain
adaption, the two naturally different tasks, in a collabo-
rative framework, we advocate that a customized learn-
ing strategy for the target data is the key to the success
of ADA solutions. We present Divide-and-Adapt (DiaNA),
a new ADA framework that partitions the target instances
into four categories with stratified transferable properties.
With a novel data subdivision protocol based on uncertainty
and domainness, DiaNA can accurately recognize the most
gainful samples. While sending the informative instances
for annotation, DiaNA employs tailored learning strate-
gies for the remaining categories. Furthermore, we pro-
pose an informativeness score that unifies the data parti-
tioning criteria. This enables the use of a Gaussian mix-
ture model (GMM) to automatically sample unlabeled data
into the proposed four categories. Thanks to the “divide-
and-adapt” spirit, DiaNA can handle data with large vari-
ations of domain gap. In addition, we show that DiaNA can
generalize to different domain adaptation settings, such as
unsupervised domain adaptation (UDA), semi-supervised
domain adaptation (SSDA), source-free domain adaptation
(SFDA), etc.

1. Introduction
Domain adaptation (DA) approaches strive to general-

ize model trained on a labeled source domain to a target
domain with rare annotation [5, 13, 16, 24] by coping with

†Corresponding author is Guanbin Li.

TV

Source Target

Backpack

Fan

Bike

Centroids (1) Confident
Consistent

Transferable
centroids

(2) Uncertain
Consistent

Transferable
margins

(3) Uncertain
Inconsistent

Need
Annotation

(4) Confident
Inconsistent

Pan

Challenging
SamplesFor source model: 

Figure 1. The illustration of our proposed Divide-and-Adapt
mechanism to divide target samples into different data subsets for
customized learning.

the domain disparity. Nevertheless, DA methods are signifi-
cantly outperformed by their supervised counterparts due to
the scarceness of annotation as demonstrated in [4, 14, 27].
In practice, it is cost-effective to get a moderate amount
of target samples labeled to boost the performance of do-
main adaptation. Active learning (AL) approaches seek
to select samples with uncertainty [9, 12, 29, 30] and di-
versity [19, 25] to best benefit the model, which properly
matches the demand. However, previous AL methods as-
sume that both the labeled and unlabeled data follow the
same distribution, such a strategy may become ineffective
to the DA scenarios where the target data suffer from do-
main shift. The recently proposed active domain adaptation
(ADA) [4, 22, 31] aims to resolve this issue by actively se-
lecting the maximally-informative instances such that the
performance of the transferred model can be best boosted
with a limited annotation budget.

The key to the success of ADA is to strike a good balance
between the highly coupled yet inherently different tasks:
active learning and domain adaptation. The real-world tar-
get data typically exhibit either of the two characteristics:
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source-like or target-specific. While the former has simi-
lar feature distribution with the source data, the latter tends
to be the unique part of target domain and deviates greatly
from the source distribution [4, 26, 38]. On one hand, to
achieve domain adaptation, applying the same adaptation
strategy to all target data equally cannot generalize well
to scenarios with varying degrees of domain shift. This is
particularly true when the gap between the source-like and
target-specific data is unknown. On the other hand, in active
learning tasks, the samples with a learning difficulty will be
more likely to be selected for labeling. Nonetheless, with
large domain gap, incorporating such difficult samples in
the adaptation task would hamper the learning of the adapta-
tion model, making the training highly unstable. However,
despite the impressive progress that has been made, none of
the existing works has fully addressed the above issues.

In this work, we propose Divide-And-Adapt (DiaNA),
a novel ADA framework that can scale to large variations
of domain gaps while achieving cost-effective data label-
ing with a significant performance boost for domain adapta-
tion. Our key observation is that customized learning strate-
gies are vital for target data with different characteristics.
In particular, DiaNA divides the target data into four sub-
sets with different levels of transferable properties (see Fig-
ure 1), each of which is handled with a customized learning
strategy. Unlike traditional AL methods that would sim-
ply label the most uncertain data [29, 30, 37], we propose
to withhold the most challenging samples (Figure 1 cate-
gory (4)) for training the domain adaption models. Instead,
the selected samples for active annotation would maintain a
proper stimulus for the source model, providing informative
domain knowledge without jeopardizing the training stabil-
ity. The subdivision of target data is dynamically updated
as the domain disparity is gradually mitigated with more la-
beled data. Hence, the previous challenging samples could
be classified as transferable in the later stage and exploited
in the network training.

We introduce a novel protocol for subdividing the target
samples for customized learning. In addition to the uncer-
tainty of model prediction, we advocate that the consistency
with the learned prior distribution, i.e. the domainness, is
another key criterion for active domain adaptation [4, 26].
To this end, we divide the target data into four categories as
shown in Figure 1 according to the domainness and uncer-
tainty of the instances. We further propose that the samples
with 1) being uncertain to the model and 2) having incon-
sistent prediction with the label of its closest category pro-
totype in the learned feature space (i.e. high domainness)
are the most “profitable” instances for bringing informative
knowledge of target domain if annotated. Thereby, we iden-
tify the uncertain inconsistent samples for labeling while
applying tailored learning strategies for the remaining cate-
gories to boost the selectivity of the sampling.

To avoid heuristic thresholding for data subdivision, we
propose an automatic data sampling mechanism based on
Gaussian mixture model (GMM). In particular, we propose
an informativeness function that incorporates the domain-
ness and uncertainty in a unified scoring system. The com-
puted informativeness score of the labeled data is used to
train a four-component GMM model, which is then applied
to sample the unlabeled target data into four categories.

