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Figure 1: We present Neural Kernel Surface Reconstruction (NKSR) for recovering a 3D surface from an input point cloud.

Trained directly from dense points, our method reaches state-of-the-art reconstruction quality and scalability. NKSR is also

highly generalizable: All the meshes in this figure are reconstructed using a single trained model.

Abstract

We present a novel method for reconstructing a 3D im-

plicit surface from a large-scale, sparse, and noisy point

cloud. Our approach builds upon the recently introduced

Neural Kernel Fields (NKF) [58] representation. It enjoys

similar generalization capabilities to NKF, while simulta-

neously addressing its main limitations: (a) We can scale

to large scenes through compactly supported kernel func-

tions, which enable the use of memory-efficient sparse lin-

ear solvers. (b) We are robust to noise, through a gradi-

ent fitting solve. (c) We minimize training requirements,

enabling us to learn from any dataset of dense oriented

points, and even mix training data consisting of objects and

scenes at different scales. Our method is capable of recon-

structing millions of points in a few seconds, and handling

very large scenes in an out-of-core fashion. We achieve

state-of-the-art results on reconstruction benchmarks con-

sisting of single objects (ShapeNet [5], ABC [33]), indoor

scenes (ScanNet [11], Matterport3D [4]), and outdoor

scenes (CARLA [16], Waymo [49]).

1. Introduction

The goal of 3D reconstruction is to recover geometry

from partial measurements of a shape. In this work, we aim

to map a sparse set of oriented points sampled from the sur-

face of a shape to a 3D implicit field. This is a challenging

inverse problem since point clouds acquired from real-world

sensors are often very large (millions or billions of points),

vary in sampling density, and are corrupted with sensor noise.

Furthermore, since surfaces are continuous but points are

discrete, there are many valid solutions which can explain

a given input. To address these issues, past approaches aim

to recover surfaces that agree with the input points while

satisfying some prior everywhere else in space. Classical

methods use an explicit prior (e.g. smoothness), while more

recent learning-based approaches promote a likely recon-

struction under a data-driven prior.

There are, however, key limitations to both types of tech-

niques that inhibit their application in practical situations.

Since classical methods are fast, scalable, and able to han-

dle diverse inputs, they have become an industry standard

(e.g. [32, 61]). Yet, they suffer from quality issues in the

presence of high noise or sparse inputs, often failing to re-

construct even simple geometry such as a ground plane (see

the ground in Fig. 1). On the other hand, learning-based ap-

proaches were shown to handle large noise [42], and sparse

inputs [39, 3], yet they often struggle to generalize to out-of-

distribution shapes and sampling densities as was highlighted

in [58]. These generalization issues can be attributed to the
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fact that current learning-based methods struggle to exploit

large and diverse amounts of data for training. One cause

of this is that a single forward pass can take minutes for

even moderately sized inputs (e.g. [3]), limiting training to

collections consisting of small point clouds. Furthermore,

many existing methods rely on a preprocessing step to ex-

tract supervision in the form of occupancy or signed distance

function [43, 38, 40, 3, 58]. In practice, this preprocessing

step hinders the ability to easily use diverse datasets for

training since most shape datasets (including synthetic ones

such as the popular ShapeNet [5]) consist of non-watertight

shapes, open surfaces, or contain ghost geometry from which

extracting supervision is hard.

Recently, [58] proposed Neural Kernel Fields (NKF), a

new paradigm to address the problem of generalization in 3D

reconstruction. NKF learns a data-dependent kernel, and pre-

dicts a continuous occupancy field as a linear combination of

this kernel supported on the input points. The key insights of

NKF are that a kernel explicitly encodes inductive bias, and

that solving a kernel linear interpolation problem at test time

always produces solutions that adhere to the inputs. Thus, by

training on diverse shapes, NKF can learn a good inductive

bias for the general 3D reconstruction problem rather than

for a specific dataset. While NKF achieves impressive gen-

eralization results, it suffers from two major limitations that

restrict its practical application. First, since it uses a globally

supported kernel, it requires solving a dense linear system

and cannot reconstruct inputs with more than ten thousand

input points. Second, it degrades poorly in the presence of

noise due to its interpolation of exact positional occupancy

constraints.

