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Abstract

For point cloud reconstruction-related tasks, the recon-
struction losses to evaluate the shape differences between
reconstructed results and the ground truths are typically
used to train the task networks. Most existing works mea-
sure the training loss with point-to-point distance, which
may introduce extra defects as predefined matching rules
may deviate from the real shape differences. Although some
learning-based works have been proposed to overcome the
weaknesses of manually-defined rules, they still measure the
shape differences in 3D Euclidean space, which may limit
their ability to capture defects in reconstructed shapes. In
this work, we propose a learning-based Contrastive Adver-
sarial Loss (CALoss) to measure the point cloud reconstruc-
tion loss dynamically in a non-linear representation space
by combining the contrastive constraint with the adversar-
ial strategy. Specifically, we use the contrastive constraint
to help CALoss learn a representation space with shape sim-
ilarity, while we introduce the adversarial strategy to help
CALoss mine differences between reconstructed results and
ground truths. According to experiments on reconstruction-
related tasks, CALoss can help task networks improve re-
construction performances and learn more representative
representations.

1. Introduction
Point clouds, as the common description for 3D shapes,

have been broadly used in many areas such as 3D detec-
tion [17, 18] and surface reconstruction [9, 13, 19]. For the
point cloud reconstruction-related tasks [5, 7, 11, 16], net-
works need to predict point clouds as similar as possible
to the ground truths. Reconstruction losses that can dif-
ferentiably calculate the shape differences between recon-
structed results and ground truths are required to train the
task networks. Existing works often use the matching-based

* means the corresponding author

Figure 1. Sg and So denote ground truths and point clouds gen-
erated by the task network. Sp is a positive sample with similar
shapes as Sg acquired by perturbation [2]. Matching-based losses
measure distances between points matched by different predefined
rules. PCLoss [6] learns to extract descriptors in 3D Euclidean
space by linearly weighting coordinates according to their dis-
tances to predicted center points, while our method dynamically
measures the shape differences with distances between learned
global representations in the constructed representation space. Lp

and Lr denote representation distances between Sg , Sp and Sg ,
So, respectively. Ladv

r is an adversarial loss to maximize represen-
tation distances between Sg , So. Ladv

r and Lp are used to optimize
CALoss, while Lr is adopted to train the task network.

reconstruction losses Chamfer Distance (CD) and Earth
Mover’s Distance (EMD) to constrain shape differences.
CD matches points firstly with their nearest neighbors in
another point cloud and then calculates the shape difference
as average point-to-point distance, while EMD calculates
the average point-to-point distance under an optimization-
based global matching. We can find that CD and EMD
actually measure the distances between matched points in-
stead of the distances between shapes. As the predefined
matching rules are static and unlearnable, training results
of CD and EMD may fall into inappropriate local mini-
mums where the reconstruction losses are small but the
shapes are obviously different. Learning-based losses in
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PFNet [8], PUGAN [10], and CRN [21] introduce extra su-
pervision from discriminators trained with the adversarial
strategy to find the detailed differences. Their reconstruc-
tion performances are improved by introducing adversar-
ial losses, while they still need CD/EMD to evaluate the
basic shape distances and cannot fully get rid of the influ-
ence from predefined matching rules. PCLoss [6] presents
a reconstruction loss measured by the distances between ex-
tracted intermediate descriptors in 3D Euclidean space with-
out any manually-defined matching rule, which is updated
together with the task network in a generative-adversarial
process to search shape differences during training. How-
ever, the descriptor extraction in Euclidean space actually
limits the searching of shape differences, while the training
efficiency is also restricted as the descriptors are constructed
with dense connections between multiple predicted center
points and all points. In summary, existing reconstruction
losses mainly rely on distances in 3D Euclidean space to
measure the shape differences.

In this work, we propose a novel framework named Con-
trastive Adversarial Loss (CALoss) learning to measure the
point cloud reconstruction loss dynamically in a high di-
mensional representation space constructed by a series of
fully differentiable structures. The differences between our
work and existing works are presented in Fig. 1. CALoss
is composed of Lp, Lr, and Ladv

r acquired from distances
between global representations.Ladv

r and Lp are used to op-
timize CALoss, where Lr is used to train the task network.