We evaluate DiaNA over a large variety of domain
shift scenarios on DomainNet [21], Office-Home [28] and
CIFAR-10 [11]. Furthermore, the proposed sampling strat-
egy of DiaNA can be generalized to various domain adap-
tion problems with different supervision settings, including
unsupervised domain adaptation (UDA), semi-supervised
domain adaptation (SSDA), and source-free domain adap-
tation (SFDA).

We summarize our contributions as follows:
• A general “divide-and-adapt” framework, coded Di-

aNA, for active domain adaptation that can handle di-
versified degrees of domain gaps while being able to
generalize to different domain adaptation problems, in-
cluding UDA, SSDA, and SFDA.

• A new target data partition strategy based on domain-
ness and uncertainty that enables stratified learning to
achieve more stable training, superior adaptation per-
formance, and better generality.

• A novel informativeness scoring system and the cor-
responding sampling paradigm based on GMM model
for automatic data partitioning.

• New state-of-the-art performance over the mainstream
public datasets in the task of active domain adaptation.

2. Related Work
Domain adaptation (DA). Most of the prior methods in-
volving domain adaptation follow the unsupervised domain
adaptation (UDA) paradigm that only unlabeled data is ac-
cessible in the target domain. Early UDA approaches [16,
18, 32] utilized maximum mean discrepancy (MMD) to
minimize the discrepancy of features from different do-
mains to address the domain shift, while recent adversar-
ial learning based methods [5, 17] have become popular so-
lutions for UDA. Despite effectiveness, UDA is still sig-
nificantly outperformed by its supervised variant as indi-
cated in [4, 14, 27]. Semi-supervised domain adaptation
(SSDA) [13, 24, 35] allows a few target instances to be la-
beled and generally achieves improved performance. How-
ever, SSDA assumes that the labeled instances are passively
provided in advance, depriving the choice of informative
samples beneficial to the model. In this work, we propose
an active domain adaption method to select the most infor-
mative samples, which can be incorporated into other DA
methods to further boost their performance.
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Figure 2. We propose a general “divide-and-adapt” framework, named DiaNA, for active domain adaptation. (a) A new target data
partition strategy is presented to divide target data into four categories via building an informativeness scoring function that incorporates
both domainness and uncertainty metrics. Besides, an automatic data partitioning function based on a learned four-component GMM
model is applied to adaptively separate four sample categories from unlabeled target data. (b) To achieve customized learning, different
auxiliary techniques are integrated into model fine-tuning w.r.t the four categories of unlabeled target data.

Active Learning (AL). Active learning is proposed to se-
lect a maximally-informative subset of unlabeled data for
annotation via a query function, in an effort to best im-
prove the model performance with a limited annotation bud-
get. There exist several efforts to tackle the challenges
involving active learning. For example, the uncertainty-
based AL methods mainly focus on designing query func-
tions based on prediction confidence [30], entropy [9, 29],
or margin [10, 23] of the posterior probabilities. On the
other hand, the diversity-based approaches [6, 19, 25] con-
centrate on selecting samples that can well represent the
entire dataset. Meanwhile, expected model change-based
methods [3, 15] aim to query the instances that would lead
to a significant change to the current model. Recently pro-
posed active learning approaches attain better performance
by utilizing hybrid strategies which taking multiple metrics
into consideration [1, 20]. Notwithstanding, the efficacy of
previous AL resources may falter in DA scenarios as their
selection strategy fails to meticulously consider the impli-
cations of the domain gap.

Active Domain Adaptation (ADA). Early ADA re-
searches [4, 26] propose to measure the uncertainty and do-
mainness of each target instance via a domain discriminator
with adversarial training. CLUE [22] presents an entropy-
weighted clustering algorithm to query uncertain and di-
verse samples in the target domain. Recently, SDM [33]
is proposed to optimize a margin loss function for explor-
ing target instances similar to potential hard samples in the
source domain. Nevertheless, the majority of existing ADA
methods deliberately design hand-crafted query functions
to evaluate sample’s annotation value and apply the same
adaptation strategy to all target data equally [4,26,31]. The
rigid criteria make them easily overfit to certain domain
adaption scenarios, which limits the generalization of the

method. In contrast, we propose to integrate uncertainty
and domainness metrics within a unified scoring function
to select informative samples. Moreover, we apply tailored
learning strategies for target data with different characteris-
tics, constructing an effective framework capable of gener-
alizing across large variations of domain shifts.

3. Divide-and-Adapt Framework

Problem formulation. Active domain adaptation aims at
seeking an optimal model for a target domain when given
labeled source data S = {(xs, ys)} as well as unlabeled
target data U = {xu}, assisted by the iteratively queried
labeled data T = {(xt, yt)} of the target domain. Here,
S , U , and T share the same label space over C categories.
Initially, T is an empty set. The model is iteratively trained
using S , T , and U for R active learning loops until a given
annotation budget B is reached. In each active learning
loop, b = B/R samples from U would be selected, labeled
by human experts, and then moved into T . The proposed
Divide-and-Adapt framework consists of a feature extractor
and a classifier. Our goal is to design a query function to
identify informative samples to annotate and utilize limited
amount of labeled samples to best enhance the classification
performance for the target domain.
Overview. In this paper, we propose Divide-And-Adapt,
coded DiaNA, to tackle the problem of active domain adap-
tation. In detail, we first propose to design an informa-
tiveness function for subdividing the target samples into
four categories, one of which is the informative target sam-
ples used for actively annotating. Such a function is a
unified scoring system that incorporates the domainness
and the uncertainty. To avoid heuristic thresholding for
data subdivision, we propose an automatic data sampling
mechanism to divide the unlabeled target data into four
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Figure 3. (a) Source-like target samples are more likely to be close
to the source centroid in the feature space with respect to its pre-
dicted category. (b) Target-specific target samples are prone to be
inconsistent between model predictions and similarity-based la-
bels.

sample categories. This is achieved by learning a four-
component Gaussian mixture model using semi-supervised
Expectation-Maximization algorithm. Finally, we design
tailored learning strategies for different categories of target
samples during model fine-tuning, thus further improving
the model performance. The overview of the proposed al-
gorithm has been summarized in Figure 2.