In this work, we build upon the excellent generalization

capability of NKF and tackle its main limitations to achieve

a practical learning-based reconstruction method that is scal-

able, fast, and robust to noise. Like NKF, our work leverages

the idea of a learned kernel for generalization, but we (1)

develop a novel, gradient-based kernel formulation which is

robust to noise, and (2) use an explicit voxel hierarchy struc-

ture and compactly supported kernels to make our interpo-

lation problem sparse, multi-scale, and capable of handling

large inputs while still producing high fidelity outputs. The

result is a learning-based yet out-of-the-box reconstruction

method that can be applied to point clouds in the wild. In

particular, it enjoys all of the following properties:

• It can generalize to out-of-distribution inputs, produc-

ing high-fidelity reconstructions, even in the presence

of sparsity and noise.

• It can be trained on the union of diverse datasets while

only requiring dense oriented points as supervision,

unlocking a new level of training data scale.

• It can reconstruct point clouds consisting of millions of

points in seconds, and scale to extremely large inputs

in an out-of-core fashion.

General Applicability
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Figure 2: Comparison to related works.

We illustrate other methods in the context of these points

visually in Fig. 2.

2. Related Work

We now give a brief overview of prior works that are

relevant to our approach. Learned kernels were investigated

in [62, 29, 41] for tasks such as few-shot transfer learning

and classification of images. In the context of 3D reconstruc-

tion, Chu et al. [9] encoded the inductive bias intrinsically

in a 3D CNN structure without training data. NKF [58] pro-

posed a novel data-dependent kernel, which improved upon

the non-learned kernel method derived from infinitely wide

ReLU networks in Neural Splines [61]. Comparably, we

use a data-dependent kernel but restrict its spatial support to

increase computational efficiency and use a gradient-based

fitting formulation to increase noise robustness. Mapping

3D points to a feature grid via a convolutional architecture

was proposed in ConvONet [43] and CIRCLE [6] for pre-

dicting an occupancy field. POCO [3] improved the quality

and performance of ConvONet by using a transformer ar-

chitecture instead of convolutions. Both methods, however,

take a long time to reconstruct even a small scene. Dif-

ferently, our feature mapping is made efficient through a

hierarchical sparse data structure. Non-dense data struc-

tures were studied in ASR [54] and DOGNN [56] which

proposed octree-based convolutional architectures for recon-

structing large scenes. Generalization to novel scenes was

addressed by LIG [21, 31] using local patches which have

smaller variability, but are very sensitive to the choice of

patch size and relies on test-time optimization with unknown

convergence properties. Similarly, our kernel weights are

fitted to the scene at prediction but the fitting is done via

a linear solver in a form of meta-learning [48]. Shape as

Points [42] learns to upsample the input points followed by

differentiable Poisson reconstruction, and this idea is further

extended by NGSolver [30] to incorporate learnable basis

functions. However, the representation power of the surface

is still bounded by the chosen family of basis functions where

non-trivial integrations have to be applied. Beyond meth-
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Figure 3: Pipeline. Our method accepts an oriented point cloud and predicts a sparse hierarchy of voxel grids containing

features as well as normals in each voxel. We then construct a sparse linear system and solve for a set of per-voxel coefficients

α. The linear system corresponds to the gram matrix arising from a kernel which depends on the predicted features, illustrated

as L and v above but mathematically defined in Eq (4). To extract the predicted surface, we evaluate the function values at the

voxel corners using a linear combination of the learned kernel basis functions, followed by dual marching cubes.

ods based on implicit surfaces, other shape reconstruction

techniques exist which leverage different output represen-

tations. These representations include dense point clouds

[46, 37, 69, 44, 45, 68, 50, 64, 65, 18, 34], polygonal meshes

[28, 7, 20, 27, 23, 59, 12, 35, 25, 47], manifold atlases

[60, 15, 24, 19, 2], and voxel grids [8, 52, 26, 63, 53, 22].

