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Figure 1. Our method solves inverse imaging tasks by learning an implicit neural camera model. The proposed framework consists of (a)
a scene model representing scene contents and (b) a camera model simulating the camera imaging process. Given a pixel position p (2D
pixel coordinate + 1D image index) at an image stack, the scene model maps it to corresponding irradiance value r (i.e., r = f(p)), and
then the camera model maps the irradiance r to a pixel intensity c (i.e., ¢ = g(r)). Two models are trained per scene and jointly optimized
under the supervision of (c) a set of images captured with different camera settings (multi-focus and multi-exposure). After training, the
scene irradiance have been implicitly encoded into the scene model (under an indirect supervision from the multi-setting images). We then
remove the camera model and the scene model can render (d) all-in-focus HDR images by taking pixel positions as input.

Abstract

Representing visual signals with implicit coordinate-
based neural networks, as an effective replacement of the
traditional discrete signal representation, has gained con-
siderable popularity in computer vision and graphics. In
contrast to existing implicit neural representations which
focus on modelling the scene only, this paper proposes a
novel implicit camera model which represents the physical
imaging process of a camera as a deep neural network. We
demonstrate the power of this new implicit camera model on
two inverse imaging tasks: i) generating all-in-focus pho-

*Work was done during an internship at Tencent AI Lab.
Corresponding authors.

tos, and ii) HDR imaging. Specifically, we devise an im-
plicit blur generator and an implicit tone mapper to model
the aperture and exposure of the camera’s imaging process,
respectively. Our implicit camera model is jointly learned
together with implicit scene models under multi-focus stack
and multi-exposure bracket supervision. We have demon-
strated the effectiveness of our new model on a large num-
ber of test images and videos, producing accurate and visu-
ally appealing all-in-focus and high dynamic range images.
In principle, our new implicit neural camera model has the
potential to benefit a wide array of other inverse imaging
tasks.
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1. Introduction

Using deep neural networks to learn an implicit repre-
sentation of visual signal of a scene has received remarkable
success (e.g., NeRF [27]). It has been used to represent vi-
sual signals (e.g., images [10,35], videos [5, 18], and volume
density [27]) with many impressive results. Besides implicit
scene modelling (e.g., modelling scene radiance field via an
MLP), the physical imaging process of a camera is also im-
portant for the image formation process (i.e., from scene ra-
diance field to RGB values of the sensor of a camera [36]).

However, to the best of our knowledge, little in the lit-
erature has ever tapped into the issue of finding an implicit
representation to model the physical imaging process of a
camera. Instead, most existing neural rendering methods
assume that each pixel’s RGB values are precisely the cap-
tured radiance field. In reality, before the light rays hit the
imaging sensors, they need to pass through both the aper-
ture and shutter, resulting in possible image blur caused by
finite-sized aperture as well as varied dynamic range dic-
tated by exposure time of the shutter.

Moreover, the image signal processor (ISP) inside a dig-
ital camera may also alter the obtained image, e.g., lumi-
nance change, depth of field (DoF), as well as image noises.
The above observation prompts us to address two questions
in this paper:

e Can we learn an implicit camera model to represent
the imaging process and control camera parameters?

e Can we invert the imaging process from inputs with
varying camera settings and recover the raw scene
content?

Recently, learning-based methods simulating the map-
ping from raw images to SRGB images have been presented
[13,30,51]. They allow photo-realistic image generation
controlled by the shutter or aperture, but inverse problems
of raw image restoration are challenging to model. Al-
though a few NeRF-based methods have simply simulated
cameras, they still face many issues, e.g., either RawN-
eRF [26] only models a camera forward mapping for con-
trollable exposures or HDR-NeRF [14] only builds a tone-
mapper module with the NeRF on static scenes to inversely
recover the high-dynamic-range (HDR) radiance. It is not
clear whether a unified coordinate-based MLP module of
different implicit camera models can be applied to various
implicit neural scene representations for inverting the imag-
ing process in a self-supervised manner, especially for dy-
namic scenes.

To this end, this paper proposes a novel implicit neural
camera model as a general implicit neural representation.
Tested on two challenging tasks of inverse imaging, namely
all-in-focus and HDR imaging, we have demonstrated the
effectiveness of our new implicit neural camera model, as
illustrated in Fig. 1.