3.1. Informativeness Scoring Mechanism

Following previous ADA works [4, 26, 31], we aim to
search for the target instances with high domainness and
uncertainty. To achieve this goal, we propose to first esti-
mate category-wise centroids based on the labeled samples,
and then define a similarity-based label for each unlabeled
target sample by computing its top-k feature similarity with
the categorical centroids. Finally, we integrate both the do-
mainness and the uncertainty metrics into an informative-
ness function, which is formulated as the consistency be-
tween model prediction and similarity-based label.

Categorical centroids. We propose to average the fea-
tures of labeled samples to estimate the category-specific
data distribution, i.e., category prototype. Here, we formu-
late the centroid with respect to the c-th category as follows,

Ac =

∑
(x,y)∈S 1{y = c} ·G(x)∑

(x,y)∈S 1{y = c} , (1)

where 1{·} is an indicator function, and G(x) is a feature
extractor that outputs the sample feature of x. Note that,
as the active learning loops proceed, labeled target samples
would be incorporated into the calculation of categorical
centroids to mitigate the impact of distribution change.

Similarity-based data label. As introduced in the
works [7, 13], samples share more top-k indices in their re-
spective lists of rank-ordered feature elements would have a
higher probability of being the same category. To obtain the

similarity-based label for each target instance, we first mea-
sure pairwise similarity of the indices of the sorted feature
elements based on the magnitude. Then, we can formulate
a similarity-based label for a sample x from U as follows,

ÿ(x) = argmax
1≤c≤C

IoU(topk(G(x)), topk(Ac)), (2)

where topk(·) computes the top-k feature element indices
ranked according to their magnitudes. In addition, IoU(·, ·)
denotes an Intersection-over-Union function, which returns
the extent of overlap of the two respective index lists.

We set the value of k to be significantly smaller than the
full dimension of the feature vector. In this way, the func-
tion topk(·) only extracts the principle components of the
feature of sample. Therefore, the IoU function in Eq. 2 is
equivalent to measuring pairwise image sample similarity
under a low-resolution condition. In ADA tasks, the train-
ing of model is inevitably dominated by the source domain
especially in the early stage [33]. Therefore, source-like
target samples that are similar to the source domain would
naturally have more accurate representation than the target-
specific ones that are distinct from the source. Under the
low-resolution condition, i.e., k set to be small, source-
like samples tend to have the same similarity-based label as
the model predicted class thanks to their reliable and dis-
criminative features extracted by the model. In contrast,
target-specific samples are prone to produce inconsistent
results since they are typically underfitted by the current
model as shown in Figure 3. Based on the analysis above,
we utilize the consistency of the model predicted class and
similarity-based label to evaluate the domainness of each
target sample. Detailed theoretical and experimental sup-
ports are demonstrated in our supplementary.

Informativeness function. To explore the most informa-
tive target samples, we integrate the domainness and uncer-
tainty into a unified informativeness function (InfoF). The
informativeness score for a sample x from unlabeled target
domain can be formulated as follows,

�u(x) = −
C∑

c=1

1{c = ÿ(x)} · logPc(x), (3)

where P (x) denotes the probabilistic prediction of a sample
x from the network model and Pc(x) is the c-th element of
the vector P (x). According to Eq. 3, we can divide unla-
beled target samples into two subsets depending on whether
the model predicted class and the similarity-based label are
identical: consistent and inconsistent subsets, while both
sets have confident samples and uncertain samples depend-
ing on whether the predicted probability is greater than
a given confidence threshold. We name these four cate-
gories of unlabeled target data as confident-consistent (CC),
uncertain-consistent (UC), uncertain-inconsistent (UI) and
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Algorithm 1: The training procedure of four-
component Gaussian Mixture Model (GMM) using
semi-supervised Expectation-Maximization

Input: DL; DU ; α
Output: Optimal GMM parametersW

1 InitializeW={(πk, μk, σk)|1 ≤ k ≤ K} using DL

via Bayes estimation.
2 whileW is not converged do
3 {(�ig, pig)}|DL|

i=1 ← DL

4 {(�ju, )}|DU |
j=1 ← DU

// E step:

5 γgk(�
i
g) = 1{pig = k},

6 γuk(�
j
u) =

πkN (�ju;μk,σk)
∑K

k′=1
πk′N (�ju;μk′ ,σk′ )

,

// M step:

7 πk =
α
∑

i γgk(�
i
g)+(1−α)

∑
j γuk(�

j
u)

α|DL|+(1−α)|DU | ;

8 μk =
α
∑

i γgk(�
i
g)·�ig+(1−α)

∑
j γj

uk·�
j
u

α
∑

i γgk(�ig)+(1−α)
∑

j γuk(�
j
u)

;

9 σk =
α
∑

i γgk(�
i
g)·(�ig−μk)

2+(1−α)
∑

j γuk·(�ju)(�ju−μk)
2

α
∑

i γgk(�ig)+(1−α)
∑

j γuk(�
j
u)

;

confident-inconsistent (CI), respectively. In this way, sam-
ples that are both uncertain to the model and contain target-
specific knowledge can be extracted based on the InfoF
score. In next section, we devise a strategy for informa-
tive sampling to adapatively distinguish those subsets from
unlabeled target samples.

