Neural Kernel Surface Reconstruction

Jiahui Huang¹ Zan Gojcic¹ Matan Atzmon¹ Or Litany¹ Sanja Fidler¹,²,³ Francis Williams¹

¹NVIDIA ²University of Toronto ³Vector Institute

Figure 1: We present Neural Kernel Surface Reconstruction (NKSR) for recovering a 3D surface from an input point cloud. Trained directly from dense points, our method reaches state-of-the-art reconstruction quality and scalability. NKSR is also highly generalizable: All the meshes in this figure are reconstructed using a single trained model.

Abstract

We present a novel method for reconstructing a 3D implicit surface from a large-scale, sparse, and noisy point cloud. Our approach builds upon the recently introduced Neural Kernel Fields (NKF) [58] representation. It enjoys similar generalization capabilities to NKF, while simultaneously addressing its main limitations: (a) We can scale to large scenes through compactly supported kernel functions, which enable the use of memory-efficient sparse linear solvers. (b) We are robust to noise, through a gradient fitting solve. (c) We minimize training requirements, enabling us to learn from any dataset of dense oriented points, and even mix training data consisting of objects and scenes at different scales. Our method is capable of reconstructing millions of points in a few seconds, and handling very large scenes in an out-of-core fashion. We achieve state-of-the-art results on reconstruction benchmarks consisting of single objects (ShapeNet [5], ABC [33]), indoor scenes (ScanNet [11], Matterport3D [4]), and outdoor scenes (CARLA [16], Waymo [49]).

1. Introduction

The goal of 3D reconstruction is to recover geometry from partial measurements of a shape. In this work, we aim to map a sparse set of oriented points sampled from the surface of a shape to a 3D implicit field. This is a challenging inverse problem since point clouds acquired from real-world sensors are often very large (millions or billions of points), vary in sampling density, and are corrupted with sensor noise. Furthermore, since surfaces are continuous but points are discrete, there are many valid solutions which can explain a given input. To address these issues, past approaches aim to recover surfaces that agree with the input points while satisfying some prior everywhere else in space. Classical methods use an explicit prior (e.g. smoothness), while more recent learning-based approaches promote a likely reconstruction under a data-driven prior.

There are, however, key limitations to both types of techniques that inhibit their application in practical situations. Since classical methods are fast, scalable, and able to handle diverse inputs, they have become an industry standard (e.g. [32, 61]). Yet, they suffer from quality issues in the presence of high noise or sparse inputs, often failing to reconstruct even simple geometry such as a ground plane (see the ground in Fig. 1). On the other hand, learning-based approaches were shown to handle large noise [42], and sparse inputs [39, 3], yet they often struggle to generalize to out-of-distribution shapes and sampling densities as was highlighted in [58]. These generalization issues can be attributed to the
fact that current learning-based methods struggle to exploit large and diverse amounts of data for training. One cause of this is that a single forward pass can take minutes for even moderately sized inputs (e.g., [3]), limiting training to collections consisting of small point clouds. Furthermore, many existing methods rely on a preprocessing step to extract supervision in the form of occupancy or signed distance function [43, 38, 40, 3, 58]. In practice, this preprocessing step hinders the ability to easily use diverse datasets for training since most shape datasets (including synthetic ones such as the popular ShapeNet [5]) consist of non-watertight shapes, open surfaces, or contain ghost geometry from which extracting supervision is hard.

Recently, [58] proposed Neural Kernel Fields (NKF), a new paradigm to address the problem of generalization in 3D reconstruction. NKF learns a data-dependent kernel, and predicts a continuous occupancy field as a linear combination of this kernel supported on the input points. The key insights of NKF are that a kernel explicitly encodes inductive bias, and that solving a kernel linear interpolation problem at test time always produces solutions that adhere to the inputs. Thus, by training on diverse shapes, NKF can learn a good inductive bias for the general 3D reconstruction problem rather than for a specific dataset. While NKF achieves impressive generalization results, it suffers from two major limitations that restrict its practical application. First, since it uses a globally supported kernel, it requires solving a dense linear system and cannot reconstruct inputs with more than ten thousand input points. Second, it degrades poorly in the presence of noise due to its interpolation of exact positional occupancy constraints.