While our method uses a neural field for reconstruction,

past work has used neural fields to perform a variety of

point cloud tasks such as shape compression [51, 61], voxel

grid upsampling [43, 38], reconstruction from rotated in-

puts [14, 1] and articulated poses [13, 66].

3. Method

Our method predicts a 3D surface given a point cloud with

normals. We encode this predicted surface as the zero level

set of a Neural Kernel Field, i.e. an implicit function repre-

sented as a weighted sum of learned, positive-definite basis

functions which are conditioned on the input, and whose

weights are computed using a linear optimization in the for-

ward pass. These basis functions are supported on a sparse

voxel hierarchy which we predict from the input point cloud

using a sparse convolutional network, and depend on interpo-

lated features at each voxel corner. In the following sections,

we describe the key steps of our method, and summarize

it pictorially in Fig. 3. We additionally provide rigorous

derivations for each step in the Appendix.

3.1. Predicting a 3D Shape from Points

Given points and normals, the forward pass of our model

predicts an implicit surface as a weighted sum of learned

kernels in two steps: First, we feed the input to a sparse

convolutional network that predicts a voxel hierarchy with

features at each corner (Fig. 4). These features define a

collection of learned basis functions, which are centered at

each voxel in the hierarchy. Second, we find a set of weights

for these basis functions by solving a linear system that

encourages the predicted implicit field to have a zero value

near the input points, and to have gradients which agree

with the input normals. Optionally, we can also predict a

geometric mask, which outputs where in space to extract the

final surface, trimming away spurious geometry.

Predicting a Sparse Voxel Hierarchy. Given input points

Xin = {xin
j ∈ R

3}nin

j=1, input normals Nin = {nin
j ∈

R
3}nin

j=1, and a voxel size W , we first predict a hierarchy

of L voxel grids using a convolutional backbone digest-

ing the point cloud with concatenated normal [xin
j ,n

in
j ] ∈

R
6 for each point. Each of the predicted voxel grid has

n(1), . . . , n(L) voxels with widths W, 2W, . . . 2LW respec-

tively and any voxel with center x
(l−1)
i at level l − 1 is

contained within some voxel with center x
(l)
j at level l. The

design of such a backbone network is inspired by [57] and is

described in detail in the Appendix. We additionally predict

features z
(l)
i ∈ R

d and normals n
(l)
i ∈ R

3 for each voxel

in the hierarchy. The features z
(l)
i are employed to predict

a feature field ϕ
(l)
θ (x|Xin,Nin) which lifts the coordinates

x ∈ R
3 to d-dimenensional vectors via Bézier interpolation

followed by an MLP. Fig. 4 shows a 2D illustration of our

predicted hierarchy and features.

Sparse Neural Kernel Field Hierarchy. We encode our

reconstructed shape as the zero level set of a 3D implicit

field fθ : R3 → R defined as a hierarchical Neural Kernel
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Field, i.e., a weighted combination of positive definite kernels

which are conditioned on the inputs and centered at the

midpoints x
(l)
i ∈ R

3 of voxels in the predicted hierarchy:

fθ(x|Xin,Nin) =
∑

i,l

α
(l)
i K

(l)
θ (x,x

(l)
i |Xin,Nin). (1)

Here, α
(l)
i ∈ R are scalar coefficients at the ith voxel at level

l = 1, . . . L in the hierarchy, and K
(l)
θ is the predicted kernel

for the lth level defined as

K
(l)
θ (x,x′) = ⟨ϕ

(l)
θ (x;Xin,Nin),

ϕ
(l)
θ (x′;Xin,Nin)⟩ ·K

(l)
b (x,x′),

(2)

where ⟨·, ·⟩ is the dot product, ϕ
(l)
θ : R3 → R

d is the feature

field extracted from the hierarchy, and K
(l)
b : R3 ×R

3 → R

is the Bézier Kernel, which decays to zero in a one-voxel (at

level-l) neighborhood around its origin (See Appendix for

definition).