3.2. Informative Sampling Function

During training, the varying scale of InfoF scores ob-
tained above would hinder accurate data categorization us-
ing manual data division, leading to a biased sampling strat-
egy and degraded performance. Therefore, our work here
formulates an Informative Sampling Function to achieve the
goal of adaptively selecting informative target samples. In
general, it can be observed that the four categories of unla-
beled target data as stated above are significantly separable
in the distributions of the InfoF scores, making it possible
to learn mixture models to separate four sample partitioning
from unlabeled target data. Thereafter, by learning the dis-
tribution of InfoF scores using a four-component Gaussian
mixture model (GMM), the target data can be adaptively
mapped to the probability distribution of four categories and
then be separated, thereby avoiding sampling bias that may
be created by manual division.

In specific, we first take inspiration from [34] that la-
beled samples can be used to construct supervision infor-
mation, therefore building a more trustworthy GMM model
with K Gaussian components (namely K = 4 in this
work) via a semi-supervised Expectation-Maximization al-

gorithm. To this end, we then calculate the InfoF score for
a labeled sample with (x, y) from S or T as follows,

�g(x, y) = −
C∑

c=1

1{c = y} · logPc(x). (4)

The similarity-based label is determined using categorical
centroids of the labeled data, resulting in the totally identi-
cal similarity-based label and model prediction for labeled
samples. In order to obtain reliable supervision and build a
better GMM model, we have replaced the similarity-based
label with the ground-truth class label here.

Afterwards, to obtain the supervision information for
training GMM, we here define a piecewise function to ob-
tain the observation labels that assign all labeled samples
across domains to the corresponding Gaussian components.
Thus, the observation label of a candidate instance x can be
computed as,

q(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1, maxP (x) ≥ τ and y = argmaxP (x),
2, maxP (x) < τ and y = argmaxP (x),
3, maxP (x) < τ and y �= argmaxP (x),
4, maxP (x) ≥ τ and y �= argmaxP (x),

(5)
where the numbers, i.e., k = 1, · · · , 4, indicate the indices
of different Gaussian components corresponding to the CC,
UC, UI and CI sample subsets, respectively. As well, τ is
a confidence threshold to classify labeled samples into the
confident subset and the uncertain subset. Furthermore, the
comparison between the ground-truth and predicted class
labels is used to divide them into the consistent subset and
the inconsistent subset of labeled training samples.

Once we obtain {�g(x, y)|(x, y) ∈ S ∪ T }, {�u(x)|x ∈
U}, and q(x, y), we incorporate them into building training
instances for learning the GMM model as follows,

DL ← {(�g(x, y), q(x, y))|(x, y) ∈ S ∪ T }, (6)

DU ← {(�u(x), )|x ∈ U}. (7)

For convenience, we denote the GMM model by W =
{(πk, μk, σk)|1 ≤ k ≤ K}. Afterwards, given a training
instance �x from DL or DU , the output of the probability
density functions of the GMM model regarding �x can be
computed as

p(�x) =
K∑

k=1

πkN (�x;μk, σk), (8)

where πk represents the weight of the k-th Gaussian com-
ponent subject to

∑K
k=1 πk = 1 and 0 ≤ πk ≤ 1 for

k = 1, · · · ,K, while μk and σk are vectors denoting the
mean and variance of such a component. Here,N (·;μk, σk)
is used to model the Gaussian distribution of the k-th com-
ponent. Note that a given coefficient α = |DL|/|DU | is
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used for the weighted integration of the labeled and unla-
beled training instances. Thus, we can summarize the train-
ing procedure of the GMM model using a semi-supervised
EM algorithm in Algorithm 1 according to [34].

After obtaining the trained GMM parameters W , the
probability of a sample x from U being classified into the
k-th component can be computed as follows,

Pr(z = k|x,W) =
πkN (�u(x);μk, σk)∑K

k′=1 πk′N (�u(x);μk′ , σk′)
, (9)

where z is a discrete variable to infer which component the
sample x belongs to.

3.3. Candidate Selection and Training Objectives

After acquiring the informativeness sampling function,
it is utilized for carrying out data partitioning. For ADA,
the main focus should be on annotating samples that are un-
certain to the model and can effectively represent the target
dataset, which is termed as uncertain-inconsistent samples
within our subdivision framework. Therefore, during each
sampling step, we first rank the unlabeled target samples
in descending order according to the scores predicted by
Pr(z = 3|·,W), and then the top b examples are selected
to annotate and moved into labeled target data. Following
previous ADA works, we apply the standard cross-entropy
loss to the labeled data as follows:

Lsup = E
(x,y)∼S∪T

[
−

C∑
c=1

1{c = y} · logPc(x)
]
. (10)

To boost the selectivity of the sampling strategy, we fur-
ther design tailored training techniques for the other data
subsets with varied transferable properties. We perform
data partitioning on the remaining unlabeled target samples,
i.e., U ← U\T , according to the posterior probabilities re-
garding the rest of Gaussian components.

