
KiUT: Knowledge-injected U-Transformer for Radiology Report Generation

Zhongzhen Huang1,2, Xiaofan Zhang1,2 �, Shaoting Zhang 2,3

1Shanghai Jiao Tong University 2Shanghai AI Laboratory 3SenseTime Research
{huangzhongzhen, xiaofan.zhang}@sjtu.edu.cn, zhangshaoting@pjlab.org.cn

Abstract

Radiology report generation aims to automatically gen-
erate a clinically accurate and coherent paragraph from
the X-ray image, which could relieve radiologists from the
heavy burden of report writing. Although various image
caption methods have shown remarkable performance in
the natural image field, generating accurate reports for
medical images requires knowledge of multiple modalities,
including vision, language, and medical terminology. We
propose a Knowledge-injected U-Transformer (KiUT) to
learn multi-level visual representation and adaptively dis-
till the information with contextual and clinical knowledge
for word prediction. In detail, a U-connection schema be-
tween the encoder and decoder is designed to model in-
teractions between different modalities. And a symptom
graph and an injected knowledge distiller are developed to
assist the report generation. Experimentally, we outper-
form state-of-the-art methods on two widely used bench-
mark datasets: IU-Xray and MIMIC-CXR. Further experi-
mental results prove the advantages of our architecture and
the complementary benefits of the injected knowledge.

1. Introduction
Radiology images (e.g., chest X-ray) play an indispens-

able role in routine diagnosis and treatment, and the radiol-
ogy reports of images are essential in facilitating later treat-
ments. Getting a hand-crafted report is a time-consuming
and error-prone process. Given a radiology image, only
experienced radiologists can accurately interpret the image
and write down corresponding findings. Therefore, auto-
matically generating high-quality radiology reports is ur-
gently needed to help radiologists eliminate the overwhelm-
ing volume of radiology images. In recent years, radiology
report generation has attracted much attention in the deep
learning and medical domain. The encoder-decoder archi-
tecture inspired by neural machine translation [34] has been
widely adopted by most existing methods [17, 24, 40, 42].
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PA and lateral views of chest demonstrate an extensive left-sided pleural 
effusion with compressive atelectasis. An underlying pneumonia cannot be 

excluded. A tiny right pleural effusion may also be present. The cardiac 
silhouette also appears enlarged, but it is difficult to completely assess the 
left border given the large pleural effusion.  The right lung is clear of focal 

opacities worrisome for pneumonia. There is no pneumothorax. 

Radiology Image Contextual 

···

Figure 1. A transformer architecture with U-connection is adopted
to generate reports from radiology images. The process involves
injecting and distilling visual, clinical, and contextual knowledge
The color labels in the image and report represent the different ab-
normal regions and their corresponding description, respectively.

With the recent advent of the attention mechanism, the ar-
chitecture’s capability is greatly ameliorated.

Despite the remarkable performance, these models re-
strained themselves in the methodology of image caption
[6, 7, 36, 39, 43], and suffer from such data biases: 1) the
normal cases dominate the dataset over the abnormal cases;
2) the descriptions of normal regions dominate the entire
report. Recently, some methods have been proposed to ei-
ther alleviate case-level bias by utilizing posterior and prior
knowledge [27] or relieve the region-level bias by distilling
the contrastive information of abnormal regions [28].

Thus, in the medical field’s cross-modal task, a model
needs to not only capture visual details of every abnor-
mal region but also consider the interaction between the vi-
sual and textual modalities among different levels. More-
over, external clinical knowledge is required to achieve
the radiologist-like ability in radiology image understand-
ing and report writing. The external knowledge, e.g., the
clinical entities and relationships, could be pre-defined by
experts or mined from medical documents. However, di-
rectly adopting the knowledge brings inconsistencies due to
the heterogeneous context embedding space [21]. And too
complex knowledge may be prone to distract the visual en-
coder and divert the representation [27].

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
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Instead of using external knowledge to augment the fea-
ture extraction like previous approaches [27, 44], we pro-
pose to introduce the injected knowledge in the final decod-
ing stage. A graph with the clinical entities, i.e., symptoms
and their relationships, is constructed under the guidance
of professional doctors. These entities have homogeneous
embedding space with the training corpus, and this signal
could be injected smoothly with visual and contextual infor-
mation. We further design the Injected Knowledge Distiller
on top of the decoder to distill contributive knowledge from
visual, contextual, and clinical knowledge.