The key contributions of this paper are:

1. We propose an interesting component, an implicit neu-
ral camera model including a blur generator module
(Sec. 3.2) for the point spread function and a tone
mapper module (Sec. 3.3) for the camera response
function, to model the camera imaging process.

2. We develop a self-supervised framework for image
enhancement from visual signals with different fo-
cuses and exposures and introduce several regulariza-
tion terms (Sec. 3.4) to encourage the modules of the
implicit neural camera to learn corresponding physical
imaging formulation.

3. We showcase implicit image enhancement applica-
tions on images and videos fulfilled with the proposed
framework, including forwardly controllable genera-
tion (changing exposures and focuses) or backwardly
inverting restoration (all-in-focus and HDR imaging).

In the experiments, our method outperforms baseline meth-
ods in all-in-focus imaging and HDR imaging. Compared
with traditional methods, our model can recover all-in-focus
HDR images from fewer input images.

2. Related work

Implicit Neural Representation. Coordinate-based MLPs
have been widely spread to represent a variety of visual sig-
nals, including images [10,35], videos [5, | 8] and 3D scenes
[27]. Dupont et al. [10] demonstrate the feasibility of using
implicit neural representation for image compression tasks.
Kasten et al. [ 18] introduce a coordinate-MLP-based frame-
work that decomposes and maps a video into a set of layered
2D atlases, which enables consistent video editing. How-
ever, these methods only focus on the representation of the
visual signal and ignore the camera model which is also an
important component of the whole implicit representation.
Neural radiance fields (NeRF) representation models a radi-
ance field with the weights of a neural network, which can
render realistic novel views. [1,3,7,21,23,25,27,50]. Most
of the NeRF methods assume input images are of a consis-
tent camera setting. However, without modeling the cam-
era, it’s difficult for them to handle the input with varying
camera settings (modern cameras always adjust the expo-
sure and focus automatically). Most recently, some NeRF-
based methods [14, 17,43] focus on modifying the defocus
blur or exposures of novel views. However, it’s hard for
them to control both exposures and defocus blur simultane-
ously. Particularly, Huang et al. [14] learn the global tone-
mapping process from radiance to image intensity, which
enables them to reconstruct the HDR radiance field. How-
ever, they only model tone-mapping with NeRF on static
scenes. It’s challenging for them to deal with the dynamic
scenes and the inputs with other varying camera settings.
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HDR Imaging. High Dynamic Range (HDR) imaging is
a technique that recovers images with a superior dynamic
range of luminosity. Debevec and Malik [9] propose the
classic method for HDR imaging. They capture a set of im-
ages with different exposures and then merge those LDR
images into an HDR image by calibrating the camera re-
sponse function (CRF). However, they may cause ghost ar-
tifacts when the images are captured by hand-held cameras
or on dynamic scenes. To overcome this, some two-stage
approaches have been developed [11, 15, 16,39,48]. They
first detect and remove the motion regions in the input im-
ages, and then merge the processed images into an HDR
image. Recently, several methods that do not require opti-
cal flow are proposed for HDR imaging of dynamic scenes
[29,42,46,47]. They formulate the HDR imaging as an
image translation problem from the input LDR images to
the HDR images. However, the learning-based HDR imag-
ing methods always need the HDR image as supervision. In
contrast, our method is trained per scene in a self-supervised
manner only requiring the input LDR images.

Multi-focus Image Fusion. Multi-focus Image Fusion
(MFIF) has been studied for over 30 years [54], and vari-
ous algorithms have been proposed. Li er al. [20] propose
a matting-based method to fuse the focus information from
input images. Liu et al. [22] propose the first CNN-based
supervised MFIF method, which learns a decision map for
the fusion of two source images. Inspired by this work, sev-
eral works [37,41,49] have been conducted to improve the
prediction of decision maps. While other methods [19, 55]
directly map the source images to fused images via an
encoder-decoder architecture. Moreover, GANs have also
been applied to MFIF. Guo et al. [ 1 2] formulate the MFIF as
an images-to-image translation problem and utilize the least
square GAN objective to improve their method. Supervised
methods require a large amount of training data with ground
truth, but the all-in-focus images are hard to access, thus
some unsupervised MFIF [44,45] methods have been pro-
posed. Recently, the first GAN-based unsupervised method,
MFF-GAN, is proposed by Zhang et al. [52]. An adaptive
decision block is introduced to evaluate the fusion weight of
each pixel based on the repeated blur principle. However,
the MFIF methods produce all-in-focus images by fusing
the input images, which makes them struggle with the un-
aligned input images or video frames. Wang et al. [40] first
propose a deep learning autofocus pipeline that can control
the focus and generate all-in-focus images. However, they
struggle to dynamic scenes with large camera motions and
dynamic objects.