In this work, we build upon the excellent generalization capability of NKF and tackle its main limitations to achieve a practical learning-based reconstruction method that is scalable, fast, and robust to noise. Like NKF, our work leverages the idea of a learned kernel for generalization, but we (1) develop a novel, gradient-based kernel formulation which is robust to noise, and (2) use an explicit voxel hierarchy structure and compactly supported kernels to make our interpolation problem sparse, multi-scale, and capable of handling large inputs while still producing high-fidelity outputs. The result is a learning-based yet out-of-the-box reconstruction method that can be applied to point clouds in the wild. In particular, it enjoys all of the following properties:

- It can generalize to out-of-distribution inputs, producing high-fidelity reconstructions, even in the presence of sparsity and noise.
- It can be trained on the union of diverse datasets while only requiring dense oriented points as supervision, unlocking a new level of training data scale.
- It can reconstruct point clouds consisting of millions of points in seconds, and scale to extremely large inputs in an out-of-core fashion.

We illustrate other methods in the context of these points visually in Fig. 2.

2. Related Work

We now give a brief overview of prior works that are relevant to our approach. Learned kernels were investigated in [62, 29, 41] for tasks such as few-shot transfer learning and classification of images. In the context of 3D reconstruction, Chu et al. [9] encoded the inductive bias intrinsically in a 3D CNN structure without training data. NKF [58] proposed a novel data-dependent kernel, which improved upon the non-learned kernel method derived from infinitely wide ReLU networks in Neural Splines [61]. Comparably, we use a data-dependent kernel but restrict its spatial support to increase computational efficiency and use a gradient-based fitting formulation to increase noise robustness. Mapping 3D points to a feature grid via a convolutional architecture was proposed in ConvONet [43] and CIRCLE [6] for predicting an occupancy field. POCO [3] improved the quality and performance of ConvONet by using a transformer architecture instead of convolutions. Both methods, however, take a long time to reconstruct even a small scene. Differently, our feature mapping is made efficient through a hierarchical sparse data structure. Non-dense data structures were studied in ASR [54] and DOGNN [56] which proposed octree-based convolutional architectures for reconstructing large scenes. Generalization to novel scenes was addressed by LIG [21, 31] using local patches which have smaller variability, but are very sensitive to the choice of patch size and relies on test-time optimization with unknown convergence properties. Similarly, our kernel weights are fitted to the scene at prediction but the fitting is done via a linear solver in a form of meta-learning [48]. Shape as Points [42] learns to upsample the input points followed by differentiable Poisson reconstruction, and this idea is further extended by NGSolver [30] to incorporate learnable basis functions. However, the representation power of the surface is still bounded by the chosen family of basis functions where non-trivial integrations have to be applied. Beyond meth-
Figure 3: **Pipeline.** Our method accepts an oriented point cloud and predicts a sparse hierarchy of voxel grids containing features as well as normals in each voxel. We then construct a sparse linear system and solve for a set of per-voxel coefficients α. The linear system corresponds to the gram matrix arising from a kernel which depends on the predicted features, illustrated as L and v above but mathematically defined in Eq (4). To extract the predicted surface, we evaluate the function values at the voxel corners using a linear combination of the learned kernel basis functions, followed by dual marching cubes.

ods based on implicit surfaces, other shape reconstruction techniques exist which leverage different output representations. These representations include dense point clouds [46, 37, 69, 44, 45, 68, 50, 64, 65, 18, 34], polygonal meshes [28, 7, 20, 27, 23, 59, 12, 35, 25, 47], manifold atlases [60, 15, 24, 19, 2], and voxel grids [8, 52, 26, 63, 53, 22]. While our method uses a neural field for reconstruction, past work has used neural fields to perform a variety of point cloud tasks such as shape compression [51, 61], voxel grid upsampling [43, 38], reconstruction from rotated inputs [14, 1] and articulated poses [13, 66].

3. Method

Our method predicts a 3D surface given a point cloud with normals. We encode this predicted surface as the zero level set of a Neural Kernel Field, i.e., an implicit function represented as a weighted sum of learned, positive-definite basis functions which are conditioned on the input, and whose weights are computed using a linear optimization in the forward pass. These basis functions are supported on a sparse voxel hierarchy which we predict from the input point cloud using a sparse convolutional network, and depend on interpolated features at each voxel corner. In the following sections, we describe the key steps of our method, and summarize it pictorially in Fig. 3. We additionally provide rigorous derivations for each step in the Appendix.

3.1. Predicting a 3D Shape from Points

Given points and normals, the forward pass of our model predicts an implicit surface as a weighted sum of learned kernels in two steps: First, we feed the input to a sparse convolutional network that predicts a voxel hierarchy with features at each corner (Fig. 4). These features define a collection of learned basis functions, which are centered at each voxel in the hierarchy. Second, we find a set of weights for these basis functions by solving a linear system that encourages the predicted implicit field to have a zero value near the input points, and to have gradients which agree with the input normals. Optionally, we can also predict a geometric mask, which outputs where in space to extract the final surface, trimming away spurious geometry.