Following these premises, we explore a novel framework
dubbed as Knowledge-injected and U-Transformer (KiUT)
to achieve the radiologist-like ability to understand the ra-
diology images and write reports. As Fig. 1 shows, it con-
sists of a Region Relationship Encoder and Decoder with U-
connection architecture and Injected Knowledge Distiller.

Our contributions can be summarized as follows:
• We propose a novel model following the encoder-

decoder architecture with U-connection that fully ex-
ploits different levels of visual information instead of
only one single input from the visual modality. In our
experiments, the U-connection schema presents im-
provement not only in radiology report generation but
also in the natural image captioning task.

• Our proposed model injects clinical knowledge by
constructing a symptom graph, combining it with the
visual and contextual information, and distilling them
when generating the final words in the decoding stage.

• The Region Relationship Encoder is developed to re-
store the extrinsic and intrinsic relationships among
image regions for extracting abnormal region features,
which are crucial in the medical domain.

• We evaluate our approach on two public radiology
report generation datasets, IU-Xray [8] and MIMIC-
CXR [18]. KiUT achieves state-of-the-art perfor-
mance on the two benchmark datasets.

2. Related Work

2.1. Image Caption

Generating radiology reports is similar to the image cap-
tion task, which aims to describe the content of a given nat-
ural image. Based on the encoder-decoder architecture, the
development of image caption models [16,30,33,37,39] has
advanced in leaps and bounds.

With the good performance of Transformer [35] in both
computer vision and natural language processing field, a
broad collection of transformer based methods have been
explored to ameliorate the performance of Image Caption.
A combined bottom-up and top-down attention mechanism
was introduced by [1] to calculate the relationships between
objects and other salient image regions when extracting vi-

sual representation. [7] proposed a meshed-memory trans-
former that represents visual features incorporating the rela-
tionships between image regions. In the work [43], Zhang et
al. enhanced visual representations in the attention module
with relative geometry features and used adaptive attention
to predict visual and non-visual words. GRIT [31] adopts
a transformer architecture to fuse the objects’ feature and
contextual features for better captioning. Although these
methods are effective, they still need to take full advantage
of the visual information and consider the interaction be-
tween the encoder and decoder. To explore the relationship
between these two modalities, [7] tried complex mesh-like
connectivity at the decoding stage. In this paper, we try a
simple and reasonable schema to establish the connection
between the encoder and decoder.

2.2. Radiology Report Generation

Radiology reports contain multiple descriptive sentences
about radiology images. As the transfer and extension of
Image Caption in the medical field, radiology report genera-
tion not only puts forward higher requirements on the length
of generated reports but also presents greater challenges on
the accuracy of long contextual descriptions. Much work
has made some advancements in this task. [23] employed a
hierarchical decision making procedure and generated nor-
mal and abnormal sentences by multi-agent systems, re-
spectively. Liu et al. [29] presented a hierarchical gener-
ation framework which first predicts the related topics of
the input, then generates sentences according to the topics.
For the latter studies, transformer [35] has been success-
fully applied as the model design rationale. [13] developed
a transformer-based architecture and used attention to local-
ize important regions in the image for generation. Chen et
al. [3] improved the performance by incorporating the trans-
former based model with memory matrix which is designed
to align cross modal features.

Recently, some work [20–22, 27, 38, 44] began to ex-
plore assisting report generation with additional knowledge.
Wang et al. [38] utilized a shared cross-modal prototype
matrix as external knowledge to record the cross-modal pro-
totypes and embed the cross-modal information for the re-
ports generation. [44] designed a pre-constructed medical
graph based on prior knowledge from chest findings, which
allows dedicated feature learning for each disease finding.
The graph improves the models’ capability to understand
medical domain knowledge. Inspired by the idea, Liu et al.
explored and distilled posterior and prior knowledge in the
work [27], where the posterior knowledge is visual infor-
mation and the prior knowledge is the medical graph and
retrieval reports. Instead of applying knowledge for vi-
sual feature extraction, we distill knowledge in the decod-
ing stage. The report generated by our model is based on
the distilled knowledge from multiple modalities.
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Figure 2. The overall architecture of KiUT: 1) U-Transformer with U-connection between Visual RR-Encoder and Decoder, 2) Injected
Knowledge Distiller that handles three types of injected knowledge. There are seriatim elaborate descriptions of these modules in Section 3.