Computing a 3D implicit surface from points. Given

our predicted voxel hierarchy, learned kernels K
(l)
θ , and

predicted normals n
(l)
j , we compute an implicit surface by

finding optimal coefficients α
∗ = {{α

(l)
i }Ll=1}

n(l)

i=1 for the

kernel field (1). We find these coefficients by exactly mini-

mizing the following loss in the forward pass of our model

(omitting the conditioning of fθ on Xin,Nin for brevity):

α
∗ = argmin

α
(l)
i

L′

∑

l=1

n(l)
∑

i=1

∥∇xfθ(x
(l)
i )− n

(l)
i ∥22+

nin
∑

j=1

|fθ(x
in
j )|

2,

(3)

where L′ ≤ L is a hyper-parameter for the hierarchy. By

minimizing this loss, we want our Neural Kernel Field fθ to

have a gradient which agrees with the normals at the voxel

centers (hence regions around the surface), and to have a

scalar value near zero at all the input points Xin. Since fθ is

linear in the parameters α
(l)
i , we find the optimal coefficients

α
∗ by solving the linear system:

(Q⊤Q+G⊤G)α = Q⊤
n, (4)

where n are the predicted normal vectors n
(l)
i stacked into a

single vector, α is the vector of coefficients α
(l)
i , and

G =
[

G(1) . . . G(L)
]

,

Q =
[

Q(1) . . . Q(L)
]

,
(5)

G
(l)
i,j = Kθ(x

in
i ,x

(l)
j ), Q

(l)
i,j = ∂

x
(l′)
i

Kθ(x
(l′)
i ,x

(l)
j ) (6)

are the gram matrix and partial derivatives of the gram matrix

at the voxel centers where normals are defined, respectively.

We remark that the linear system (4) is sparse due to

modulation with the compactly supported K
(l)
b , and positive

definite by construction since it is a Gram matrix. As a result,

(4) can be solved very efficiently on a GPU.

Masking module. The predicted Neural Kernel Field fθ
is defined on the entire voxel hierarchy, however at coarse

levels far from the surface, it may contain unwanted geom-

etry. To discard such geometry away from the predicted

surface, we add an additional branch to our backbone as

φ : R3 → {0, 1} which determines if a point x should be

trimmed (φ(x) = 0) or kept (φ(x) = 1). The branch origi-

nates from the immediate features of the backbone network

and consists of a few linear layers with ReLU activations

followed by a sigmoid. When we extract the final surface,

we only consider vertices in regions where φ(x) > 0.5.

3.2. Supervision

To train our model, we require pairs (Xin = {xi ∈
R

3},Oin = {oi ∈ R
3}) and (Xdense = {xj},Odense =

{oj}). Here Xin and Xdense are noisy input points and dense

supervision points respectively, and Oin and Odense are sen-

sor origin for each input and supervision point (i.e. a position

in 3D space from which each point was acquired). We addi-

tionally compute input and supervision normals Nin,Ndense

by fitting planes to points in a local neighborhood and ori-

enting the normals to align with the directions from points

to sensors. We remark that our training requirements im-

pose no restrictions on the shapes being trained on. For

example, one could use a single LiDAR frame as input

and an accumulated LiDAR scan of a scene as supervision,

alongside a noisy scan of a synthetic object as input and

a dense noiseless scan of the same object as supervision.

In order to define the loss terms

used to supervise our model, we first

define two regions of space around the

dense points Xdense:

• Sϵ: points which are ϵ dis-

tance or less from Xdense i.e.

