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Abstract

Table structure recognition aims to extract the logical

and physical structure of unstructured table images into

a machine-readable format. The latest end-to-end image-

to-text approaches simultaneously predict the two struc-

tures by two decoders, where the prediction of the physi-

cal structure (the bounding boxes of the cells) is based on

the representation of the logical structure. However, the

previous methods struggle with imprecise bounding boxes

as the logical representation lacks local visual informa-

tion. To address this issue, we propose an end-to-end se-

quential modeling framework for table structure recogni-

tion called VAST. It contains a novel coordinate sequence

decoder triggered by the representation of the non-empty

cell from the logical structure decoder. In the coordinate se-

quence decoder, we model the bounding box coordinates as

a language sequence, where the left, top, right and bottom

coordinates are decoded sequentially to leverage the inter-

coordinate dependency. Furthermore, we propose an auxil-

iary visual-alignment loss to enforce the logical representa-

tion of the non-empty cells to contain more local visual de-

tails, which helps produce better cell bounding boxes. Ex-

tensive experiments demonstrate that our proposed method

can achieve state-of-the-art results in both logical and phys-

ical structure recognition. The ablation study also vali-

dates that the proposed coordinate sequence decoder and

the visual-alignment loss are the keys to the success of our

method.

1. Introduction

Tables are an essential medium for expressing structural

or semi-structural information. Table structure recognition,

including recognizing a table’s logical and physical struc-

ture, is crucial for understanding and further editing a vi-

*Equal contribution.

(a) TableFormer (Baseline) (b) VAST (Ours)

Figure 1. Visualization comparison of the bounding box predicted

by TableFormer and VAST. Our results are more accurate, which

is vital for downstream content extraction or table understanding

tasks. The image is cropped from the table with id 7285, which

comes from FinTabNet.

sual table. The logical structure represents the row-column

relation of cells and the spanning information of a cell. The

physical structure contains not only the logical structure but

also the bounding box or content of the cells, focusing on

the exact locations in the image.

Table recognition can be implemented by an end-to-end

encoder-decoder paradigm. Such methods excel at predict-

ing the logical structure but usually produce less accurate

physical structures, i.e., bounding boxes of cells or cell con-

tents. However, the bounding box accuracy is essential to

downstream tasks, such as text information extraction or ta-

ble QA. This work designs the sequential coordinate decod-

ing and enforces more visual information to produce more

accurate bounding boxes.

In the coordinate sequence decoder, the start embedding

of the non-empty cell is the representation from the HTML

sequence decoder. The representation usually contains a

more global context of the table and has fewer local visual

details. Because the local visual appearance is vital for pre-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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dicting accurate coordinates, we align the representation of

non-empty cells from the HTML sequence decoder with the

visual features from the CNN image encoder. In particular,

a visual-alignment loss is designed to maximize the cosine

similarity of the paired visual-HTML representation in the

image. In summary, our contributions are threefold.

• We propose a coordinate sequence decoder to signifi-

cantly improve the table’s physical structure accuracy

upon an end-to-end table recognition system.

• We introduce a visual-alignment loss between the

HTML decoder and coordinate sequence decoder. It

enforces the representation from the HTML decod-

ing module contains more detailed visual information,

which can produce better bounding boxes for the non-

empty cells.

• We develop an end-to-end sequential modeling frame-

work for table structure recognition, the comparison

experiments prove that our method can achieve state-

of-the-art performance and the ablation experiments

show the effectiveness of our method.

2. Related Work

The recent deep learning approaches have shown excel-

lent performance on table structure recognition tasks. These

methods can be divided into three categories: methods

based on splitting and merging, methods based on detection

and classification, and image-to-text generation methods.

Methods based on splitting and merging. These meth-

ods consist of two stages. The first stage detects rows and

columns, then splits the table into multiple basic text blocks

through the intersection of rows and columns; the second

stage merges text blocks to restore the structure.