3. Method

In a nutshell, the goal of our method is to invert the imag-
ing process (e.g., all-in-focus imaging and HDR imaging)
by learning an implicit camera model. The proposed frame-

work is visualized in Fig. 2. Note that our method is trained
per scene, which is similar to NeRF [27]. The input of our
method is a set of coordinates (2D pixel coordinate + 1D
image index) that denote the pixel locations at an image
stack (multi-focus and multi-exposure images). Our model
maps these coordinates to their corresponding pixel colors
and minimizes the mean squared error between predicted
colors and ground truth pixel colors for optimization. After
training on the image stack, sharp scene irradiance is en-
coded in our scene model through indirect supervision from
training images. This process resembles self-supervision
since ground truth irradiance isn’t used for training. During
inference, we remove the blur generator and tone-mapper
module and render all-in-focus and HDR images by feed-
ing pixel positions into the scene model.

3.1. Neural Scene Representation

Inspired by the neural video representation method [ 18],
we represent scene irradiance with two components: (1) a
2D atlas that records unique scene irradiance and (2) a de-
formation that matches each 3D pixel coordinate to its cor-
responding 2D point in the atlas. This deformation resem-
bles the deformed field widely used in neural rendering for
dynamic scenes [33]. Specifically, we use an MLP-based
deformation network D to map each 3D pixel position to
a 2D coordinate in the atlas. Given a 3D pixel position
p = (z,y,i) ", where (x,y) " is the pixel coordinate and
1 is the image index, the deformation is given by:

a="D(p), )

where q = (u,v) " denotes the 2D coordinate in the atlas.
Similarly, we use an atlas network A to represent the
2D atlas. Given the 2D coordinate q, the atlas network A
maps it to the irradiance value at position q. The process is
formulated as:
r=A(v(a)), @

where r denotes the irradiance and ~ denotes the positional
encoding [27].

3.2. Blur Generator

Most classic image deblurring methods model the blur
with a 2D convolution between image intensity and a Point
Spread Function (PSF) [4] that indicates the degree of blur-
ring in an image. However, according to the physical imag-
ing pipeline, the blur convolution should be applied to the
irradiance rather than the image intensity [6]. We there-
fore extend the model to the linear irradiance domain. In
general, the spatially invariant blur is mathematically for-
mulated as:

r=Rs*W, 3)

where r’ represents the blurry irradiance, R € R™*" is the
sharp irradiance patch, and W € R™*" is the PSF of the
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Figure 2. Illustration of our pipeline. n X n pixel positions P centered at p. in the image stack or video sequence are fed into our model.
Taking the p. as input, our offset network and weight network outputs an offset patch AP and a weight patch W respectively. The new
position patch P’ = P + AP is then fed into the deformation network which predicts the corresponding 2D coordinate patch Q in the
irradiance atlas. The atlas network maps Q into irradiance patch R. We compute the blurry irradiance r’ at position p. by taking the sum
of element-wise multiplication of irradiance patch R and weight patch W. The blurry irradiance r’ and exposure time At are then mapped
into pixel intensity € by a fone mapper which contains three small MLPs for R, G and B channels. During the inference, we remove the
blur generator and tone-mapper and render all-in-focus and HDR images via the deformation network and atlas network.

Figure 3. Sampling strategy of our method. For the sampling patch
P, 2D offsets for each position are learned to determine the final
sampling patch P’, which can flexibly modify the receptive field
of the sampling. To limit the offsets, we set the maximum offset
range (a circle with radius s), where s is a hyperparameter.

patch which is centered at p.. The operator * denotes the
2D convolution.