{x|minxj∈Xdense
∥x− xj∥2 < ϵ},

• Soutside: points which lie within the region enclosing

points in Xdense and their sensor origin in Odense.

Then, given a predicted Neural Kernel Field fθ(x), we

backpropagate through the following loss functions:

• Lsurf(f) = Ex∈Xdense
[∥f(x)∥1];

• Ltsdf(f) = Ex∈Sϵ

[

∥f(x) − tsdf(x,Xdense)∥1
]

where

tsdf(x,Xdense) is the ground-truth truncated signed dis-

tance computed from Xdense using nearest neighbors;
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Figure 4: Our implicit field f(x) is represented as a sum

of kernel basis functions on a sparse voxel hierarchy. Each

voxel with center x
(l)
i contributes one kernel basis function

K
(i)
θ (x,x

(l)
i ) with support in the one-ring around x

(l)
i .

• Lnormal(f) = En∈Nin

[

1−

〈

∇xf(x)
∥∇xf(x)∥2

,n

〉]

;

• Loutside(f) = Ex∈Soutside
e−β∥f(x)∥1 , where β = 0.1;

• Lmin-surf(f) = Ex∈Sϵ

[

ηπ−1

η2+f(x)2

]

, where η = 0.5.

Here Lsurf ensures that the implicit function is zero near

the ground truth surface, Ltsdf ensures that the implicit field

undergoes a sign change near the surface, Lnormal ensures

the gradient of the predicted implicit agrees with the dense

normals, Loutside ensures there is no geometry far away from

the surface, and Lmin-surf acts as a regularizer encouraging

the predicted implicit surface to have minimal area [67].

We additionally compute structure prediction and mask-

ing losses which we describe in the Appendix. We train our

model in an end-to-end fashion using gradient descent by

back-propagating through the sum of all these loss functions.

4. Experiments

Overview. In this section we demonstrate that NKSR fulfills

the three main desired properties of practical surface recon-

struction method as analyzed in § 1: (1) Accuracy (§ 4.1),

by training and testing on object-level datasets [5, 33, 70]

with varying noise settings. (2) Scalability (§ 4.2), by eval-

uating on large-scale outdoor driving dataset [16]. (3) Gen-

eralizability (§ 4.3), where we train on object-level/outdoor

datasets and test on room-level datasets [11, 4] as well as

scans with very low densities. Notably, to encourage the

practical usage of NKSR, we present a kitchen-sink-model

(denoted as ‘Ours - ’1) trained on the union of various

datasets [5, 33, 16, 4] and report its performance whenever

1This blue checkmark model will be made publicly available, for free.

Input NKF POCO Ours

Figure 5: ABC/Thingi10K [33, 70] visualization.

Input NKF SAP Ours

Figure 6: ShapeNet [5] visualization. The two shapes are

with σ = 0.005 and σ = 0.025 Gaussian noise respectively.

applicable. While this model slightly underperforms domain-

specific models, it still outperforms most baseline methods

and can be used on a wide variety of inputs as shown in

Fig. 1 and Fig. 9. We hope the kitchen-sink-model enables

end-users to use NKSR in a plug-and-play manner.

Implementation Details. Our pipeline is fully accelerated

using PyTorch and CUDA. The operations on our sparse

hierarchy including convolution, neighborhood querying and

interpolations are based on a customized tree structure that

is highly efficient and scalable. Our sparse linear solver

uses a Jacobi-preconditioned conjugate gradient method and

works jointly with the sparse hierarchy for fast inference.

Unless otherwise specified, our experiments are run on a

single V100 GPU with 8 CPU cores. Hyperparameter details

are given in the Appendix.