Several works focus on splitting the rows and columns

better. For example, DeepDeSRT [34] and TableNet [26]

adjusted FCN from the semantic segmentation to segment

rows and columns. DeepTabStR [36] applied deformable

convolution to Faster R-CNN [33], FPN [17], and R-FCN

[4], which has a wider receptive field to capture the table

line this can split accurate table rows and columns. Khan et

al. [12] and Li et al. [15] used a bi-directional gated recur-

rent unit network to identify the pixel-level row and column

separators. Inspired by DETR, TSRFormer [18] formulated

table separation line prediction as a line regression problem

and they proposed a separator regression transformer to pre-

dict separation lines from table images directly.

Several merging methods have been developed to rec-

ognize tables containing cells that span rows or columns.

The SPLURGE method [40] proposed the idea of table

splitting and merging. They designed a merging model to

merge cells span multiple columns or rows. To achieve a

more accurate merged result, [45] fuse both visual and se-

mantic features to produce grid-level features. RobusTab-

Net [24] proposed a spatial CNN-based separation line pre-

diction module to split the table into a grid of cells, and a

Grid CNN-based cell merging module was applied to re-

cover the spanning cells. TRUST [9] introduced an end-

to-end transformer-based query-based splitting module and

vertex-based merging module. The splitting module is used

to extract the features of row/column separators, and the

row/column features are further fed into the vertex-based

merging module to predict the linking relations between ad-

jacent basic cells.

Methods based on detection and classification. The basic

idea of this method is first to detect the cells and then clas-

sify the row and column relationships between the cells. A

graph can be constructed based on the cell and connection

to obtain the table structure.

For the irregular layout table, a good cell detection result

could effectively improve the accuracy of table recognition,

[21, 27, 30, 46] were committed to improving the accuracy

of cell detection. Some other researchers aimed to classify

the cell relationship to construct table structure [3], [29],

[16], [43]. They utilized ground truth or OCR results to

get text blocks. Then they regarded text blocks as vertexes

to construct a graph and used the graph-based network to

classify the relationship between cells.

The most recent approaches put cell detection and cell

relation classification into one network. TableStructNet

[31] and FLAG-NET [20] both utilized Mask R-CNN [11]

network to obtain the region of cells and cell visual fea-

tures. They both utilized the DGCNN architecture in [28]

to model the interaction between geometrically neighbor-

ing detected cells. Hetero-TSR [19] proposed a novel Neu-

ral Collaborative Graph Machines (NCGM) that leverages

modality interaction to boost the multimodal representation

for complex scenarios. Lee et al. [13] formulated tables as

planar graphs, and they first obtained cell vertex confidence

maps and line fields. After that, they reconstruct the table

structure by solving a constrained optimization problem.

Methods based on image-to-text generation. These meth-

ods treat the structure of the table (HTML or latex, etc.) as a

sequence, and adopt the end-to-end image-to-text paradigm

to recognize the table structure.

Deng et al. [6] used the classic IM2MAKEUP frame-

work [5] to recognize the logical structure of the table,

where a CNN was designed to extract visual features, and

an LSTM with an attention mechanism was used to gener-

ate the latex code of the table. Zhong et al. [47] tried to

generate the logical structure and the cell content with an

encoder-dual-decoder (EDD) architecture. In the decoding

stage, they used two attention-based recurrent neural net-

works, one was responsible for decoding the table struc-

ture code, and the other was responsible for decoding the
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<table> <tr> <td>[]</td>

<td colspan=“2”>[]</td> </tr>

<tr> <td></td> <td>[]</td>

<td>[]</td> </tr> … </table>
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Figure 2. Visualization of table HTML markup and cells. Cell ❶

is a spanning cell that spans two columns, and cell ❸ is an empty

cell with no content. ‘[]’ refers to the content of the cell.

content. TableMaster [44] and TableFormer [25] leveraged

the transformer decoder to improve the decoder of EDD.

In addition, they used the regression decoder to predict the

bounding box instead of the content. Since the lack of

local visual information, the bounding boxes predicted by

these methods were less accurate. In this paper, we treat the

bounding box prediction as a coordinate sequence genera-

tion task, and cooperate with visual alignment loss to pro-

duce more accurate bounding boxes.