To render the blurry irradiance of point p., we once feed
n xn (typically 3 x 3) positions into the scene model to pre-
dict the irradiance patch. However, a larger degree of blur
always corresponds to a larger receptive field of the PSF and
the 3 x 3 patch is too small to generate a large blur. One
simple way to improve the receptive field of our sampling
patches is using larger patches such as 5x5 and 7 x 7. Un-
fortunately, it requires a large amount of computation and
memory consumption. To solve this problem, we propose a
new sampling strategy in which the receptive field of each
sampled patch is flexible and optimized by a network. As
shown in Fig. 3, given the center position p, = (,y,1%)
of the initial sampling patch P, we use a lightweight offset
network O to predict an offset patch AP = (Az, Ay, i).
Therefore, the final sampling positions are set to P + AP.

AP = O(p.),

4
P =P + AP. @)

With the learned offsets, the network can automatically
modify the receptive field of the sampling to match the large
blur and only a little additional computational cost is intro-
duced. Next, We feed the coordinates of sampling patch
P’ into the scene model, thus we can obtain the irradiance
patch R.

The PSF depends on a set of factors, such as aperture
size, focal length, object depth, etc. It’s complicated to con-
sider all these factors, especially the depth which is diffi-
cult to obtain. To simplify the model, each weight patch
is optimized independently according to its 2D center co-
ordinate (z,y) and the image index i, where the index ¢
is used to embed the unique blur pattern of each training
image. Thus, for an irradiance patch centered at position
pPe = (,y,1), we feed the p. into a weight network W to
predict the blending weight patch W. The process is ex-
pressed as:

W =W(p.). ©)

We further formulate the blur convolution as the sum of
element-wise multiplication of weight patch and irradiance
patch. Eq.(3) thus is rewritten as:

r = Z r(x)w(x), (6)
xepP’

where P’ is the final n x n sampled position. r(x) and w(x)
denote the irradiance and weight of position x, respectively.

3.3. Tone Mapper

To simplify the global tone-mapping process, we take
the ISO gain and aperture size as implicit factors. Con-
sequently, the tone-mapping function f (also called CRF,
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Camera Response Function) is defined as:
c = f(rAt), (7

where r is the irradiance captured by a camera, ¢ denotes
the pixel intensity, and At denotes the exposure time (shut-
ter speed). We assume the exposure times are known be-
cause these can be obtained from the camera EXIF tags.
Even if the exposure time is unavailable, we can jointly op-
timize the exposure time by taking it as a latent code. We
also assume that the lighting change is insignificant and can
be ignored.

Similar to HDR-NeRF [14], we transform the global
tone-mapping into the logarithm irradiance domain for bet-
ter optimization. Specifically, we take logarithms to both
sides of Eq. (7) (base 2 is convenient, as we usually measure
the exposure with exposure values (EVs)). Consequently,
Eq. (7) is rewritten as:

log f~! (c) = logr + log At, (8)

We further use a tone-mapping network 7 to implicitly rep-
resent (log f~1)~!. According Eq. (6) and Eq. (8), our
global tone-mapping is defined as:

¢ =T (logr’ + log At). )

where r’ denotes the blurry irradiance (see Eq. (6)) and &
denotes the predicted blurry color. Generally, each color is
consisted of red, green, and blue channels, so three small
MLPs are used to model the tone mapper.

3.4. Optimization

To adapt to various scenarios, we design several loss
terms for our neural camera, including color reconstruction
loss, flow loss, white balance loss and gradient loss, to en-
courage our implicit neural camera to learn the imaging pro-
cess correctly.

Color reconstruction loss. The color reconstruction loss is
the main loss in our model. The predicted blurry LDR color
is supervised by the input ground truth color. We minimize
their mean squared error for optimization. Formally, the
loss is given by:

Lo=|&—cl3, (10)

where € is our predicted color, and c is the ground truth
color.

Flow loss. Ideally, for each point in the scene, its corre-
sponding pixels that are captured under different camera
settings should be mapped consistently into the same po-
sition in the atlas. We find the deformation network can
fulfill this expectation in some special cases, for example
when input images are aligned or the motions of the camera
and objects are small. To improve our results on challeng-
ing scenes, we use an off-the-shelf optical flow estimation

method [38] to predict the optical flow of each point and
design an explicit constraint. Specifically, our flow loss is
defined as:

Ly = lap — qp-13, (11)

where qp, is the coordinate of position p in the irradiance
atlas (Eq. (1)), p* is the corresponding position of p in the
adjacent image. The estimated optical flow is not always
accurate due to the different focuses and exposures of input
images. Therefore, during the training phase, the flow loss
weight gradually decays to O over the course of optimiza-
tion.