3. Methodology
In the radiology report generation task, given a 2D ra-

diology image I , the model is required to interpret the
image and generate a descriptive radiology report R =
{y1, y2, . . . , yNR

} , where yi is the word token of the re-
port and NR is the length of the report. The entire recursive
generation process can be formulated as follows:

p(R | I) =
∏
t=1

p (yt+1 | y1, . . . , yt, I) (1)

And the model is generally optimized by minimizing the
cross-entropy loss:

LCE(θ) = −
N∑
i=1

log
(
pθ

(
y∗
n | y∗

1:n−1

))
(2)

where R∗ = {y∗1 , y∗2 , . . . , y∗NR
} is the ground truth report.

In this section, we will introduce the framework of the
proposed KiUT. Fig. 2 shows the overall architecture of
our proposed KiUT. Our model can be conceptually divided
into three core components: Cross-modal U-Transformer,
Injected Knowledge Distiller, and Region Relationship En-
coder. We will introduce their details in turn.

3.1. Cross-modal U-Transformer

For cross-modal tasks, it is particularly important to ob-
tain proper interaction between different modalities. As
shown in Fig. 3, compared with the previous work us-
ing only the last output of the encoder, or proposing a
meshed connection [7], we design a U-transformer archi-
tecture with much fewer parameters than the meshed con-

nection. Specifically, we construct a U-connection that con-
nects the layers of the encoder and decoder.

The visual encoder captures details in X-ray images by
the multi-head self-attention that naturally aggregates task-
relevant features. The decoder aggregates the visual fea-
tures throughout all layers via U-connection. And the out-
put features of the last decoder layer are sent to the Injected
Knowledge Distiller for generating the words in the report.
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Figure 3. Connection schemas between the encoder and decoder.

Assume that the number of layers of the proposed en-
coder and decoder is N . The output of each layer of the
encoder can be formulated as {x̃1, . . . , x̃i, . . . , x̃N}, where
x̃i is defined as the i-th layer’s output of our Visual RR-
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Encoder (Sec. 3.3). In our proposed architecture, the output
of the i-th encoder layer will be input to the (N − i+ 1)-th
decoder layer. The specific process can be formulated as:

{x̃1, . . . , x̃N} = RR-Encoder(I) (3)
x̂i = x̃N−i+1 (4)

where x̂i is the input of the i-th decoder layer.
After receiving the visual features {x̂1, . . . , x̂N} from

the encoder, the decoder generates the hidden state ht to
predict the current word yt+1 through the word sequence
features ŵt in the decoding step t+1. Given the generated
words y1:t = {y1, . . . , yt}, the word sequence features are
obtained by words embeddings wt combining with its posi-
tion encodings et. The process of the decoder is as follows:

et = PosEncoding(y1:t) (5)
ŵt = wt + et (6)

hi
t =

{
DecoderLayeri(ŵt, x̂1) i = 1

DecoderLayeri(h
i−1
t , x̂i) i > 1

(7)

where the DecoderLayeri and hi
t represent the i-th De-

coderLayer and its output, the final hidden state ht = hN
t .

DecoderLayer and PosEncoding follows the operations of
Decoder and Position encoding in [35].

3.2. Injected Knowledge Distiller

Radiologists draw on different aspects of medical knowl-
edge when writing reports. To make the process of re-
port generation conformance to the real scenario and gener-
ate more accurate reports, our model incorporates injected
knowledge signals from three aspects, i.e., visual knowl-
edge, contextual knowledge, and clinical knowledge.

Visual knowledge signal contains the information of the
radiology image I . X̃ is the output of the encoder’s last
layer, namely X̃ = x̃N .