3. Task Definition

For a given table image, our goal is to predict its logi-

cal structure and physical structure end-to-end. Specifically,

the logical structure refers to the HTML of the table, and the

physical structure refers to the bounding box coordinates of

all non-empty cells. We use S = [s1, . . . , sT ] to indicate

the tokenized HTML sequence, where T is the length of

sequences and s is a token of predefined HTML tags. We

define B = {b1, . . . ,bN} is the set of sequences of all

non-empty cells, where b = (xleft, ytop, xright, ybottom), is a

sequence of non-empty cell bounding box coordinates and

each coordinate is discretized into an integer. An example

of HTML for a table and content bounding boxes of non-

empty cells is shown in Fig. 2.

4. Methodology

Our framework consists of three modules: a CNN im-

age encoder, an HTML sequence decoder and a coordinate

sequence decoder. Given a table image, we extract the fea-

ture map through the CNN image encoder. The feature map

will be fed into the HTML sequence decoder and the co-

ordinate sequence decoder to produce a HTML sequence

and bounding boxes of the non-empty cells, respectively.

The representation of non-empty cells from the HTML se-

quence decoder will trigger the coordinate sequence de-

coder. To enforce the local visual information of the rep-

resentation, visual-alignment loss is employed during train-

ing. The model architecture is illustrated in Fig. 3.

4.1. CNN Image Encoder

We use a modified ResNet [23] equipped with multi-

aspect global content attention as the CNN image encoder.

The resulted image feature map is C4, which is from the

output of the last convolutional layer of the 4-th stage.

The input of the encoder is a RGB image with a size of

H × W × 3. The output of the encoder is feature map M

with a size H
16

× W
16

× d.

4.2. HTML Sequence Decoder

The logical structure of a table contains information

such as the number of cells, rows, columns, adjacencies,

spanning, etc. In this paper, we use HTML to repre-

sent the logical structure of a table. The ground truth

HTML of table logical structure is tokenized into struc-

tural tokens. As in the work [44], we use merged label

to represent a non-spanning cell to reduce the length of

HTML sequence. Specifically, we use <td></td> and

<td>[]</td> to denote empty cells and non-empty cells,

respectively. For spanning cells, the HTML is tokenized to

<td, colspan=ªnº or rowspan=ªnº, > and </td>. We use

the first token <td to represent a spanning cell.

As shown in Fig. 3, the HTML sequence decoder is

a transformer with a stack of N = 3 identical layers.

The memory keys and values are the flattened feature map

M added with the positioning encoding. The queries are

shifted structure tokens. The output of the transformer is a

HTML sequence, which is decoded by auto-regression. The

output of the t-th step is a distribution: p(st|M, s1:t−1). In

training, we employ the cross-entropy loss:

Ls=− log p(S∗|M)=−
n∑

t=2

log p(s∗t |s
∗

1:t−1,M), (1)

where S∗ is the ground truth HTML of the target table. The

start token s∗1 or s1 is a fixed token <sos> in both training

and testing phrase.

4.3. Coordinate Sequence Decoder

For coordinate prediction, we cascade coordinate se-

quence decoder after HTML sequence decoder. The de-

coder is triggered by a non-empty cell snci . The left, top,

right and bottom coordinates are decoded one element at

a time. In particular, each of the continuous corner co-

ordinates is uniformly discretized into an integer between

[0, nbins]. In the decoder, we utilize the embedding of the

previously predicted coordinates to predict the latter coordi-

nate, which inject contextual information into the prediction

of the next coordinate. The procedure of the coordinate se-

quence decoder is also illustrated in Fig. 3.
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Figure 3. Architecture of our proposed VAST. The red dotted zone refers to the operations only in training.