White balance loss. Theoretically, the irradiance recov-
ered from multi-exposure images is relative to the true value
with an unknown scale factor. The white balance of the ir-
radiance is changed with the factor of each channel, thus
the unconstrained scale factors estimated by our network
lead to a random white balance in recovered irradiance. To
tackle this problem, we introduce a loss to regularize the
white balance. Formally, the white balance loss is given by:

Ly =|IT(0) — coll3, (12)

where ¢ is a hyperparameter which is generally set as the
midway of the color value such as 0.5 [14]. The white bal-
ance loss encourages the unit irradiance to be mapped into
cg, which allows us to regularize the white balance of the
recovered irradiance.

Gradient loss. CRF is a monotonically non-decreasing
function [9]. Therefore, we add an explicit regularization
to ensure the gradient of each point at the learned CRF is
non-negative. We define the gradient loss as:

d7(r)
dr

Ly = ReLU(— ), (13)
where r is the input irradiance of tone mapper T and ReLU
denotes the ReLLU (rectified linear unit) activation function.
Total loss. Finally, the total loss function is the weighted
combination of the loss terms from Eqgs. (10) to (13):

Ctotal = )\cﬁc + Afﬁf + )\wﬁw + )‘g‘cga (14)
where ¢, Ar, Ay, Ag are the weights of our loss terms.

4. Experiments
4.1. Implementation Details

We employ positional encoding in atlas network A, with
the number of frequencies 7. In blur generator module, the
size n of the sampling path is set to 3, and the maximum off-
set s is set to 5 pixels. The weights of loss terms are empir-
ically set as A\, = 1, Ay = 100, A\,, = 1 and Ay, = 100. We
use Adam optimizer with a learning rate of 1 x 10~ over
the course of optimization. In each iteration, the batch size
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Figure 4. Example results of our method compared with two-stage methods on the MFME synthetic dataset. “PM” denotes the HDR
imaging method in Photomatix [31] (a) Our input images with different focuses and exposures. (b-e) All-in-focus and HDR images
produced by three two-stage methods and our method. The red and green insets show the zoom-in views of the images. All HDR images

are tone-mapped for display.

Table 1. Quantitative comparisons with two-stage methods on
MFME synthetic dataset. Metrics are averaged over the synthetic
scenes. PSNR-z:, SSIM-p and LPIPS are computed in the global
tone-mapping domain. PSNR-L, SSIM-L and HDR-VDP-2 are
computed in the HDR domain. “PM” denotes the HDR imaging
method in Photomatix [31].

FusionD U2Fusio MFFGAN Ours
+PM +PM +PM

PSNR-1 17.39 29.19 27.88 31.25
SSIM-p. 0.596 0.893 0.879 0.895
LPIPS 0.310 0.132 0.116 0.104
PSNR-L 28.24 35.51 36.43 37.79
SSIM-L 0.697 0.960 0.953 0.963
HDR-VDP-2 45.40 55.27 54.47 58.11

of point positions is set to 30, 000, and each model is opti-
mized for around 150, 000 iterations. All experiments are
conducted on a single V100 GPU. We train our model on
an image stack, which takes about 1 hours to finish. When
training on video sequences, it takes about 5 ~ 8 hours to
finish according the number of frames.

4.2. Datasets and Metrics

Datasets. We evaluate our method on three datasets: a
multi-focus and multi-exposure (MFME) dataset, a multi-
focus (MF) dataset, and a multi-exposure (ME) dataset. The
MFME dataset consists of 4 real-world scenes and 4 syn-
thetic scenes. Each scene contains 9 images of 3 different
focuses and 3 different exposures. The real-world images
are captured by a digital camera with a tripod, and the syn-
thetic images are rendered in Blender [2]. We also render

all-in-focus HDR images for the synthetic scenes, which
allows for evaluating our method quantitatively. The MF
dataset contains 8 real-world scenes. Two images focus-
ing on the foreground and background respectively are cap-
tured for each scene. The resolution of the above images
is 600 x 900 pixels. The ME dataset contains 5 real-world
dynamic scenes from the HDR imaging dataset [34]. Three
images with different exposures are captured for each scene.
Note that the multi-focus images in the MFME dataset and
MF dataset are unaligned since these images are captured
by modifying the distance between the camera’s lens and
the image sensor.