Contextual knowledge signal is the information of the
generated words extracted from MBert with a masked at-
tention module. Specifically, to endow MBert with partial
medical language knowledge, we adopt a pre-trained Bert
model [9] and finetune it on the reports in train split of the
specific dataset [8,18]. And a MaskedMHA [35] module is
applied after MBert to obtain linguistic features of the gen-
erated report words. The process of extracting contextual
knowledge signal can be defined as:

W̃t = MaskedMHA(MBert(y1:t) + et) (8)

where W̃t ∈ Rt×d and y1:t is the generated words sequence.
Clinical knowledge signal is essential to the radiology

report generation task. Imaging exam is scheduled for a spe-
cific purpose in the medical field. For example, the chest
X-ray is a part of the physical exam that could show the

size, shape, and location of the heart, lungs, bronchi, pul-
monary arteries, etc. Therefore, we could design a clini-
cal symptom graph to inject real-world medical knowledge
into the model. The graph shown in Fig. 4 is developed ac-
cording to the professional perspective of radiology images,
taking into account symptoms correlation, symptom charac-
teristics, occurrence location, etc. The feature of each node
sfi ∈ Rd in the graph is the word embedding of each symp-
tom derived from the MBert.
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Figure 4. The symptoms graph is based on the correlation, charac-
teristics and occurrence location of symptoms.

For every radiology image I , the probability distribution
spi of each symptom in the graph is calculated with the pre-
trained classification model [5]. Then, the symptom graph
G is initialized according to the distribution, and the graph
attention mechanism (GAT) is utilized to calculate the clin-
ical knowledge signal C̃. The process is as follows:

sgi = spi ⊙ sfi, gi ∈ G (9)

C̃ = GAT(G) (10)

where gi represents ith node of the symptom graph G.
The clinical knowledge signal indicates the possible

findings that may need to be written in the report. And these
findings reflect the radiologists’ first impression of the im-
age based on their professional knowledge.

Knowledge Distiller To make our model achieve the
radiologist-like ability to generate reports and align with the
real scenario, we propose an Injected Knowledge Distiller
to distill useful information from the above knowledge sig-
nals. The process is formally defined as follows:

F̃i =
[
X̃, C̃, w̃i

]
i ∈ [1, t], w̃i ∈ W̃t (11)

MHAi(ht, F̃i) = Softmax

(
QKT

i√
dn

)
Vi (12)

Q = htW
Q,Ki = F̃iW

K , Vi = F̃iW
V (13)

h̃t = Concat(MHA1(ht, F̃1), · · · ,MHAt(ht, F̃t)) (14)

yt+1 ∼ pt+1 = Softmax
(
h̃tWp + bp

)
(15)

where w̃i ∈ W̃t, WQ,WK ,WV ,Wp and bp are learnable
parameters. yt+1 ∼ pt+1 is the probability of the generated
word at step t+ 1.
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3.3. Region Relationship Encoder

To get the visual representation, the first step is to extract
features from the radiology image. Following [3, 4, 38], we
adopt pre-trained convolutional neural networks to extract
the basic visual feature X from a radiology image I . Gen-
erally, the image is decomposed into S patches of equal
size by flattening the extracted feature by row. In brief,
X = {xi}Si=1 is the source input for the subsequent mod-
ules, and xi ∈ Rd.

After getting a sequence of the visual features X ex-
tracted from radiology image regions, it is crucial to explore
the extrinsic and intrinsic relationships among these regions
for better visual representations, which are important for
understanding radiology images. For example, the extrinsic
relationship: the heart is located below the left lung and the
intrinsic relationship: enlarged cardiomediastinum is usu-
ally associated with some left lung imaging manifestations.
Although self-attention [35] can be used to model the re-
lationship among image regions, it can only calculate the
similarity between image region features [7]. Therefore, we
propose a region relationship encoder to explore the extrin-
sic and intrinsic relationships among the regions.

For the flattened image region features, the loss of the
extrinsic relationships is inevitable, e.g., the spatial infor-
mation. Therefore, we incorporate relative geometry infor-
mation into self-attention to take into account the extrinsic
relationships among regions. We first calculate the center
coordinate (xi, yi), width wi, and height hi of a region i,
the specific calculation as follows:

(xi, yi) =

(
xmin
i + xmax

i

2
,
ymin
i + ymax

i

2

)
(16)

wi =
(
xmax
i − xmin

i

)
+ 1 (17)

hi =
(
ymax
i − ymin

i

)
+ 1 (18)

where (xmax
i , ymax

i ) and (xmin
i , ymin

i ) are the position co-
ordinate of the upper left corner and the lower right corner
of the grid i, respectively. Following the computation of
region relative geometry features in [10,12], the relative ge-
ometry relationship of regions can be calculated by:

rgij =
(
log

(
|xi − xj |

wi

)
, log

(
|yi − yj |

hi

)
,

log

(
wi

wj

)
, log

(
hi

hj

))T
(19)

where rg ∈ RS×S×4. And the extrinsic relationship ERij

between region i and j can be obtained by:

ERij = ReLU(wg
TFC(rgij)) (20)

where wg is a learnable parameter, FC is a fully-connected
layer and ReLU is an activation for zero trimming. ER ∈
RS×S is the representation of the extrinsic relationship.

To represent the intrinsic relationship among regions, we
use additional learnable matrices and extend the set of keys
and values in self-attention with them [7]. This operation is
defined as:

Keys, V alues = WkX,WvX (21)
KI = [Keys,Mk] , VI = [V alues,Mv] (22)

where Mk and Mv are learnable matrices with MN rows,
X is the input to self-attention, Wk and Wv are are learn-
able parameters. [·, ·] stands for concatenation operation.

Based on the above, to compensate for the region rela-
tionship in the visual encoder, we propose a region relation-
ship augmented self-attention(RRSA) in our encoder. The
RRSA is formally defined as follows:

RRSA(Q,KI , VI) = Softmax

(
QKT

I√
dn

+ ERI

)
VI

(23)

Q = WqX,ERI = [ER,M I ] (24)

where Wv and M I are learnable parameters. The visual
features {x̃1, . . . , x̃N} are obtained by the RRSA based
region relationship encoder.

4. Experiment
4.1. Dataset

We conduct experiments to evaluate the effectiveness of
the proposed KiUT on two widely used medical report gen-
eration benchmarks, i.e., IU-Xray and MIMIC-CXR.

IU-Xray [8] from Indiana University is a relatively small
but publicly available dataset containing 7,470 chest X-ray
images and 3,955 radiology reports. For the majority of
reports, there are frontal and lateral radiology images. Fol-
lowing the previous work [3, 4, 27, 38], we first exclude the
samples without ”Findings” section and follow the widely-
used splits to divide the dataset into train (70%), validation
(10%) and test (20%) sets.

MIMIC-CXR [18] provided by the Beth Israel Dea-
coness Medical Center is a recently released large-scale
dataset. The dataset includes 377,110 chest X-ray images
and 227,835 reports. For a fair comparison, we adopt the of-
ficial data splits (i.e., 70%/10%/20% for train/validation/test
set). Thus, there are 368,960 in the training set, 2,991 in the
validation set, and 5,159 in the test set.

For the reports of these two datasets, we preprocess them
by tokenizing and converting all tokens to lower cases and
removing the special tokens like digital, non-alphanumeric
characters, etc. Finally, we remove the tokens whose fre-
quency of occurrence is less than a specific threshold from
the remaining tokens to construct our vocabulary. Fig. 5
shows the statistical visualization of all datasets in terms of
the size of vocabulary and the average length of reports.
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Table 1. Performance comparisons of the proposed KiUT with existing methods on the test sets of MIMIC-CXR and IU-Xray datasets
with respect to NLG and CE metrics. The best values are highlighted in bold.

Dataset Method NLG Metric CE Metric
Bleu1 Bleu2 Bleu3 Bleu4 Meteor Rouge L Precision Recall F1

SentSAT+KG [44] 0.441 0.291 0.203 0.147 − 0.367 − − −
R2GenCMN [3] 0.470 0.304 0.219 0.165 0.187 0.371 − − −

IU- PPKED [27] 0.483 0.315 0.224 0.168 0.190 0.376 − − −
Xray AlignTrans [41] 0.484 0.313 0.225 0.173 0.204 0.379 − − −

Contrastive [28] 0.492 0.314 0.222 0.169 0.193 0.381 − − −
XPRONET [38] 0.525 0.357 0.262 0.199 0.220 0.411 − − −
Ours 0.525 0.360 0.251 0.185 0.242 0.409 − − −
Up-Down [1] 0.317 0.195 0.130 0.092 0.128 0.267 0.320 0.231 0.238
Att2in [33] 0.325 0.203 0.136 0.096 0.134 0.276 0.322 0.239 0.249
R2GenCMN [3] 0.353 0.218 0.145 0.103 0.142 0.277 0.333 0.273 0.276