4.1. Accuracy: Object­level Reconstruction

Settings. We follow two common evaluation settings from

the literature. One is the manifold ShapeNet [5] dataset

prepared by [38]. The dataset contains man-made geome-
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Table 1: ABC/Thingi10K [33, 70] comparison. dC is multiplied by 103. σ is the Gaussian noise added to the sensor depth

and L is the largest box length. 10 scans are used to accumulate the point cloud unless specified.

ABC (100 shapes) Thingi10K (100 shapes)

σ = 0 σ ∈ [0, 0.05L] σ = 0.05L σ = 0 σ = 0.01L σ = 0.05L 5 scans 30 scans

dC↓ F-S.↑ dC↓ F-S.↑ dC↓ F-S.↑ dC↓ F-S.↑ dC↓ F-S.↑ dC↓ F-S.↑ dC↓ F-S.↑ dC↓ F-S.↑

SPSR [32] 7.02 87.5 11.2 72.8 18.8 47.9 4.23 91.9 5.44 90.3 16.5 52.5 12.4 77.6 3.07 96.7

POCO [3] 5.34 88.3 8.23 75.7 12.0 58.9 4.42 92.5 5.10 89.7 11.2 58.8 6.95 84.4 3.69 95.0

SAP [42] 6.83 85.0 8.00 79.5 10.4 68.7 4.30 92.7 4.54 91.8 7.82 74.7 6.73 84.7 3.95 93.8

NKF [58] 6.10 88.1 13.8 62.3 24.0 35.1 3.48 94.2 4.78 90.8 24.7 34.3 7.05 84.8 4.36 93.2

NGSolver [30] 3.92 92.7 6.35 83.1 9.68 66.4 2.96 95.9 3.51 95.0 8.70 69.1 5.65 89.2 2.80 97.1

Ours 3.68 93.2 6.00 85.4 8.70 73.2 2.36 97.3 3.19 95.9 7.66 74.7 5.10 89.9 2.48 98.0

Ours - 4.10 92.2 6.44 83.6 9.97 68.1 2.92 96.3 3.34 95.6 8.55 72.7 5.60 89.1 2.54 97.7

Table 2: ShapeNet [5] comparison. ‘N.’ denotes whether

normals Nin are used as input. dC is multiplied by 103.

1000 Pts.

σ = 0.0
3000 Pts.

σ = 0.005
3000 Pts.

σ = 0.025

N. dC↓ IoU↑ dC↓ IoU↑ dC↓ IoU↑

ConvONet [43]

-

6.07 82.3 4.35 88.0 7.31 78.7

IMLSNet [36] 3.15 91.2 3.03 91.3 6.58 76.0

SAP [42] 3.44 90.8 3.30 91.1 5.34 82.9

POCO [3] 3.03 92.7 2.93 92.2 5.82 81.7

NGSolver [30] 2.91 91.9 2.90 91.8 5.06 82.8

Ours 2.64 93.4 2.71 92.6 4.96 82.9

SPSR [32]

✓

6.26 81.4 3.84 88.5 10.7 66.8

SAP [42] 3.21 92.1 3.16 92.3 4.44 87.1

NKF [58] 2.65 94.7 3.17 91.2 11.7 67.0

NGSolver [30] 2.47 95.0 2.51 94.1 3.93 87.5

Ours 2.34 95.6 2.45 94.3 3.87 87.6

tries from 13 categories, with >30K shapes for training

and >8K shapes for testing. Gaussian noise of different

standard deviations (denoted as σ) is added to the randomly-

subsampled points from the ground truth as input. As many

existing learning-based baselines do not need point normals

Nin as input, we present a variant of our model that does

not take Nin as extra input channels for a fair comparison.

The other setting is from [17] where a random subset of

∼5K shapes from ABC [33] is picked for training and test-

ing, and an additional 100 shapes from Thingi10K [70] is

used for testing generalization. The input is acquired by

simulating ToF sensors with different levels of noise and

densities. For the metrics we use the standard Chamfer dis-

tance (dC), F-score (F-S.), normal consistency (N.C.), and

intersection-over-union ratio (IoU) as benchmarks.