Ûk = {x| argmaxPr(x) = k, ∀(x, ) ∈ U}, for k = 1, 2, 4,
(11)

where Û1, Û2 and Û4 refer to ÛCC, ÛUC, ÛCI. Here, Pr(x)
is the concatenated probability vector corresponding to dif-
ferent components, i.e., Pr(x) = [Pr(z = 1|x,W), Pr(z =
2|x,W), Pr(z = 3|x,W), Pr(z = 4|x,W)] w.r.t the sample
x.

As shown in Figure 1(4), the source-oriented model
could produce confident but unreliable predictions for some
target samples having large domain gap with the source.
Samples from ÛCI have extremely controversial results be-
tween model prediction and similarity-based label, which
are most likely to be some excessively challenging in-
stances. Therefore, we withhold them in the current stage
to avoid jeopardizing the training stability.

The samples in ÛCC have confident and reliable predic-
tions, which tend to be some class centroid in the target fea-
ture space. Therefore, we apply consistency regularization
to them to enforce the prediction consistency under differ-
ent perturbations, which can be formulated as follows:

Lcon = E
(x,)∼ÛCC

[
−

C∑
c=1

1{c = ÿ(x)} · logPc(Aug(x))
]
,

(12)
where Aug(·) is a function to create perturbations for the
sample x using classic data augmentation techniques such
as AutoAugment [2].

For data group ÛUC whose prediction tend to be reliable
but uncertain, we directly minimize the entropy of the pre-
dictions to using the following conditional entropy loss:

Lent = E
(x,)∼ÛUC

[
−

C∑
c=1

Pc(x) logPc(x)
]
. (13)

In summary, the overall loss functions used to further
optimize the model can be formulated as follows,

L = Lsup + λcLcon + λeLent (14)

where λc and λe are the weights to trade off different loss
terms during the training process. As shown in Figure 2,
Lsup can calibrate the potentially underfitting of uncertain
and target-specific samples. Lcon can guide the model to
learn global cross-domain clustering while Lent serves to
minimize the distance of data from the same class. As
demonstrated in Sec. 4.3, these training objectives are com-
plementary to each other to best adapt the model to the tar-
get domain.

3.4. Compatibility with UDA/SSDA/SFDA

The proposed sampling strategy of DiaNA requires no
additional network modules like a domain discriminator
or multiple classifiers [4, 26], making it easy to be inte-
grated into existing DA frameworks, such as unsupervised
domain adaptation (UDA), semi-supervised domain adap-
tation (SSDA), and source-free domain adaptation (SFDA);
see supplementary document for the implementation de-
tails. It should be noted that we further design a variant
of DiaNA for the SFDA settings, due to the unavailability
of source data. As evidenced by Sec. 4.3, when integrated
into diverse DA techniques, the proposed sampling strategy
can deliver more performance improvement than random
sample selection, thereby demonstrating its compatibility
in various DA settings. To the best of our knowledge, we
are the first to propose an active selection strategy that can
generalize to UDA, SSDA, and SFDA methods.

7656



Method R → C C → S S → P C → Q R → S R → P AVG
1k 2k 5k 1k 2k 5k 1k 2k 5k 1k 2k 5k 1k 2k 5k 1k 2k 5k 1k 2k 5k

Random 50.9 55.2 61.5 42.6 44.8 49.4 41.0 44.4 50.1 26.3 33.2 43.0 38.2 40.7 46.9 46.5 48.8 53.7 40.9 44.5 50.8
CONF 48.6 54.2 61.3 41.9 43.6 48.0 41.6 44.2 48.5 25.5 32.7 42.8 36.9 39.4 45.3 47.1 47.8 51.2 40.3 43.6 49.5
Entropy [29] 48.0 54.2 61.9 42.7 45.2 48.9 41.1 43.7 48.7 24.6 31.0 42.1 37.0 40.4 45.7 46.5 48.4 52.2 40.0 43.8 49.9
Coreset [25] 49.1 52.5 59.8 40.6 42.2 45.8 39.1 41.5 44.8 24.7 30.3 39.7 36.7 38.3 43.3 45.1 46.8 50.3 39.2 41.9 47.3
BADGE [1] 51.7 55.4 62.5 43.6 45.7 50.1 42.3 45.5 49.7 26.0 34.3 43.9 37.8 41.5 47.8 48.0 50.1 54.2 41.6 45.4 51.4
Alpha [20] 52.0 56.3 62.8 44.3 46.8 50.5 41.9 44.9 49.7 27.2 34.6 44.4 38.6 41.3 47.9 47.6 50.4 53.2 41.9 45.7 51.4

AADA [26] 50.8 56.3 64.7 42.8 45.7 51.0 41.8 45.6 50.8 25.2 31.3 40.8 38.5 41.7 49.5 46.5 49.7 55.1 40.9 45.1 52.0
SDM [33] 51.0 55.4 62.3 43.1 45.2 49.6 41.9 44.9 49.3 26.9 35.0 43.8 37.3 40.2 46.5 47.4 49.7 53.2 41.3 45.1 50.8
EADA [31] 51.5 56.1 63.9 44.2 46.3 51.7 43.8 46.1 50.3 27.5 34.8 42.9 39.0 41.5 46.4 48.6 50.4 54.1 42.4 45.9 51.2
CLUE [22] 54.1 59.4 66.0 45.3 48.7 53.7 44.0 48.0 53.2 28.8 35.5 43.2 40.4 44.4 51.1 50.0 52.7 56.4 43.8 48.1 53.9

DiaNA(Ours) 55.6 60.4 68.7 47.0 50.8 56.6 44.2 49.0 55.4 30.2 39.5 52.1 42.4 47.9 55.0 50.5 53.6 59.1 45.0 50.2 57.8

Table 1. Comparison results (Accuracy: %) on DomainNet with 1k, 2k and 5k labeling budgets. “Random” and “CONF” correspond to
the classic AL approaches “Random Sampling” and “Least-Confidence Sampling”.