Similar to the HTML sequence decoder, the coordinate

sequence decoder takes the flattened feature map M with

positioning encoding as memory keys and values, and takes

the shifted coordinate tokens as queries. The embedding of

the start token is the representation of snci from the HTML

sequence decoder, denoted by fnc
i . The output of the t-th

step is a distribution: p(ct|c1:t−1, f
nc
i ,M), where {ct}

4
t=1

is discrete random variable ranging within [0, nbins].
The coordinate sequence decoder is also trained by the

cross-entropy loss function:

Lc = −
1

K

K∑

i=1

4∑

t=1

log p(ci∗t |ci∗1:t−1, f
nc
i ,M), (2)

where K is the number of non-empty cells in the image, and

ci∗1 , ci∗2 , ci∗3 , ci∗4 correspond to ground truth of the left, top,

right and bottom coordinates of i-th cell. The representation

fnc
i is from the HTML sequence decoder, it contains con-

textual information and visual information that can help the

coordinate sequence decoder to characterize different cells.

Discussion. The proposed coordinate sequence decoder is

related to Pix2Seq [1]. Pix2Seq also decodes the object’s

coordinates step-by-step but has three distinct differences

from our method.

• Pix2Seq lacks the global information to guide where

to decode the coordinates. In contrast, our method pre-

dicts the bounding box based on the representation of

cells, which are obtained from the table’s global con-

texts.

• Pix2Seq needs the sequence augmentation methods to

facilitate the training. One of the reasons is that the

model needs to perform the classification and the local-

ization simultaneously, which is not easy to converge.

While our method doesn’t need such an operation.

• Pix2Seq decodes different bounding boxes one by one

from a long sequence, while our method can perform

the bounding box decoding in parallel. This is be-

cause we can collect the representation of all non-

empty cells, then feed them to the coordinate sequence

decoder at once.

4.4. Visual-alignment loss.

To enrich the local visual information in the start em-

bedding of the coordinate sequence decoder, we propose a

visual alignment loss to assist the learning of the coordinate

sequence decoder. The main motivation of the visual align-

ment loss is to align the logical structural representation of

a non-empty cell with its visual feature.

During training, we gather the HTML representation of

all non-empty cells {fnc
i }Ki=1. We use ROIAlign [11] to ex-

tract the visual representation {gnci }Ki=1 for each non-empty

cell. The visual feature is cropped from the image feature

map M according to the bounding box of the ground truth.

It is further projected to be a vector having the same di-

mension with fnc
i . Given a table image with K non-empty

cells, we have K visual-HTML pairs (gnci , fnc
i ). An In-

foNCE [41] loss is employed between fnc
i and all visual

representation {gnci }Ki=1 in the image. The visual alignment

loss is:

Lva = −

K∑

i=1

log(
exp(fnc

i · gnci /τ)
∑K

j=1 exp(f
nc
i · gncj /τ)

), (3)

where τ is a temperature hyper-parameter, which is set to

0.04. The cosine similarity is measured by dot product here.

It is worth mentioning that this loss is only employed dur-

ing training, and does not impose any burden on the model

during inference.

11137



4.5. Implementation Details

We denote our method, Visual-Alignment Sequential

Coordinate Table Recognizer, as VAST. Some hyper-

parameters in the methodology are as follows: The images

are resized to 608×608. The dimension d of the image fea-

ture is set to be 512. Both decoders are composed of a stack

of N = 3 identical layers, and the number of multi-head h
is set to 8. The value of nbins is set to 608.

Training. The unified loss L is a combination of losses

Ls,Lc and Lva in Eq . 1, Eq. 2 and Eq. 3:

L = λ1Ls + λ2Lc + λ3Lva, (4)

where λ1, λ1, and λ3 are set to be 1.0, 1.0 and 1.0, respec-

tively. We trained our VAST from scratch using AdamW

[22] as the optimizer. The initial learning rate is 1e-4, which

decreases by 0.1 per step. To prevent overfitting, we set the

dropout [39] rate of the HTML sequence decoder and the

coordinate sequence decoder to 0.1. The maximum length

for the HTML sequence decoder is set to 500. We trained

48 epochs on 4 Tesla V100 GPUs, and the mini-batch size

is 3. The output size of the ROIAlign is 2 × 2, and we use

a linear transformation to project the flattened visual repre-

sentation gnci ∈ R
512×4 to a vector with the size of 512.