We introduce Lp as the contrastive constraint to help
CALoss construct a representation space with the shape sim-
ilarity that similar shapes should have close representations.
In this way, by adding adversarial loss on representations,
Ladv
r can guide CALoss to search for the shape differences

between ground truths Sg and reconstructed results So. By
updating dynamically according to the reconstructed results
in each iteration, CALoss can continuously find existing de-
fects in reconstructed shapes and prevent the task network
from falling into unexpected local minimums. As the mea-
surement for shape differences is implemented in non-linear
representation space, CALoss has more extensive search-
ing space. Besides, the representations adopted to measure
shape differences are aggregated with the global pooling
operation without any requirement of dense connections as
PCLoss [6], which can improve the training efficiency.

Our contribution in this work can be summarized as

• We propose a novel Contrastive Adversarial Loss
(CALoss) learning to measure the point cloud
reconstruction loss with distances between high-
dimensional global representations.

• By combining the contrastive constraint and adversar-
ial training strategy, CALoss can construct a represen-
tation space where similar shapes have close represen-

tations and learn to search for shape differences in this
space dynamically during training.

• Experiments on point cloud reconstruction, unsuper-
vised classification, and point cloud completion con-
firm that CALoss can help the task network improve
reconstruction performances and learn more represen-
tative representations with higher training efficiency.

2. Related Work
2.1. Point Cloud Reconstruction-related Tasks

Base on the basic point cloud reconstruction framework
to predict similar output point clouds as inputs, e.g. auto-
encoder, many related tasks have been developed such as
the unsupervised classification and point cloud completion.
The unsupervised classification task raised by [1, 25] trains
auto-encoders to learn representations of point clouds. The
representations are then adopted to train a Support Vec-
tor Machine (SVM) with provided labels for further clas-
sification. The classification accuracy of SVM can reflect
the distinctiveness of learned representations. Many re-
searchers have improved the classification performances by
modifying the network structures [12, 22, 28], while some
researchers [16] introduce extra supervision to enhance the
learning effection. Point cloud completion predicts com-
pleted point clouds as identical as possible to the ground
truths from partial input point clouds. Early works [11, 27]
often use typical auto-encoders to abstract long global fea-
tures from partial inputs and predict completed results,
while recent work [7, 21] add more diverse network struc-
tures to improve the completion performances. Reconstruc-
tion losses CD or EMD to capture the shape differences are
always adopted in these works. In this condition, we adopt
three tasks including basic point cloud reconstruction, point
cloud unsupervised classification, and completion to evalu-
ate the performances of CALoss.

2.2. Losses to Evaluate Shape Differences

The Chamfer Distance (CD) [27] and Earth Mover’s Dis-
tance (EMD) [3] are two basic and broadly used recon-
struction losses to constrain the shape differences, which
calculate the distance between point clouds with different
matching strategies. With the matching by nearest neigh-
bors, CD concentrates on differences between contours,
while it often constructs non-uniform surfaces as discussed
in [3, 23]. EMD aims to find an one-to-one optimal map-
ping ϕ from one point set to another by optimizing the min-
imum matching distances between the point sets. Though
EMD can create more uniform shapes, it takes large time
cost due to the optimized matching and can only be ap-
plied to reconstructed output with the same number of in-
put, where the quality of optimization also limits the per-
formances. Since the development of GAN [4], researchers
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Figure 2. The pipeline of CALoss. Sg and So denote ground truths and point clouds generated by the task network. Sp is acquired from
Sg with small perturbations. f(·) is a group of 1D-convolutions to transform point clouds Sg , Sp, and So with Ng , Np and No points into
D-dim features Fg , Fp, and Fo. g(·) denotes our proposed Adaptive Pooling to aggregate Fg , Fp, and Fo into global representations Cg ,
Cp, and Co with multiple weight distributions, where h(·) is Pooling Controller predicting parameters δ to control the widths of weight
distributions in g(·) according to Fg . Cg , Cp, and Co will be used to calculate the required losses Lp, Ladv

r , and Lr to train CALoss
and the task network. We introduce adversarial loss to dynamically search for the shape defects in So, while maximizing representation
distances in a mini-batch like [2] may not work because it lacks dynamic feedback from So and cannot capture detailed shape differences.