Method Office-Home
A → C A → P A → R C → A C → P C → R P → A P → C P → R R → A R → C R → P AVG

Random 52.5 74.3 77.4 56.3 69.7 68.9 57.7 50.9 75.8 70.0 54.6 81.3 65.8
Entropy [29] 51.3 72.7 76.4 61.7 74.1 72.9 57.6 51.1 76.6 69.8 57.1 82.3 67.0
Coreset [25] 52.8 73.3 75.5 59.8 73.4 70.8 58.1 52.6 75.8 69.3 56.5 82.5 66.7
BADGE [1] 57.2 75.2 76.9 61.5 77.2 71.9 60.4 53.6 78.0 70.8 61.1 84.3 69.0
Alpha [20] 57.0 79.4 78.2 61.6 78.0 74.1 58.9 54.2 78.1 71.7 61.1 84.6 69.7

AADA [26] 56.6 78.1 79.0 58.5 73.7 71.0 60.1 53.1 77.0 70.6 57.0 84.5 68.3
CLUE [22] 58.0 79.1 77.0 61.3 78.0 73.1 60.4 55.9 77.9 70.9 60.3 84.1 69.7
TQS [4] 58.6 81.1 81.5 61.1 76.1 73.3 61.2 54.7 79.7 73.4 58.9 86.1 70.5
SDM [33] 61.2 82.2 82.7 66.1 77.9 76.1 66.1 58.4 81.0 76.0 62.5 87.0 73.1
EADA [31] 63.6 84.4 83.5 70.7 83.7 80.5 73.0 63.5 85.2 78.4 65.4 88.6 76.7

DiaNA(Ours) 64.5 86.0 84.9 72.3 84.6 82.5 73.3 63.7 85.6 78.5 67.2 89.5 77.7

Table 2. Comparison results (Accuracy: %) on Office-Home with 5% labeling budget.

4. Experiments

4.1. Dataset

We validate the effectiveness of the proposed approach
DiaNA on three standard benchmark datasets: Domain-
Net [21], Office-Home [28] and CIFAR-10 [11]. On Do-
mainNet, we select five domains namley Real (R), Clipart
(C), Sketch (S), Painting (P), and Qucikdraw (Q), while we
hire these domains to construct 6 adaptation scenarios. As
in [4, 31, 33], we report 12 different adaptation scenarios
on Office-Home, constructed from four domains: Real (R),
Clipart (C), Art (A), and Product (P). To further evaluate the
generalization of the proposed sample selection strategy, we
additionally report the classification results on CIFAR-10
with a standard active learning setting.

4.2. Implementation

Here, we mainly focus on the detailed descriptions of the
settings involving active learning on DomainNet, Office-
Home, and CIFAR-10, while more implementation details
can be found in the supplementary material. In each adap-
tation scenario, we report the average accuracy over 3 trials.
DomainNet. Similar to CLUE [22], we consider ResNet-
34 [8] as the network backbone, where such network model
is pre-trained on all labeled source samples over 50 training
epochs through standard supervision. In all adaptation
cases, we set B = 5000 and R = 10.
Office-Home. To be fair, we follow the experimental
settings of existing ADA works [4, 31, 33] to conduct

performance comparison. In particular, we also use
ResNet-50 [8] as the backbone model, while we choose a
5% proportion of unlabeled target data to set the labeling
budget B, and R is set to 5.
CIFAR-10. On this dataset, we select ResNet-34 [8] as the
backbone model. We randomly choose select 10% training
samples at random as the initially labeled data set, and
we then annotate 4% at each sampling step with a total
annotation budget 30%.

4.3. Main Results

Results on DomainNet and Office-Home. We summarize
the comparison with baselines in Table 1 and Table 2 on
both datasets respectively. Note that we consider varying la-
bel budgets, namely i.e., 1k, 2k, and 5k, on DomainNet. We
can see that DiaNA achieves the highest average accuracy in
all cases on both datasets for solving the ADA tasks. Espe-
cially in the most difficult adaptation scenarios, e.g., C→A
and R→C, on Office-Home, the proposed method can still
exceed all the other methods by more than 1.6% and 1.8%
respectively, demonstrating the effectiveness of DiaNA on
the commonly used DA benchmark datasets.
Results on CIFAR-10. We also extend the proposed
method to standard AL tasks on CIFAR-10, where the do-
main gap between labeled and unlabeled ones is minor. Fig-
ure 4(a) lists the comparisons of DiaNA against classic AL
strategies involving [1, 20, 25, 29]. It can be observed that
compared to classic AL algorithms, with fewer labeling
budgets, the effect of the proposed method is still notice-
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Figure 4. (a) Comparison results on CIFAR-10. (b) Combination with UDA/SSDA methods. (c) Combination with SFDA methods.