MIMIC PPKED [27] 0.360 0.224 0.149 0.106 0.149 0.284 − − −
CXR Contrastive [28] 0.350 0.219 0.152 0.109 0.151 0.283 0.352 0.298 0.303

AlignTrans [41] 0.378 0.235 0.156 0.112 0.158 0.283 − − −
XPRONET [38] 0.344 0.215 0.146 0.105 0.138 0.279 − − −
Ours 0.393 0.243 0.159 0.113 0.160 0.285 0.371 0.318 0.321

763

4338

Figure 5. The size of vocabulary and the average length of reports
for two datasets.

4.2. Implementation Details

Following the previous work [3, 4, 38], we adopt the
ResNet-101 [11] pertained on the ImageNet [19] to extract
image region features. The obtained features are further
projected into 512-dimension in the shape of 7 × 7, i.e. S
is 49 and d is 512. To ensure consistency with the exist-
ing methods setting [3,27,38], we utilize paired images of a
patient as the input for IU-Xray and one image for MIMIC-
CXR. For the encoder-decoder architecture, we follow the
implementation of a Transformer-based model and keep
the inner structure and parameters untouched. To facili-
tate the method, we use XRayVison models, a pre-trained
DenseNet-121 [14] on radiology images, to generate prob-
abilities for the mentioned symptoms graph.

4.3. Metrics

To gauge the performance, we employ the widely-used
natural language generation (NLG) metrics and clinical ef-
ficacy (CE) metrics. We adopt the standard evaluation pro-
tocol to calculate the captioning metrics: BLEU [32], ME-
TEOR [2] and ROUGE-L [25]. And for the clinical efficacy,
we apply CheXpert [15] to label the generated reports and
compare the labeling results with ground truths in 14 cate-
gories of diseases through precision, recall and F1.

4.4. Comparison with state-of-the-art

To demonstrate the effectiveness, we compare the perfor-
mances of our model with a wide range of state-of-the-art
models on the MIMIC-CXR and IU-Xray. Tab. 1 shows the
comparison results on both NLG and CE metrics. The mod-
els we compare to include Up-Down [1], R2GenCMN [3],
PPKED [27], XPRONET [38], et al. As shown in Tab. 1,
our KiUT outperforms state-of-the-art methods across all
metrics on the MIMIC-CXR. Compared to the methods not
specially designed for the medical domain [1, 3, 33], our
model shows a notable improvement. Furthermore, the re-
sult validates that our knowledge injection strategy, i.e., in-
troducing a symptom graph in the final decoding step, per-
forms better than those methods that are specially designed
for radiology report generation [27, 28, 38, 41]. Moreover,
the superior clinical efficacy scores that measure the accu-
racy of generated reports for clinical abnormalities demon-
strate that our approach can produce higher-quality descrip-
tions for clinical abnormalities.

Our model also significantly outperforms all the other
methods in terms of the evaluation metrics on the IU-
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Table 2. Ablation study of our method on the MIMIC-CXR dataset, which includes the RR-Encoder and IK-Distiller.

Dataset RR-Encoder IK-Distiller Metric

ER IR Contextual Clinical Bleu1 Bleu2 Bleu3 Bleu4 Meteor Rouge L

✓ ✓ 0.373 0.224 0.148 0.106 0.137 0.278
✓ ✓ ✓ 0.382 0.231 0.153 0.110 0.143 0.278

✓ ✓ ✓ 0.379 0.230 0.154 0.110 0.144 0.281
MIMIC-CXR ✓ ✓ 0.337 0.207 0.139 0.099 0.132 0.273

✓ ✓ ✓ 0.361 0.218 0.146 0.101 0.136 0.275
✓ ✓ ✓ 0.371 0.224 0.149 0.108 0.141 0.278
✓ ✓ ✓ ✓ 0.393 0.243 0.159 0.113 0.160 0.285

Xray datasets, except some benchmarks on the IU-Xray are
slightly inferior to XPRONET [38]. This could be partly
explained by XPRONET adopting cross-modal prototypes
to record the information following [3]. The cross-modal
module is easier to learn informative features in the small
dataset IU-Xray, but fails to learn adequate information in
the MIMIC-CXR whose size is almost 100 times larger than
IU-Xray. As Fig. 5 shows, the length of reports in MIMIC-
CXR is longer than that in IU-Xray. This is further reflected
in our proposed model has better generalizability.