have introduced different learning-based discriminators in
reconstruction losses as extra supervisions to better cap-
ture the shape differences and improve reconstruction per-
formances [8, 10, 21]. However, these works still need CD
or EMD as basic shape constraints. Some works [14,23] fur-
ther modify the matching rules to improve the constraining
performances. All these works measure shape differences
based on the point-to-point distance calculated with prede-
fined matching rules. DPDist [20] estimates the shape dis-
tances with a pre-trained network without matching. But it
is mainly designed for registration and has inferior perfor-
mances on point cloud reconstruction. PCLoss [6] presents
a fully learning-based reconstruction loss to overcome the
limitation of predefined matching rules, which learns to ag-
gregate descriptors from point clouds and measure recon-
struction losses with distances between extracted descrip-
tors. It learns to search shape differences by an adversarial
training together with the task network.

However, PCLoss constructs descriptors in 3D Eu-
clidean space with linear weights calculated by distances
between multiple predicted center points and all existing
points, which may limit both its searching space for shape
differences and training efficiency. In this work, we propose
CALoss to measure the reconstruction losses in a high di-
mensional representation space. By the concise designation
with only non-linear transformation and the global pooling
operation, CALoss can achieve both better performances
and higher training efficiency than existing learning-based

reconstruction losses.

3. Methodology
The pipeline of CALoss is presented as Fig. 2. The re-

constructed result So and ground truth Sg from the task is
fed into CALoss to evaluate the shape differences. A pos-
itive sample Sp is constructed by small perturbations. Sg ,
Sp, and So are transformed into features Fg , Fp and Fo by
1-D convolutions f(·). Features Fg , Fp, and Fo are finally
aggregated into global representations Cg , Cp, and Co with
Adaptive Pooling g(·) to calculate losses Lp, Ladv

r , and Lr.
Lp and Lr can be calculated by:

Lp = ∥Cg, Cp∥1, Lr = ∥Cg, Co∥1, (1)

where the adversarial loss Ladv
r is defined as:

Ladv
r = −log(Lr + σr). (2)

σr is a tiny value to avoid errors when Lr → 0. These losses
are used to optimize CALoss and the task network together.

3.1. Perturbation Operation

In this work, we perturb ground truths Sg with tiny Gaus-
sian noises, which can be defined as

Sp = Sg +Nσ, (3)

where Nσ = randn(σ). The noise width is controlled by a
constant σ. This operation creates perturbed point clouds
with similar but different shapes as ground truths.
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Figure 3. The qualitative comparisons with different losses based on AE [1]. Our method can help the task network create more complete
shapes and clearer details.

3.2. Adaptive Pooling and Pooling Controller

Adaptive Pooling is an important operation to aggregate
features based on all points into a global representation. Un-
like max pooling or average pooling, Adaptive Pooling is
dynamically changed and controlled by Pooling Controller
during the training process. The structure of Pooling Con-
troller includes a simple network structure to predict param-
eters δ for Adaptive Pooling as shown in Fig. 2. If we
defined Con(·) as concatenation, maxpool(·), avgpool(·)
and MLP (·) as max pooling, average pooling and Multi
Layer Perceptrons (MLPs), the Pooling Controller can be
described as:

δ = h(Fg) = MLP (Con(maxpool(Fg), avgpool(Fg))).
(4)

It takes both max pooled and average pooled features to ac-
quire more extensive information about Fg . In this condi-
tion, let us take Fg as an example, then the global represen-
tation Cg can be defined as:

Cg = g(Fg, δ) =

|Fg|∑
i=1

e−∥F i
g−maxpool(Fg)∥/δ∑|Fg|

i=1 e−∥F i
g−maxpool(Fg)∥/δ

· Fg.

(5)
Cp and Co can be acquired by the same equations:

Cp = g(Fp, δ), Co = g(Fo, δ). (6)

We can see that the features are aggregated into global rep-
resentations with multiple weight distributions around the
max pooled features, where δ actually controls the widths
of weight distributions for Fg , Fp, and Fo. So, we share the
same δ for Fg , Fp, and Fo to keep that they are aggregated

Algorithm 1 Training Process

Input: Input Si, ground truths Sg , the number of itera-
tions iter, the task network TaskNet(·)
for n = 1 to iter do

Calculate output of the task network:
Sn
o = TaskNet(Sn

i ).
Let θC and θT be the parameters of CALoss and the
task network, respectively.
Fix the parameter of task network and update CALoss
by descending gradient:
∇θCLC(S

n
o , S

n
g ).