Method AL Lcon Lent GMM AVG

DiaNA UI � � � 77.7±0.2
DiaNA w/o AL R � � � 74.8±0.4
DiaNA w/o Lcon UI � � 76.9±0.3
DiaNA w/o Lent UI � � 75.8±0.3
DiaNA w/o GMM UI � � 74.0±0.2

DiaNA-UI UI � 72.1±0.4
DiaNA-UC UC � 68.3±0.6
DiaNA-CI CI � 66.4±0.8
DiaNA-CC CC � 63.0±0.3
Random (Baseline) R 65.8±0.5

Table 3. Ablation study results of DiaNA. The “AL” column indi-
cates which type of data subset should be selected to be annotated
during each sampling step. We evaluated the performance of all
adaptation scenarios on Office-Home by averaging their accuracy.

able, resulting from its significant performance improve-
ment. This also indicates that our sampling strategy can
be effectively applied to general active learning.
Combination with UDA/SSDA/SFDA methods. To val-
idate the compatibility of the proposed DiaNA with exist-
ing UDA, SSDA, and SFDA algorithms, we conduct the ex-
periments for UDA and SSDA in the adaptation C→S on
DomainNet, and for SFDA in C→A and R→C on Office-
Home. DANN [5], MME [24], and NRC [36] correspond
to the SOTA methods towards UDA, SSDA, and SFDA,
respectively. As shown in Figure 4(b) and Figure 4(c),
combining the selection strategy of DiaNA with other DA
methods, i.e., DANN+Ours, MME+Ours, and NRC+Ours,
significantly increases the performance of existing DA al-
gorithms that select labeled target samples via random
selection, namely DANN+Random, MME+Random and
NRC+Random. This suggests that, adaptively consider-
ing both the domainness and uncertainty, DiaNA is benefi-
cial for the selection of informative target sample searching,
while combined into diverse domain adaptation techniques.

4.4. Ablation study

Efficacy of the targeted training strategies. To illustrate
the effect of each component of the proposed DiaNA, we
conduct ablation study by removing the corresponding in-
dividual components. As displayed in Table 3, the pro-
posed method exceeds all of the model variants by a large
accuracy margin on average, demonstrating the effective-
ness of each component. By comparing our proposed en-
tire approach with DiaNA w/o GMM, manual data divi-
sion strategy might considerably cause performance degra-
dation, thereby in turn emphasizing the need for adaptive

data subdivision protocol. Furthermore, as demonstrated,
disrupting the correspondence between targeted data sub-
sets provides empirical evidence supporting the validity of
our proposed customized learning techniques; see supple-
mentary document for more details.
Efficacy of the sampling strategy. To provide insights
into how effectively the domainness-based metric and the
uncertainty-based metric work in the sampling step, we use
different data subsets to replace the UI subset as active sam-
ples for annotation. To eliminate the influence of Lcon and
Lent, we remove these two terms but only retain Lsup dur-
ing training. As shown in Table 3, both DiaNA-UC and
DiaNA-CI achieve better classification performance than
baseline selection, thereby showing the effect of the pro-
posed uncertainty metric and domainness metric. More-
over, active sampling on UI samples (DiaNA-UI) obtains
the best performance among all the variants, further illus-
trating the superiority of the integration of both metrics.

5. Conclusions
In this paper, we introduce a “divide-and-adapt” frame-

work, named DiaNA, to address the problem of active do-
main adaptation. Specifically, we first design an informa-
tiveness function that jointly captures sample’s uncertainty
and domainness. Moreover, we devise an automatic data
subdivision protocol to partition the target instances into
four categories with different characteristics. While select-
ing the most informative samples to annotate, we also de-
sign tailored learning strategies for the other target data sub-
sets with stratified transferable properties. Extensive exper-
imental results, as well as ablation studies, have confirmed
the superiority of the proposed approach.

Acknowledgments
This work was supported in part by the Guang-

dong Basic and Applied Basic Research Foundation
(NO. 2020B1515020048), in part by the National Nat-
ural Science Foundation of China (NO. 61976250), in
part by the Shenzhen Science and Technology Program
(NO. JCYJ20220530141211024) and in part by the Funda-
mental Research Funds for the Central Universities under
Grant 22lgqb25.

7658



References
[1] Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy,

John Langford, and Alekh Agarwal. Deep batch active learn-
ing by diverse, uncertain gradient lower bounds. In Interna-
tional Conference on Learning Representations, 2019.

[2] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc V Le. Autoaugment: Learning augmentation
strategies from data. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
113–123, 2019.

[3] Alexander Freytag, Erik Rodner, and Joachim Denzler. Se-
lecting influential examples: Active learning with expected
model output changes. In European conference on computer
vision, pages 562–577. Springer, 2014.

[4] Bo Fu, Zhangjie Cao, Jianmin Wang, and Mingsheng Long.
Transferable query selection for active domain adaptation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7272–7281, 2021.

[5] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-
cal Germain, Hugo Larochelle, François Laviolette, Mario
Marchand, and Victor Lempitsky. Domain-adversarial train-
ing of neural networks. The journal of machine learning
research, 17(1):2096–2030, 2016.

[6] Yuhong Guo. Active instance sampling via matrix parti-
tion. Advances in Neural Information Processing Systems,
23, 2010.

[7] Kai Han, Sylvestre-Alvise Rebuffi, Sebastien Ehrhardt, An-
drea Vedaldi, and Andrew Zisserman. Automatically discov-
ering and learning new visual categories with ranking statis-
tics. In International Conference on Learning Representa-
tions, 2020.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[9] Sheng-Jun Huang, Jia-Wei Zhao, and Zhao-Yang Liu. Cost-
effective training of deep cnns with active model adapta-
tion. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages
1580–1588, 2018.

[10] Ajay J Joshi, Fatih Porikli, and Nikolaos Papanikolopoulos.
Multi-class active learning for image classification. In 2009
ieee conference on computer vision and pattern recognition,
pages 2372–2379. IEEE, 2009.