Metrics. PSNR (higher is better), SSIM (higher is bet-
ter) and LPIPS (lower is better) [53] are utilized as mea-
surements for evaluation. Specifically, all HDR images are
tone-mapped by p-law with g = 5000, which is a simple
classic global tone-mapping operator wildly used for HDR
image evaluation [16,32,46]. We compute PSNR-1, SSIM-
1 and LPIPS between predicted all-in-focus HDR images
and ground truth images in the global tone-mapping do-
main. We also compute PSNR-L and SSIM-L for compar-
ison in the original HDR domain. Moreover, another visual
metric named HDR-VDP-2 (higher is better) [24] is also
computed, which is specifically designed for the evaluation
of HDR images.

4.3. Evaluation

Baselines. To validate our method, we compare it with
several methods on all-in-focus image restoration and HDR
imaging tasks: (1) For all-in-focus image restoration, three
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Figure 5. Example results of our method compared with MFIF
methods on the MF dataset. (a) Two input images. One is near-
focused and the other is far-focused. (b-e) All-in-focus results by
MFIF methods and our method. The red and green insets show the
zoom-in views of the images, better viewed on screen with zoom
in.

SOTA methods for MFIF, MFF-GAN [52], U2Fusion [44]
and FusionDN [45], are selected as comparison methods.
(2) For HDR imaging, we compare our method with three
currently SOTA ghost-free HDR imaging methods, includ-
ing HDR-GAN [29], AHDRNet [46] and DeepHDR [42].
(3) For all-in-focus and HDR image generation, we design
two-stage comparison methods by combining MFIF meth-
ods with HDR imaging methods. The all-in-focus images
are firstly recovered images by the aforementioned MFIF
methods from the multi-focus images with consistent expo-
sure. Taking all-in-focus images with different exposures
as input, the final HDR images are reconstructed using the
HDR imaging method in Photomatix [31] since we find the
results by Photomatix is better than the standard static HDR
imaging method by Debevec and Malik [&].

All-in-focus and HDR imaging. Figure 4 presents qualita-
tive comparisons with two-stage methods for all-in-focus
HDR image restoration. Note that the two-stage meth-
ods require all 9 images as input, while our method are
only trained 3 images of different exposures and focuses,
as shown in Fig. 4 (a). Compared to these two-stage
methods, our method can recover image details from blurry
LDR images (e.g., the dog in Fig. 4). All comparison
methods produce ghosting near object boundaries (e.g., the
boundary of the stool in Fig. 4), while our method pro-
duces sharp boundaries with a better visual experience. We
also noticed that the results by FusionDN + PM show se-
rious artifacts, likely due to color distortion in FusionDN’s
outputs from which Photomatix struggles to recover HDR
images. Table 1 shows quantitative comparisons on the
MEME synthetic dataset. Our method outperforms state-

ﬁ
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(a) Input LDR images
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(c) LDR Patches
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(f) HDR-GAN (g) Ours

(d) DeepHDR (¢) AHDRNet
Figure 6. Example results of our method compared with HDR
imaging methods on the ME dataset. (a) Three input images with
different exposures. Exposure values (EVs) are shown in the upper
left. The image highlighted with a blue box denotes the reference
image. (b) Our recovered HDR image for the reference image. (c)
zoom-in insets cropped from the input LDR images. (d-g) zoom-in
insets cropped from the HDR images predicted by HDR imaging
methods and our method. All HDR images are tone-mapped for
display.

of-the-art techniques on all metrics. Although U2Fusion
+ PM and our method have comparable SSIM values, our
method performs better on object boundaries as discussed
above. Results on LPIPS and HDR-VDP-2 metrics also
validate that our method recovers all-in-focus HDR images
with higher visual quality.

Only all-in-focus. Comparisons with the MFIF methods
for all-in-focus image restoration are visualized in Fig. 5.
One can see that three MFIF methods produce ghost arti-
facts near the boundaries of objects. Generally, the focused
and defocused boundary (FDB) is an important area where
many algorithms do not perform well [54]. In the patches
near the FDB, both the focused area and the defocused area
exist, which makes it difficult for these methods to produce
plausible weights for image fusion. Compared with them,
our method achieves sharp results without color distortion
because our implicit camera learns the PSF rather than fus-
ing the input images directly, which also indicates that our
method has a better performance for recovering all-in-focus
images from multi-focus images.