Inference. In the inference stage, we use greedy search

for the HTML sequence prediction and coordinate sequence

prediction. For cell content, if the input modality is PDF,

we use the predicted content bounding box to grab con-

tent from PDF. If the input modality is an image, we use

PSENET [42] and MASTER [23] to detect and recognize

the text and then merge them according to their bounding

box. It is noteworthy that we do not make any corrections to

the predicted logical structure and physical structure when

inserting the content into the cell. Supplementary material

provides the details of how to fetch the content.

5. Experiments

5.1. Datasets and Evaluation Metrics

Datasets. We investigate the publicly accessible table struc-

ture recognition benchmark datasets, as shown in Tab. 1.

we evaluate our method on PubTabNet [47], FinTabNet

[46], ICDAR2013 [10], IC19B2M [8], SciTSR [2] and

PubTables-1M [38]. More details of the datasets refer to

supplementary materials.

Evaluation metrics. PubTabNet and FintabNet use tree-

edit-distance-based similarity (TEDS) [47] as the evaluation

metric. The metric represents the table HTML as a tree,

and the TEDS score is obtained by calculating the tree-edit

distance between the ground truth and pred trees. Besides

TEDS, we also propose S-TEDS, which only considers the

logical structure of the table and ignores the cell content.

For ICDAR2013, IC19B2M, and SciTSR, they apply

cell adjacency relations (CAR) [10] as an evaluation met-

ric. Specifically, it generates a list of horizontally and ver-

tically adjacency relations between true positive cells and

their vertical and horizontal neighbors. Then, precision, re-

call, and F1 score can be calculated by comparing this list

with the ground-truth list. The difference is that SciTSR and

ICDAR2013 use cell content to match predicted cells and

ground truth cells, while IC19B2M uses different thresh-

olds of IoU (σ) to map a predicted cell to a ground truth cell

with the highest IoU and IoU ≥ σ. For these three datasets,

we will transform the predicted HTML and bounding boxes

to a physical structure format.

GriTS was recently proposed by Smock et al. [37] and

was first adopted by PubTables-1M. It first represented the

ground truth and predicted tables as matrices, and GriTS is

computed by the similarity between the most similar sub-

structures of the two matrices. GriTS addresses the evalua-

tion of cell topology, cell content, and cell location recogni-

tion in a unified manner.

5.2. Comparison with the state-of-the-art methods

Results of logical structure recognition. As shown in Tab.

2, our VAST outperforms all previous methods on FinTab-

Net and PubTabNet. The difference between S-TEDS and

TEDS is mainly due to errors in content recognition or

extraction from PDF. For TableMaster, the higher score

of TEDS than S-TEDS is because they correct the logi-

cal structure by post-processing when fetching cell con-

tents. Compared with the strong baseline TableFormer,

VAST improved the S-TEDS score by 1.83% on FinTab-

Net and 0.48% on PubTabNet. It is worth mentioning that

VAST outperforms the TableFormer by improving TEDS

from 93.60% to 96.31% on PubTabNet. The improvement

of the TEDS score is greater than that of S-TEDS, indicat-

ing VAST performs better in extracting content.

We also investigate the performance of cell detection

(AP50, MS COCO AP at IoU=.50) on PubTabNet. The re-

sults in Tab. 3 show that VAST outperforms TableFormer

by improving the AP50 from 82.1% to 94.8%.

Results of physical structure recognition. The results are

shown in Tabs 4, 5 and 6. VAST exceeds most previous

methods and achieves the new state-of-the-art performance

on ICDAR2013, IC19B2M and PubTables-1M.

On SciTSR, VAST achieves the highest precision score

of 99.77% and the second best F1 score of 99.51%. The

recall score of VAST is lower than that of NCGM. This is

mainly because some samples in SciTSR have columns be-

yond the scope of the image. We regard such data as in-

valid, so our model ignores these mutilated columns during

inference. Some visualizations of such data are presented

in supplementary materials.