Table 3. Quantitative analysis for the U-connection struc-
ture. The experiments conducted on M2Transformer, RSTNet,
R2GenCMN (R2CMN) and our KiUT. RSTNet and R2CMN ad-
pot the last connection schema.

Dataset Method Bleu1 Bleu4 Meteor Rouge L

M2Trans [7] 0.808 0.391 0.292 0.586
M2Trans1−to−1 0.803 0.382 0.289 0.582

COCO M2TransU 0.808 0.391 0.289 0.583
test [26] RSTNet [43] 0.811 0.393 0.294 0.588

RSTNet1−to−1 0.809 0.398 0.288 0.581
RSTNetU 0.814 0.403 0.293 0.591
R2CMN [3] 0.353 0.103 0.142 0.277
R2CMN1−to−1 0.356 0.101 0.141 0.273

MIMIC R2CMNU 0.363 0.106 0.142 0.276
CXR KiUTlast 0.372 0.109 0.142 0.279

KiUT1−to−1 0.380 0.110 0.143 0.281
KiUTU 0.393 0.113 0.160 0.285

4.5. Ablation Studies

To fully investigate the contribution of our proposed Re-
gion Relationship Encoder(RR-Encoder), Injected Knowl-
edge Distiller(IK-Distiller), and the U-connection schema.
We conduct a quantitative analysis to compare each compo-
nent. The main results are shown in Tab. 2 and Tab. 3.

Effect of RR-Encoder We start from a basic encoder
without the extrinsic relationship (ER) and the intrinsic re-
lationship (IR). Then we add ER and IR, respectively. Com-
paring the results in Tab. 2, both ER and IR can boost the

performance for the base transformer encoder, e.g., 0.373
→ 0.379 and 0.373 → 0.382 in BLEU-1 score respectively.
As the results show, IR brings a more considerable improve-
ment than ER (0.382 BLEU-1 vs. 0.379 BLEU-1), which
indicates that exploiting the intrinsic relationship is effec-
tive when encoding radiology image regions. The perfor-
mance gain of RR-Encoder comes from the similar anatom-
ical structure of human organs, in which the extrinsic and
intrinsic relationship is beneficial for extracting the inher-
ent information of chest X-rays images.

Effect of IK-Distiller We evaluate the impact of the
proposed contextual knowledge and clinical knowledge in
IK-Distiller. Specifically, the distiller without contextual
feature and clinical feature is a transformer-based decoder
layer. Tab. 2 shows these two additional knowledge feature
significantly boost the performance as a dramatic reduction
can be seen when both of them are removed (from 0.393
to 0.337). In detail, the contextual feature is essential in
generating long free text, such as radiology reports, since
there are a certain number of tokens in a long text that is
not related to the input images and should be inferred from
the contexts. For the clinical feature, it helps the model to
obtain a radiologist-like ability with external knowledge in
generating the description of the abnormalities. With clin-
ical features, the decoding process can be regarded as a
report writing process of a radiologist, who examines the
image first and employs the related clinical knowledge to
complete a report. Overall, since contextual features and
clinical features benefit the performance from different per-
spectives, adopting IK-Distiller can lead to generating more
accurate reports with abnormalities descriptions.

Analysis of Connection We evaluate the role of the U-
connection between the encoder and decoder layers. In
the previous work, the transformer-based model has been
successfully applied to the captioning tasks with the orig-
inal connection structure for uni-modal scenarios like ma-
chine translation. We speculate that the generating task in
cross-modal scenarios requires more specific architectures.
Thus we propose U-connection and compare variations of
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There are moderate bilateral pleural effusions with overlying atelectasis, underlying 
consolidation not excluded.  Mild prominence of the interstitial markings suggests mild 
pulmonary edema.  The cardiac silhouette is mildly enlarged.  The mediastinal 
contours are unremarkable.  There is no evidence of pneumothorax.

Frontal and Lateral views of the chest were obtained. There are moderate bilateral 
pleural effusions with overlying atelectasis underlying consolidation is not excluded. 
The cardiac silhouette remains enlarged. The aorta is calcified and tortuous. No 
overt pulmonary edema is seen.