Fix CALoss and update the task network by descend-
ing gradient:
∇θTLT (S

n
o , S

n
g ).

end for

by distributions with same widths. With such an Adaptive
Pooling operation in Eq. 5 and Eq. 6, each item in Fg , Fp,
and Fo can acquire various gradients during the back propa-
gation process, instead of gradients all the same in average
pooling or only constraining max items in max pooling.

3.3. Contrastive Adversarial Training

As presented in Fig. 2, losses Lp, Ladv
r , and Lr are cal-

culated by ground truths and reconstructed results from the
task. The training losses for CALoss and the task network
can be defined as:

LC =Ladv
r +

ϵ

|Nσ|
· Lp + ϵw · |δ|2

=− log(Lr + σr) +
ϵ

|Nσ|
· Lp + ϵw · |δ|2,

(7)
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Dataset ShapeNet ModelNet40

Networks AE Folding LAE LFolding AE Folding LAE LFolding

Metrics MCD HD MCD HD MCD HD MCD HD MCD HD MCD HD MCD HD MCD HD

CD [3] 0.32 1.87 0.40 4.13 0.31 1.02 0.28 1.20 0.75 6.08 0.83 7.35 0.44 1.69 0.39 2.16
EMD [3] 0.25 2.23 - - 0.23 2.48 0.21 2.49 0.61 6.18 - - 0.33 3.82 0.32 3.88
PUD [10] 0.32 1.88 0.36 3.83 0.32 1.02 0.27 1.11 0.73 5.85 0.77 7.29 0.45 1.71 0.38 1.97
PFD [8] 0.32 1.87 0.41 4.14 0.31 0.99 0.26 0.97 0.74 6.28 0.88 7.55 0.44 1.69 0.35 1.69

CRND [21] 0.31 1.86 0.34 3.17 0.31 1.00 0.26 0.99 0.71 5.66 0.76 7.24 0.44 1.69 0.35 1.76
DCD [23] 0.28 1.75 0.91 8.41 0.13 0.89 0.18 1.20 0.68 6.02 1.22 11.86 0.17 1.37 0.24 1.81

PCLoss [6] 0.23 1.66 0.33 2.57 0.13 0.65 0.14 0.76 0.59 5.30 0.75 6.65 0.17 1.05 0.19 1.37
Ours 0.21 1.53 0.30 2.57 0.12 0.76 0.12 0.79 0.58 5.23 0.72 6.32 0.16 1.18 0.16 1.24

Table 1. Comparison with reconstruction losses on ShapeNet (SP) and ModelNet40 (MN40). Bold marks the best results.

and
LT = Lr, (8)

where ϵ and ϵw are two hyper-parameters to adjust the
weights. The whole training process for CALoss and the
task network can be described as Alg. 1. Parameters of
CALoss and the task network are updated by turns in each
iteration. CALoss is updated by Ladv

r and Lp. Lp is used to
constrain that similar shapes Sp, Sg have close representa-
tions, where Ladv

r can promote CALoss to find the shape dif-
ferences between Sg and So. We give a dynamic weight for
Lp controlled by 1/|Nσ|, which means more noised Sp are
allowed to have relatively further representations. Besides,
we add a L2 regularization for δ to prevent the weights for
Fg , Fp, and Fo from over-smoothness. According to Eq. 5,
too large δ will result in roughly the same weighting for
each item in Fg , Fp, or Fo, which is harmful for deliver-
ing variable gradients. The task network is optimized by Lr

to reduce the differences found by CALoss between recon-
structed results So and ground truth Sg .

4. Experiments

4.1. Datasets and Implementation Details

In this work, three point cloud datasets: ShapeNet [26],
ModelNet10 (MN10), and ModelNet40 (MN40) [24] are
adopted. We use the ShapeNet part dataset [1, 25] con-
taining 12288 models in the train split and 2874 models in
the test split. ModelNet10 and ModelNet40 are subsets of
ModelNet, which contain 10 categories and 40 categories
of CAD models, respectively. Each model consists of 2048
points randomly sampled from the surfaces of original mesh
models. We conduct comparisons with other losses on three
tasks, including point cloud reconstruction, unsupervised
classification, and point cloud completion.