Results. The comparisons are quantitatively shown in Tab. 1

and Tab. 2, and selectively visualized in Fig. 5 and Fig. 6.

Our model reaches state-of-the-art performance on all the

datasets. Our baseline, NKF, works well on the noise-free

setting but inelegantly degrades with higher noise due to its

over-reliance on the raw input normals. On the other hand,

SAP and NGSolver are more robust under noise, but the

Table 3: CARLA [16] comparison. dC is the average of

Acc. and Comp. (Unit is cm. The smaller the better.)

Original Novel Time

Acc. Comp. F-S.↑ Acc. Comp. F-S.↑ (sec.)

TSDF-Fusion [55] 8.2 8.0 80.2 8.6 6.6 80.7 0.5

POCO [3] 10.5 3.6 90.1 9.1 2.9 92.4 420

SPSR [32] 10.3 16.4 86.5 9.9 12.8 88.3 30

Ours 5.6 2.2 93.9 3.6 2.1 96.0 2.6

Ours - 4.1 3.0 94.0 3.6 2.4 96.0 2.6

fitting tightness as reflected by dC is higher than ours due

to the lack of representation power. Our performance gain

is mainly based on the gradient-based energy fitting formu-

lation backed up by the natural inductive biases emerging

from the learned kernel.

4.2. Scalability: Outdoor Driving Scenes

Dataset. The applicability of NKSR to large-scale datasets

is demonstrated using the synthetic CARLA [16] dataset due

to the lack of large-scale real-world datasets with ground-

truth geometries. To generate such a dataset, we manually

pick 3 towns and simulate 10 random drives using the engine.

We call these drives the ‘Original’ subset. An additional town

along with its 3 drives is used only during evaluation to test

generalization, which we denote as the ‘Novel’ subset. For

(Xin,Oin), we use a sparse 32-beam LiDAR with 0-5cm

ray distance noise and 0-3◦ pose noise. For (Xdense,Odense),
we employ a noise-free highly-dense 256-beam LiDAR for

ground-truth supervision. The accumulated LiDAR points

are cropped into 51.2×51.2m2 chunks for the ease of bench-

marking. Please find more details and visualizations in the

Appendix.

Results. We compare our results to TSDF-Fusion, SPSR

and the learning-based POCO. While for the latter two base-

lines we use the same voxel sizes W = 10cm as ours, for

TSDF-Fusion we find it necessary to increase W to 30cm to

reach decent surface completeness. The results are shown

in Tab. 3 and visualized in Fig. 7. We compute single-sided
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Input TSDF-Fusion SPSR POCO Ours

Figure 7: CARLA [16] visualization. The insets show zoom-ins captured by the cameras shown in the leftmost column with

the corresponding color. The upper 2 rows are from the ‘Novel’ subset and the lower 2 rows are from the ‘Original’ subset.

Table 4: Room-level dataset [11, 4] comparison. dC is

multiplied by 103.

Training

Set

ScanNet Matterport3D

dC↓ F-S.↑ N.C.↑ dC↓ F-S.↑ N.C.↑

SPSR [32] - 7.04 84.3 87.2 10.4 87.0 92.3

LIG [31]

Shape

Net

6.19 83.8 83.7 5.13 90.1 90.1

POCO [3] 6.21 77.4 87.1 5.14 84.9 93.7

NKF [58] 6.50 80.9 84.2 6.48 84.2 90.4

DOGNN [56] 4.93 85.9 85.7 4.85 89.3 92.4

Ours 2.68 97.7 90.5 3.19 96.8 95.2

POCO [3]
Synth.