Ground Truth

KiUT
Lung

AtelectasisEffusion

Pleural

Heart

Enlarged
Cardiomediastinum

PA and lateral views of the chest. There is mild bibasilar atelectasis. Persistent 
slight elevation of the right hemidiaphragm. There is no focal parenchymal 
opacities concerning for pneumonia. There is no pleural effusion or pneumothorax. 
The cardiac and mediastinal silhouettes are stable. Multiple surgical clips in the left 
upper quadrant.

Frontal and lateral views of the chest were obtained. There are low lung volumes 
which accentuate the bronchovascular markings. Given this there is mild elevation 
of the right hemidiaphragm. No definite focal consolidation is seen. There is no 
pleural effusion or pneumothorax. The cardiac and mediastinal silhouettes are stable. 
Surgical clips are seen in the upper abdomen.

Ground Truth

KiUT
Lung

Atelectasis

PleuralOthers

Support Devices Thickening

Pneumonia Lesion

Radiology Image Labeled Image Related Symptom Graph Ground Truth and Generated Report

Figure 6. The visualization of the KiUT. The colored bounding regions in labeled and colored text in reports represent the abnormalities.
The symptom graph represents a symptom subgraph inferred from the input image and extracted in our graph. Different colors indicate
different symptoms. Different bounding shapes of one symptom mean different medical manifestations in clinical diagnosis.

the original Transformer connection structure with it. As
shown in Tab. 3, we introduce different connection meth-
ods in natural image caption models and radiology report
generation models. It can be seen that the 1-to-1 connec-
tion schema where the i-th decoder layer is only connected
to the corresponding i-th encoder layer can bring an im-
provement with respect to only applying the output of the
last encoder layer. Furthermore, our proposed U-connection
can boost the performance of R2GenCMN (from 0.353 to
0.363 in the BLEU-1 score). More encouragingly, the U-
connection schema can achieve comparable performances
as the meshed connection [7] with a simple structure and
fewer parameters. Thus, we confirm that exploiting the in-
teraction between the encoder and decoder is beneficial, and
the U-connection is more conformable in the cross-modal
scenario than the other connection schema.

4.6. Qualitative Analysis

To better understand the effectiveness of our model,
qualitative examples are given in Fig. 6. Intuitively, the
reports generated by KiUT are accurate and robust, which
show significant alignment with ground truth reports. As
the figure shows, our model can learn from radiology image
features and extract the relevant symptoms from the symp-
tom graph (e.g., “enlarged cardiomediastinum”, “pleural ef-
fusions” and “atelectasis”). It is worth noting that our model
can find and describe some subtle observations, such as
“support devices” and “slight elevation of the right hemidi-
aphragm”. This could be attributed to the well-designed
U-connection for multi-level interaction and the injected
knowledge. On the other hand, these examples indicate the

ability of our model to accurately discriminate and describe
the different clinical manifestations of the same symptom
(the blue labels). Owing to the employment of injected
knowledge distiller, our model also has the certain ability
to reason and write. As the example shown in Fig. 1 (GT:
“The cardiac silhouette also appears enlarged, but it is dif-
ficult to completely assess the left border given the large
pleural effusion.” and Gen: “The cardiac silhouette is dif-
ficult to assess due to the left base opacity.”), the sentence
should be generated according to the context and the corre-
spondence of different symptoms. More visualizations are
included in the supplementary material.

5. Conclusion

In this paper, we present KiUT, a novel framework for ra-
diology report generation that focuses on extracting and dis-
tilling multi-level information and multiple injected knowl-
edge. Our model encodes images with the extrinsic and
intrinsic relationships among image regions and decodes
words through an injected knowledge distiller. We propose
a novel U-connection schema to exploit the interaction be-
tween the encoder and decoder, which is unprecedented for
other architectures in such a cross-modal scenario. Exper-
imental results on the MIMIC-CXR and IU-Xray datasets
demonstrate that our approach achieves a state-of-the-art
performance and outperforms recent research from the ex-
ternal knowledge view. Ablation studies also prove the ef-
fectiveness of the proposed parts. We leave sophisticated
knowledge constructing and structured report template fill-
ing solutions as future work.
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