For the reconstruction task, we train networks with dif-
ferent reconstruction losses on the train split of ShapeNet
part dataset and evaluate performances on both the test split

of ShapeNet and MN40 to provide a robust and exhaus-
tive evaluation. For the unsupervised classification task,
we compare the performances of different losses on mul-
tiple auto-encoders constructed by [1, 15, 22, 25] following
PCLoss [6]. As for GLRNet [16], we follow its setting and
retrain it with the original adopted CD and CALoss to ob-
serve the differences. For the point cloud completion task,
we introduce 3 popular works PCN [27], CRN [21], and
RFNet [7] to compare the completion performances before
and after replacing the adopted reconstruction losses with
CALoss. PCN and CRN are trained on the dataset provided
by CRN with 2048 points to compare the completion per-
formances on sparse point clouds, while RFNet is trained
on the corresponding dataset with 16384 points to see the
completion performances on dense point clouds. All data
are normalized to −1 ∼ 1 for the fairness of comparison.

Metrics. To provide a clear and accurate evaluation of
the performance, we adopt Multi-scale Chamfer Distance
(MCD) and Hausdorff Distance (HD) introduced in [6] as
metrics for reconstruction quality assessment in this work.

4.2. Comparisons on Point Cloud Reconstruction

In this section, we conduct comparisons with different
reconstruction losses based on a few commonly-used net-
works AE [1], Folding [25] and local feature-based LAE
and LFolding following PCLoss [6]. We retrain the net-
works with different reconstruction losses and evaluate the
reconstruction errors of trained networks on the test split
of ShapeNet and ModelNet40. As introduced in Sec. 2.2,
CD and EMD are widely-used matching-based reconstruc-
tion losses, while PUD [10], PFD [8], CRND [21] are con-
straints introducing extra discriminators to improve the re-
construction performances. DCD [23] is a recent variant
of CD achieved by modifying the matching rule. In this
work, we choose the better-performed LNSA proposed in
PCLoss [6] as PCLoss for comparison in following sections.

The quantitative results are presented in Table 1. We
can see that CALoss can achieve the best performances in
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most conditions. To intuitively present the differences in
reconstructed results, we also conduct a qualitative compar-
ison in Fig. 3. We can see that CD may create quite non-
uniform results with missing local details, while EMD may
produce distorted shapes. Though PUD, CRND, and PFD
can improve the integrity of shapes, they still produce simi-
lar shapes as CD contained within. PCLoss improves both
the uniformity and integrity of reconstructed shapes. But it
gets relatively rough details as shown in Fig. 3. As shown
by circled regions in the last two rows of Fig. 3, the results
of PCLoss create rough contours on chair legs and lamp
stands, while our method produces clearer details on these
regions. It confirms the effectiveness of CALoss.

4.3. Comparisons on Unsupervised Classification

In this section, we evaluate the performances of CALoss
on point cloud unsupervised classification based on multi-
ple auto-encoders constructed by [1, 15, 22, 25] with 128-
dim bottleneck following PCLoss [6], and GLRNet [16].
The experimental settings are kept the same as [1, 16, 25].

The auto-encoders are trained on ShapeNet and applied
on ModelNet10 and ModelNet40 to extract point cloud rep-
resentations, where the representations extracted from the
training splits and corresponding labels are adopted to train
Supported Vector Machines (SVMs). Then the distinguisha-
bility of extracted representations can be evaluated by the
classification accuracy of these SVMs. We conduct com-
parisons on these networks by replacing the adopted recon-
struction losses to train the auto-encoders with CALoss and
observe the changing in classification accuracy. From the re-
sults in Table 2, we can see that most networks can achieve
improvements by replacing the reconstruction losses with
CALoss, which confirms that CALoss can help the task net-
works learn more representative representations.

4.4. Comparisons on Point Cloud Completion

Point Cloud Completion predicts completed results as
similar as possible to ground truths from partial inputs,
which is usually trained with reconstruction losses between
completed results and ground truths. To further verify the
performances of CALoss, we apply it to a few popular point
cloud completion works, including PCN [27], CRN [21],
and RFNet [7]. As these works may have multilevel con-
straints, we conduct comparisons by replacing the recon-
struction losses of the last level with CALoss and retrain-
ing the networks. The results are presented in Table 3. The
completion performances have improvements in most con-
ditions by introducing CALoss, which further confirms that
CALoss is effective for different task networks.