On ICDAR2013, several methods, such as DeepDeSRT,
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Table 1. The public datasets for table structure recognition. ªPDFº refers to multiple input modalities, such as images, text, etc., which

can be extracted from PDF. ªCARº indicates cell adjacency relationship. ªDetº indicates the evaluation of detection. ªCell BBoxº and

ªContent BBoxº refer to the bounding box of cells and content, respectively. ªIC19B2H’ and ªIC19B2Mº stand for ªICDAR2019 TrackB2

historicalº and ªICDAR2019 TrackB2 Modernº respectively.

Dataset
#Samples Input

Modality

Cell

Content

Cell

BBox

Content

BBox
Metric

Train Val Test

Logical Structure Recognition

TABLE2LATEX-450K [7] 447K+ 9,322 9,314 Image ✓ ✗ ✗ BLEU

TableBank [14] 130K+ 10,000 5000 Image ✗ ✗ ✗ BLEU

PubTabNet [47] 500K+ 9,115 10,000 Image ✓ ✗ ✓ TEDS

FinTabNet [46] 92K 10,635 10,656 PDF ✓ ✗ ✓ TEDS

Physical Structure Recognition

UNLV [35] - - 558 Image ✗ ✓ ✗ Det

ICDAR2013 [10] - - 156 PDF ✓ ✗ ✓ CAR

IC19B2H [8] - - 190 Image ✗ ✓ ✗ CAR

IC19B2M [8] - - 145 Image ✗ ✗ ✓ CAR

SciTSR [2] 12K - 3,000 PDF ✓ ✗ ✓ CAR

WTW [21] 10K+ - 3,611 Image ✗ ✓ ✗ CAR

TUCD [32] - - 4,500 Image ✗ ✓ ✗ CAR

PubTables-1M [38] 758K+ 94,959 93,834 PDF ✓ ✓ ✓ GriTS

Table 2. Comparision on the FinTabNet and PubTabnet. ªPTN +

FTNº means training on PubTabNet and finetuning on FinTabNet.

FinTabNet

Methods
Training

Dataset
S-TEDS TEDS

Det-Base [46] PTN 41.57 -

GTE [46] PTN + FTN 91.02 -

EDD [47] PTN 90.60 -

TableFormer [25] FTN 96.80 -

VAST FTN 98.63 98.21

PubTabNet

TabStructNet [31] SciTSR 90.10

FLAG-Net [20] SciTSR - 95.10

NCGM [19] SciTSR - 95.40

GTE [46] PTN 93.01 -

RobustTabNet [24] PTN 97.00 -

LGPMA [30] PTN 96.70 94.60

SEM [45] PTN - 93.70

EDD [47] PTN 89.90 88.30

TableMaster [44] PTN 96.04 96.16

TableFromer [25] PTN 96.75 93.60

TSRFormer [18] PTN 97.50 -

TRUST [9] PTN 97.10 96.20

VAST PTN 97.23 96.31

NCGM, FLAG-Net, etc., were tested on a randomly se-

lected samples from the test set and did not release their

Table 3. Comparison of content bounding box detection (Det) re-

sults on PubTabNet.

Methods Dataset AP50 (%)

EDD + BBox [25] PTN 79.2

TableFormer [25] PTN 82.1

VAST PTN 94.8

split. Thus they are not directly comparable. For the fair-

ness of the comparison, we only compare with methods that

report their results on the ICDAR2013 full test dataset. As

shown in Tab. 4, our VAST outperforms all previous meth-

ods with the best F1-score of 96.52% when trained with

FinTabNet and 95.72% when trained with SciTSR.

On IC19B2M, we report the results with the IoU thresh-

olds of 0.5 and 0.6 as the competitive baseline method GTE

[46]. The WAvg.F1 score is the weighted average value of

F1 scores under each threshold. As shown in Tab. 5, VAST

achieves the highest F1-score at the IoU threshold of 0.5 and

0.6, outperforming GTE by 12% and 13.2%, respectively.