[11] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

[12] David D Lewis and Jason Catlett. Heterogeneous uncertainty
sampling for supervised learning. In Machine learning pro-
ceedings 1994, pages 148–156. Elsevier, 1994.

[13] Jichang Li, Guanbin Li, Yemin Shi, and Yizhou Yu. Cross-
domain adaptive clustering for semi-supervised domain
adaptation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2505–
2514, 2021.

[14] Jian Liang, Dapeng Hu, and Jiashi Feng. Domain adaptation
with auxiliary target domain-oriented classifier. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 16632–16642, 2021.

[15] Zhuoming Liu, Hao Ding, Huaping Zhong, Weijia Li, Jifeng
Dai, and Conghui He. Influence selection for active learning.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 9274–9283, 2021.

[16] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jor-
dan. Learning transferable features with deep adaptation net-
works. In International conference on machine learning,
pages 97–105. PMLR, 2015.

[17] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and
Michael I Jordan. Conditional adversarial domain adapta-
tion. Advances in neural information processing systems,
31, 2018.

[18] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I
Jordan. Deep transfer learning with joint adaptation net-
works. In International conference on machine learning,
pages 2208–2217. PMLR, 2017.

[19] Hieu T Nguyen and Arnold Smeulders. Active learning us-
ing pre-clustering. In Proceedings of the twenty-first inter-
national conference on Machine learning, page 79, 2004.

[20] Amin Parvaneh, Ehsan Abbasnejad, Damien Teney, Gholam-
reza Reza Haffari, Anton van den Hengel, and Javen Qinfeng
Shi. Active learning by feature mixing. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12237–12246, 2022.

[21] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment matching for multi-source
domain adaptation. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 1406–1415,
2019.

[22] Viraj Prabhu, Arjun Chandrasekaran, Kate Saenko, and
Judy Hoffman. Active domain adaptation via clustering
uncertainty-weighted embeddings. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 8505–8514, 2021.

[23] Dan Roth and Kevin Small. Margin-based active learning
for structured output spaces. In European Conference on
Machine Learning, pages 413–424. Springer, 2006.

[24] Kuniaki Saito, Donghyun Kim, Stan Sclaroff, Trevor Dar-
rell, and Kate Saenko. Semi-supervised domain adaptation
via minimax entropy. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 8050–8058,
2019.

[25] Ozan Sener and Silvio Savarese. Active learning for convolu-
tional neural networks: A core-set approach. In International
Conference on Learning Representations, 2018.

[26] Jong-Chyi Su, Yi-Hsuan Tsai, Kihyuk Sohn, Buyu Liu,
Subhransu Maji, and Manmohan Chandraker. Active adver-
sarial domain adaptation. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision,
pages 739–748, 2020.

[27] Yi-Hsuan Tsai, Wei-Chih Hung, Samuel Schulter, Ki-
hyuk Sohn, Ming-Hsuan Yang, and Manmohan Chandraker.
Learning to adapt structured output space for semantic seg-
mentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7472–7481,
2018.

7659



[28] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty,
and Sethuraman Panchanathan. Deep hashing network for
unsupervised domain adaptation. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 5018–5027, 2017.

[29] Dan Wang and Yi Shang. A new active labeling method for
deep learning. In 2014 International joint conference on neu-
ral networks (IJCNN), pages 112–119. IEEE, 2014.

[30] Keze Wang, Dongyu Zhang, Ya Li, Ruimao Zhang, and
Liang Lin. Cost-effective active learning for deep image
classification. IEEE Transactions on Circuits and Systems
for Video Technology, 27(12):2591–2600, 2016.

[31] Binhui Xie, Longhui Yuan, Shuang Li, Chi Harold Liu, Xin-
jing Cheng, and Guoren Wang. Active learning for domain
adaptation: An energy-based approach. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 36,
pages 8708–8716, 2022.

[32] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised
deep embedding for clustering analysis. In International
conference on machine learning, pages 478–487. PMLR,
2016.

[33] Ming Xie, Yuxi Li, Yabiao Wang, Zekun Luo, Zhenye Gan,
Zhongyi Sun, Mingmin Chi, Chengjie Wang, and Pei Wang.
Learning distinctive margin toward active domain adapta-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 7993–8002,
2022.

[34] Heng-Chao Yan, Jun-Hong Zhou, and Chee Khiang Pang.
Gaussian mixture model using semisupervised learning for
probabilistic fault diagnosis under new data categories.
IEEE Transactions on Instrumentation and Measurement,
66(4):723–733, 2017.

[35] Zizheng Yan, Yushuang Wu, Guanbin Li, Yipeng Qin, Xi-
aoguang Han, and Shuguang Cui. Multi-level consistency
learning for semi-supervised domain adaptation. arXiv
preprint arXiv:2205.04066, 2022.

[36] Shiqi Yang, Joost van de Weijer, Luis Herranz, Shangling
Jui, et al. Exploiting the intrinsic neighborhood structure for
source-free domain adaptation. Advances in Neural Infor-
mation Processing Systems, 34:29393–29405, 2021.

[37] Donggeun Yoo and In So Kweon. Learning loss for ac-
tive learning. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 93–102,
2019.

[38] Ziyi Zhang, Weikai Chen, Hui Cheng, Zhen Li, Siyuan Li,
Liang Lin, and Guanbin Li. Divide and contrast: Source-free
domain adaptation via adaptive contrastive learning. arXiv
preprint arXiv:2211.06612, 2022.

7660