4.5. Analysis about the Training Process

Visualization during training. We visualize a model
generated by the task network AE [1] during training to ob-

TaskNet Dataset Methods
CD EMD PCLoss Ours

AE MN10 90.60 89.49 91.48 91.48
MN40 85.92 85.47 86.36 86.81

Folding MN10 91.03 - 91.70 92.26
MN40 85.22 - 85.35 86.24

AE
(PN++)

MN10 90.38 90.15 92.04 93.47
MN40 88.03 88.07 87.54 88.15

Folding
(PN++)

MN10 91.48 - 91.48 92.59
MN40 87.01 - 86.73 87.13

AE
(DGCNN)

MN10 91.37 91.26 92.37 92.81
MN40 87.50 87.54 88.11 87.46

Folding
(DGCNN)

MN10 91.26 - 91.81 92.70
MN40 86.85 - 87.50 87.74

GLRNet MN10 93.58 - - 95.24
MN40 91.07 - - 91.31

Table 2. Comparison on unsupervised classification.

Network PCN CRN RFNet RFNet*

Metri MCD HD MCD HD MCD HD MCD HD

w/o CALoss 0.31 2.67 0.29 2.42 0.21 2.92 0.29 3.82
w/ CALoss 0.31 2.55 0.29 2.44 0.20 2.63 0.27 3.28

Table 3. Comparisons on point cloud completion. RFNet and
RFNet* denote results evaluated on known and novel categories
on ShapeNet following RFNet [7].

serve the convergence of different losses. The results are
presented in Fig. 4. We can see that CD and EMD have
unchanged results with obvious defects after 200 iterations,
which means they actually converge to inappropriate local
minimums. The reconstructed results trained with CALoss
converge to a simple shape after 100 iterations, which may
be the effect of contrastive constraint to help the task net-
work find a shape similar to ground truths. From 200 ∼ 600
iterations, the trained results of CALoss gradually remove
differences and approach the ground truth, which confirms
the adversarial loss can continuously help find the defects
and promote the task network to get better performances.
Although PCLoss also removes defects during iterations, it
produces rougher results, which may come from the limita-
tion of 3D Euclidean space-based descriptors.

Training curves. In this section, we visualize the recon-
struction errors based on the AE network [1] and ShapeNet
dataset [24] through the training iterations to observe the
convergences of difference loss functions. We can see that
our method has relatively inferior performances at the be-
ginning of iterations, where it is learning to search shape
differences. But it will converge steadily to low errors after
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Figure 4. The visualization of training processes with different reconstruction losses. CD/EMD fall into local minimums and acquire
unchanged results after 200 iterations, while PCLoss produces relatively rough shapes. Our method can gradually remove the shape
defects and create more accurate results.
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Figure 5. The reconstruction error curves through the iterations.

enough iterations. We can also see that CALoss converge
faster than PCLoss, which reveals the priority of our repre-
sentation space-based measurement.

4.6. Training Efficiency Comparison

In this section, we evaluate the training efficiencies of dif-
ferent reconstruction losses on the AE network [1], which
are measured by the time consumed for the training of a sin-
gle batch. The results are presented in Table 4. Though our
method performs slightly slower than CD, it has the highest
training efficiency in learning-based losses.

Non-learning Learning-based

Methods CD EMD PUD PFD CRND PCLoss Ours

Time(ms) 23 216 77 45 97 57 39

Table 4. Training efficiency comparison conducted on an NVIDIA
2080ti with a 2.9GHz i5-9400 CPU.

Figure 6. Qualitative comparisons between our method dynami-
cally updated and pre-trained without updating.

4.7. Necessity of the Dynamic Updating

CALoss is dynamically optimized together with the task
network as claimed in Sec. 3. To show the necessity of the
dynamic updating, we make an attempt to train the task net-
work AE [1] with a pre-trained CALoss directly without
further updating. The results are demonstrated in Fig. 6
and Table 5. We can see that the task network trained
with pre-trained CALoss can only reconstruct quite rough
shapes, which confirms that training with CALoss is actu-
ally a continuous procedure to search shape differences be-
tween ground truths and the task network outputs.