Only HDR imaging. Comparisons with the HDR imag-
ing methods for HDR image restoration are visualized in
Fig. 6. In this challenging scene, the sitting baby has small
motions. DeepHDR struggles with complex textures and
produces blurry results, as shown in the red insets. AHDR-
Net yields serious artifacts in over-exposed areas, and that is
perhaps because AHDRNet is trained on the scenes without
severe exposure deviation. HDR-GAN achieves acceptable
results, but struggles to reconstruct over-exposed textures
such as the twigs shown in the green insets. DeepHDR also
has similar limitations. Compared with the above meth-
ods, our method recovers HDR results with clear textures
and details in both under-exposed and over-exposed areas.
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Figure 7. Results comparison of our method with different maxi-
mum offsets s on an MF scene. Top row shows the PSNR during
the training phase. Bottom row shows one of the input images and
our all-in-focus results.

Moreover, our method also achieves impressive results on
moving objects, which can be referred from the face of the
sitting baby, and that validates our method can deal with
scenes with small motions.

4.4. Ablation Study

Maximum offset. In our blur generator, we introduce a
maximum offset s to control the receptive field of our sam-
pling (see Sec. 3.2). To assess the impact of the maximum
offset s, we train and test the framework with different s
values. The PSNR of the training phase is visualized in
Fig. 7. It’s noticed that the PSNR improves with the value
of maximum offset and the increase is gradually reduced,
so we generally set s = 5 in our experiments. Moreover,
we can see that the recovered results with a larger offset
(s=5) are sharper than the one with an offset set to 0, which
demonstrates the effectiveness of our sampling strategy.

Losses. The ablations of gradient loss and white balance
loss are shown in Fig. 8. The model without gradient loss
produces distorted colors due to an incorrect CRF in the
green channel. The model without white balance loss pro-
duces results with random white balance, which is unac-
ceptable. In contrast, the CRFs of the model with full loss
terms are smooth and similar across all RGB channels. This
matches the ground truth that each channel is tone-mapped
with the same CRF in this synthetic scene. These abla-
tions demonstrate that our loss terms encourage the camera
model to correctly fit the global tone-mapping process.

4.5. Limitations

Our method has a few limitations. Our method is trained
per scene, which takes lots of time for optimization. How-
ever, the optimization time can’t restrict our method to prac-
tical application, we can implement our model with the
strategy of Instant NGP [28] that takes only 2.5 minutes to
approximate an RGB image of resolution 20000 x 23466.

(a) Input images

(c) Recovered images

W/o gradient loss W/o white balance loss Full loss terms

Figure 8. Results of our method with different loss terms on a
synthetic MFME scene. (a) Three input blurry LDR images. (b)
The learned CRFs by our tone mapper module with different loss
terms. (c) The all-in-focus HDR results by our method with dif-
ferent loss terms. Better viewed on screen with zoom in.

In addition, the noise module is also an important compo-
nent of the physical imaging formulation, especially when
scenes are captured in low light. The noise model isn’t sim-
ulated in our model, so the noise is recovered as part of
an image. Finally, the results of our camera model are af-
fected by the performance of the scene model. For example,
the layered neural atlases model fails on dynamic scenes
with complex geometry, self-occlusions, or extreme defor-
mations with a single atlas layer (as shown in the supple-
mentary).

5. Conclusion

In this paper, we propose an interesting component for
implicit neural representations, an implicit camera model,
to simulate the physical imaging process. In particular, our
camera model contains an implicit blur generator module
and an implicit tone mapper module, to estimate the point
spread function and camera response function respectively.
It is jointly optimized with scene models to invert the imag-
ing process under the supervision of visual signals with dif-
ferent focuses and exposures. To disentangle the camera
imaging functions and combine various captured scenarios
better, a set of regularization terms are introduced to lever-
age the geometry and camera knowledge to achieve image
tasks, including HDR imaging and all-in-focus. Experi-
ments on various tasks confirm the superiority of the pro-
posed self-supervised implicit camera model. With simple
modifications, the framework of our camera model can be
adapted to solve other inverse imaging tasks. Our code and
models will be released publicly to facilitate reproducible
research.
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