Rooms

5.96 82.5 82.0 6.52 80.3 85.9

NKF [58] 9.15 66.5 83.4 9.87 69.3 86.2

Ours 5.38 86.6 86.4 5.01 90.5 91.8

Ours CARLA 3.20 95.9 89.1 3.08 98.1 95.0

Ours - Mixed 3.72 93.6 89.1 3.17 97.4 95.5

Chamfer distance that reflects reconstruction accuracy (Acc.)

and completeness (Comp.). We additionally report aver-

age running times for each method on the datasets. The

mean/min/max number of input points in this setting are

490k/290k/820k. Compared to ours, SPSR is quite sensitive

to the noise and sparsity in the input, leaving bumpy and

incomplete geometries. Although POCO could reach a simi-

lar completeness value, the fitted surfaces fail to faithfully

respect the input. The long running time (161x slower than

ours) also prohibits POCO from practical use.

LIG NKF POCO Ours

LIG DOGNN POCO Ours

Figure 8: Room-level datasets [4, 11] visualization. All

the models are trained only with ShapeNet.

4.3. Generalization across Domains and Densities

Across domains. We compare the generalizability of

our method with others by directly applying the models

trained on ShapeNet and Synthetic Room dataset (Synth.

Rooms) [43] to room-level datasets, i.e., ScanNet [11] and
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Figure 9: Application to Waymo [49] dataset. We run our kitchen-sink-model in an out-of-core manner (see Appendix for

implementation details) to scale to very large scenes consisting of 10M / 11M (left / right) points, taking only 20s / 35s.
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1.5 m / scan 6 m / scan 15 m / scan

Figure 10: Generalization to different densities.

the test split of Matterport3D [4]. For both datasets we sam-

ple 10K points as input, and normalize the scale to roughly

match the training set. As shown by the comparisons in

Fig. 8 and Tab. 4, the generalization of our method is signifi-

cantly better than the baselines, with ShapeNet training set

reaching the highest accuracy possibly due to its diversity

and similar geometric distributions.

Across densities. We test the robustness of our model

under sparse input by keeping only one scan of LiDAR

frame within a fixed driving distance in our CARLA dataset

(‘Novel’ subset). The results are shown in Fig. 10 and Tab. 5.

At the level of extreme sparsity our method is still able to

reconstruct complete geometry (e.g. the ground) while the

baselines start to degrade.

4.4. Ablation Study

We run our method with different feature dimensions d

for kernel computation, as well as different voxel sizes W ,

and the results are shown in Fig. 11. While increasing the

Table 5: Performance comparison using different input

densities. Here the F-Score ↑ metric is shown.

Meters / scan 1.5 3 6 9 12 15

TSDF-Fusion [32] 80.0 80.7 78.4 74.8 70.6 67.8

SPSR [32] 88.2 88.3 87.9 86.4 83.3 79.5

Ours 96.1 96.0 95.4 94.1 92.6 92.0

1 2 3 4
Voxel size (×0.01)

92

93

24 8 16 32
Kernel dimension

93
.0

93
.1 IoU

w/o

Hier.

92.1

(-1.0)

w/o

Grad.

91.5

(-1.6)

Figure 11: Ablation study. IoU metric is shown. The back

arrows indicate the setting we use to obtain Tab. 2.

feature dimension helps reach a slightly better performance,

the influence of voxel sizes is more prominent. We try to

remove the hierarchies from the linear solver by setting

{α
(l)
i | l > 0} to 0 (‘w/o Hier.’), or remove the gradient-

based matrices Q⊤Q (‘w/o Grad.’). Both of the settings

lead to a degraded performance, showing the effectiveness

of our design choices.

5. Conclusion

In this paper we present NKSR, an accurate and scalable

surface reconstruction algorithm using the neural kernel field

representation. We show by extensive experiments that our

method reaches state-of-the-art quality and efficiency, while

enjoying good generalization to unseen data. We believe

our method further pushes the boundary of the field of 3D

reconstruction and makes deep-learning-based surface recon-

struction more practical for general use. For future work we

will try further improving the reconstruction quality using

more expressive kernel models, as well as reducing memory

footprint to allow for even larger-scale reconstructions.
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