4.8. Ablation Study

Ablation study for components. We conduct an abla-
tion study for the components adopted in CALoss as men-
tioned in Eq. 7. The results are presented in Table 6. Lp and
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Pre-trained Ours

Dataset SP MN40 SP MN40

MCD 0.75 1.04 0.21 0.58
HD 14.48 14.15 1.53 5.23

Table 5. Quantitative comparisons between our method dynami-
cally updated and pre-trained without updating.

Ladv
r are the basic contrastive and adversarial constraints,

respectively, while |δ|2 is the regularization constraint for δ.
1/|Nσ| is the dynamic coefficient for the weight of Lp.

As finding shape difference is an essential constraint to
prevent CALoss from acquiring all-zero output under the
supervision of only Lp, we remove the Ladv

r by replac-
ing it with the negative implementation of metric-learning
method [2, 16] by maximizing the representation distances
between models in the same mini-batch.

We can see that Lp and Ladv
r both have very signifi-

cant influences on the final performance, which means they
are cores of CALoss. Replacing Ladv

r with metric-learning
method has weaker results. It confirms that maximizing
representations between shapes within a mini-batch is not
enough to learn the shape differences because it lacks of dy-
namic feedback from reconstructed outputs and cannot ac-
curately find the shape differences. The regularization |σ|2
also has obvious influence, which means it is important to
control the widths of weight distributions to aggregate rep-
resentations in g(·) as shown in Fig. 2 and Eq. 5.

Lp Perturb Ladv |δ|2 1/|Nσ| MCD HD

Lp/Ladv
✓ 3.55 7.57

✓ ✓ 1.83 12.76

Others
✓ ✓ ✓ 0.77 8.13
✓ ✓ ✓ ✓ 0.22 1.63
✓ ✓ ✓ ✓ ✓ 0.21 1.53

Table 6. Ablation for components. Perturb denotes the perturba-
tion, while Lp, Ladv

r and |δ|2 are components included in Eq. 7.
1/|Nσ| is the dynamic coefficient for the weight of Lp in Eq. 7.

Ablation study for the Pooling Controller. In Pool-
ing Controller, we introduce both max pooled and average
pooled features to acquire more extensive information about
the overall distribution in Fg as presented in Fig. 2 and Eq. 4.
We conduct a simple ablation study for this operation in Ta-
ble 7. We can see that the designation of concatenation can
indeed reduce the reconstruction errors.

Ablation study the Adaptive Pooling operation. Here,
We present a simple discussion about the proposed Adap-
tive Pooling operation. From Table 8, we can see that both
max and average pooling have quite inferior performances,
which prove the necessity of Adaptive Pooling operation.

Metrics Max Avg Ours

MCD 0.22 0.23 0.21
HD 1.58 1.55 1.53

Table 7. Comparisons between different implementations of Pool-
ing Controller on ShapeNet and AE [1]. Max and Avg denote
introducing only max and average pooling, respectively.

Metrics Max Avg Ours

MCD 0.34 0.61 0.21
HD 1.72 6.79 1.53

Table 8. Comparisons between pooling operations on ShapeNet
and AE [1]. Max and Avg denote max and average pooling.

In CALoss, the pooling operation is used to aggregate
features from all points into a global representation. To train
the task network, the global representation needs to provide
variable gradients for each point feature to distinguish them.
However, average pooling can only propagate same and in-
distinguishable gradients for each points. Although max
pooling can provide different gradients for point features,
it provides a hard 0-1 distribution where only max items are
constrained. In this condition, we design such an Adaptive
Pooling to get a variable weight for each point feature ac-
cording to the distance to the max pooled feature, which
can be regarded as a "soft max pooling". All point features
can be constrained with distinguishable gradients, which is
controlled by widths of weight distributions predicted with
Pooling Controller h(·) as shown in Fig. 2 and Eq. 5.

5. Conclusion
In this work, we propose a novel learning-based frame-

work named CALoss to train the point cloud reconstruction-
related task networks by measuring the differences between
reconstructed shapes and ground truths with distances in
a representation space. With the measurement of recon-
struction loss in the learned non-linear representation space,
CALoss has more extensive searching space for shape dif-
ferences and better performances than the Euclidean space-
based methods. According to the experiments, CALoss can
achieve improvements above existing reconstruction losses
based on predefined matching rules on multiple tasks in-
cluding point cloud reconstruction, unsupervised classifica-
tion and completion, which confirms it can help the task
network achieve better reconstruction performances and ex-
tract more representative representations.
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