Compared with CascadeTabNet, when the IoU threshold is

set to 0.6, VAST surpasses it by 7.9%, even though it used

their own labeled ICDAR2019 dataset for training. Inher-

ently, for the overall average F1 (WAvg.F1), VAST achieves

the best score of 58.6%.

PubTables-1M is the most challenging benchmark

dataset with 93834 samples for evaluation. As shown

in Tab. 6, we report the results on AccCont, GriTSTop,

GriTSCont and GriTSLoc. The scores of VAST in AccTop,
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Table 4. Comparison of cell adjacency relation (CAR) score on

the SciTSR and ICDAR2013 datasets.

SciTSR

Methods
Training

Dataset
P (%) R (%) F1 (%)

GraphTSR [2] SciTSR 95.90 94.80 95.30

TabStructNet [31] SciTSR 92.70 91.30 92.00

LGPMA [30] SciTSR 98.20 99.30 98.80

SEM [45] SciTSR 97.70 96.52 97.11

RobustTabNet [24] SciTSR 99.40 99.10 99.30

FLAG-Net [20] SciTSR 99.70 99.30 99.50

NCGM [19] SciTSR 99.70 99.60 99.60

TSRFormer [18] SciTSR 99.70 99.60 99.60

VAST SciTSR 99.77 99.26 99.51

ICDAR2013

GraphTSR [2] SciTSR 88.50 86.00 87.20

TabStructNet [31] SciTSR 91.50 89.70 90.60

CycleCenterNet [21] WTW 95.50 88.30 91.70

LGPMA [30] SciTSR 93.00 97.70 95.30

GTE [46] FTN 92.72 94.41 93.50

VAST SciTSR 93.84 97.68 95.72

VAST FTN 95.29 97.79 96.52

Table 5. Comparison of cell adjacency relation (CAR) F1-

score (%) on the IC19BM. ªIC19 ²º refers to the manually an-

notated ICDAR2019 dataset in CascadeTabNet [27].

Methods
Training

Dataset

IoU
WAvg.F1

0.5 0.6

NLPR-PAL [8] - - 36.5 36.5

CascadeTabNet [27] IC19 ² - 43.8 43.8

GTE [46] FTN 54.8 38.5 45.9

VAST FTN 66.8 51.7 58.6

Table 6. Comparison of GriTS (%) score on PubTables-1M

Methods AccCont GriTSTop GriTSCont GriTSLoc

FasterRCNN [25] 10.39 86.16 85.38 72.11

DETR [25] 81.38 98.45 98.46 97.81

VAST 90.11 99.22 99.14 94.99

GriTSTop, GriTSCont are 90.11%, 99.22% and 99.14%

respectively, achieving the current state-of-the-art perfor-

mance. The GriTSLoc score of VAST is lower than that

of DETR because DETR uses the bounding box of the con-

tent contained in the cell to adjust the predicted bounding

box of the cell.
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Multi-Head 
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Add & Norm

Add & Norm

Add & Norm
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Image

Feature

(flattened)

(b) RD

Figure 4. Architecture of Coordinate Sequence Decoder (CSD)

and Regression Decoder (RD). ‘TD’ indicates the representation

of the non-empty cell from HTML Sequence Decoder. To sim-

plify, position encoding is omitted.

Table 7. Ablation studies for structure recognition on FinTabNet

test set and IC19B2M. ªRDº and ªCSDº indicate regression de-

coder and coordinate sequence decoder, respectively. ªVAº refers

to visual alignment loss.

Exp
Modules FinTabNet IC19B2M

RD CSD VA S-TEDS AP WAvg.F1

#1 ✓ 98.22 87.3 42.5

#2 ✓ 98.48 95.6 52.1

#3 ✓ ✓ 98.63 96.2 58.6

5.3. Ablation Study

We conduct a set of ablation experiments to verify the

effectiveness of our proposed modules. We use FinTabNet

for training, and then test on the FinTabNet test set and

IC19B2M. The results are in Tab. 7, where the S-TEDS

scores for logical structure and detection AP (MS COCO

AP at IoU=.50:.05:.95) and WAvg.F1 scores for non-empty

cells are reported.

Effectiveness of coordinate sequence decoder. To val-

idate the effectiveness of the Coordinate Sequence De-

coder (CSD), we follow TableFormer [25] and TableMas-

ter [44] to implement a Regression Decoder (RD) module,

as shown in 4. The difference between the CSD and RD

lies in the output header and loss function: 1) By using

a Softmax activation function, CSD generates the discrete

coordinate sequence (xleft, ytop, xright, ybottom) one element

at a time, which can consume the previously generated co-

ordinate as additional input when generating the next. RD

uses the Sigmoid activation function to output the normal-
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Figure 5. Visualization of the HTML sequence decoder’s cross attention map when predicting the first 4 non-empty cells. This is a hard

sample cause the content of the second row of the table is misaligned.

ized coordinates of [xleft, ytop, xright, ybottom] at once. 2) We

employ the cross-entropy loss to train the CSD and L1 loss

to train the RD.

We use Coordinate Sequence Decoder (CSD) in Exp #2

to learn and predict the content bounding box of the non-

empty cell while using the Regression Decoder (RD) in

Exp #1, the result are shown in Tab. 7. On FinTab-

Net, Exp #2 improves the S-TEDS and detection AP score

by 0.22% and 8.3%. On IC19B2M, Exp #2 outperforms

Exp #1 in WAvg.F1 score by 9.4%. It can be seen that

CSD can substantially improve the performance of physical

structure recognition, indicating that CSD explicitly models

the dependencies among the coordinates and predicts more

accurate bounding boxes.

Effectiveness of visual-alignment loss. According to

Exp #3 and Exp #2 in Tab. 7, adding the visual align-

ment loss (VA) during training is beneficial to the logical

and physical structure recognition. On FinTabNet, Exp #3

improves 0.15% and 0.6% in terms of the S-TEDS and the

AP, respectively. On IC19B2M, Exp #3 also gives a gain of

6.5% for WAvg.F1. These results demonstrate the effective-

ness and generality of our proposed visual alignment loss.

Furthermore, we show some qualitative results to indi-

cate how VA can enforce the local visual information of the

representation of non-empty cells. In Fig. 5, we visualize

the cross-attention (average over heads and layers) when the

HTML sequence decoder predicts the token of non-empty

cells. One can see that, when predicting the token of the first

non-empty cell, the attention of both models can correctly

focus on the cell. When predicting the second non-empty

cell, the attention of the model w/o VA incorrectly focuses

on the top text block in the row instead of the entire cell.

While the model w/ VA can correctly concentrate around

the second non-empty cell. The same phenomenon also ap-

peared for the third and fourth non-empty cells. Details of

cross-attention map generation and more visualizations are

presented in the supplement.

6. Limitations

Although extensive experimental results demonstrate the

effectiveness of our proposed method, there are still two

limitations of our proposed VAST. 1) Since our model em-

ploys an auto-regressive manner and only generates one to-

ken at a time during inference, the inference speed is slower

than methods based on splitting-and-merging. Specifically,

the runtime of VAST, EDD and TRUST are 1.38, 1 and 10

FPS, respectively. 2) We use HTML sequence to represent

the logical structure of the table, even if we merge some

tags to reduce the length of the HTML sequence, there is

still too much redundancy in the sequence, such as ‘</tr>’,

‘</td>’, etc., resulting in higher computation and memory

consumption.

7. Conclusion

We proposed an end-to-end sequential modeling frame-

work for table structure recognition. This model consists of

two cascaded transformer decoders to generate the HTML

sequence of the whole table and the coordinates of non-

empty cells, respectively. The representation of the non-

empty cells from the HTML sequence decoder is used as the

start embedding to trigger the coordinate sequence decoder.

Besides, we also proposed an auxiliary visual alignment

loss, which lets the start embedding of each non-empty cell

contains more local visual information and then produce

a more accurate bounding box. Experimental results have

demonstrated that our method has achieved new SOTA per-

formance on several benchmark datasets.
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