Predicting a Sparse Voxel Hierarchy. Given input points $X_{in} = \{x_{in}^{m_j} \in \mathbb{R}^3\}_{j=1}^{n_m}$, input normals $N_{in} = \{n_{in}^{m_j} \in \mathbb{R}^3\}_{j=1}^{n_m}$, and a voxel size W, we first predict a hierarchy of L voxel grids using a convolutional backbone digesting the point cloud with concatenated normal $[x_{in}^{m_j}, n_{in}^{m_j}] \in \mathbb{R}^6$ for each point. Each of the predicted voxel grid has $n_{1(l)}, \ldots, n_{l}^{(L)}$ voxels with widths $W, 2W, \ldots, 2^l W$ respectively and any voxel with center $x_{i}^{(l-1)}$ at level $l-1$ is contained within some voxel with center $x_{i}^{(l)}$ at level l. The design of such a backbone network is inspired by [57] and is described in detail in the Appendix. We additionally predict features $z_{i}^{(l)} \in \mathbb{R}^d$ and normals $n_{i}^{(l)} \in \mathbb{R}^3$ for each voxel in the hierarchy. The features $z_{i}^{(l)}$ are employed to predict a feature field $\phi_{0}^{(l)}(x|X_{in}, N_{in})$ which lifts the coordinates $x \in \mathbb{R}^3$ to d-dimensional vectors via Bézier interpolation followed by an MLP. Fig. 4 shows a 2D illustration of our predicted hierarchy and features.

Sparse Neural Kernel Field Hierarchy. We encode our reconstructed shape as the zero level set of a 3D implicit field $f_{0} : \mathbb{R}^3 \rightarrow \mathbb{R}$ defined as a hierarchical Neural Kernel
Field, i.e., a weighted combination of positive definite kernels which are conditioned on the inputs and centered at the midpoints \(x_i^{(l)} \in \mathbb{R}^3 \) of voxels in the predicted hierarchy:

\[
\theta_\theta(x|X_m, N_m) = \sum_{i,l} \alpha_{i,l} \mathcal{K}_{\theta}^{(l)}(x, x_i^{(l)}|X_m, N_m). \tag{1}
\]

Here, \(\alpha_{i,l} \in \mathbb{R} \) are scalar coefficients at the \(l \)th voxel at level \(l = 1, \ldots, L \) in the hierarchy, and \(\mathcal{K}_{\theta}^{(l)} \) is the predicted kernel for the \(l \)th level defined as

\[
\mathcal{K}_{\theta}^{(l)}(x, x') = \langle \phi_{\theta}^{(l)}(x; X_m, N_m), \phi_{\theta}^{(l)}(x'; X_m, N_m) \rangle \cdot \mathcal{K}_{b}^{(l)}(x, x'), \tag{2}
\]

where \(\langle \cdot, \cdot \rangle \) is the dot product, \(\phi_{\theta}^{(l)} : \mathbb{R}^3 \rightarrow \mathbb{R}^d \) is the feature field extracted from the hierarchy, and \(\mathcal{K}_{b}^{(l)} : \mathbb{R}^3 \times \mathbb{R}^3 \rightarrow \mathbb{R} \) is the Bézier Kernel, which decays to zero in a one-voxel (at level-\(l \))-neighborhood around its origin (See Appendix for definition).

Computing a 3D implicit surface from points. Given our predicted voxel hierarchy, learned kernels \(\mathcal{K}_{\theta}^{(l)} \), and predicted normals \(n_j^{(l)} \), we compute an implicit surface by finding optimal coefficients \(\alpha^* = \{ (\alpha_{i,l}^{(l)})_{i=1}^{L} \}_{l=1}^{L'} \) for the kernel field (1). We find these coefficients by exactly minimizing the following loss in the forward pass of our model (omitting the conditioning of \(\theta_\theta \) on \(X_m, N_m \) for brevity):

\[
\alpha^* = \arg \min \sum_{i,l} \sum_{s=1}^{L'} \sum_{j=1}^{n_i^{(l)}} \| \nabla_x \theta_\theta(x_i^{(l)}) - n_i^{(l)} \|^2 + \sum_{j=1}^{n_i^{(l)}} |\theta_\theta(x_j^{(l)}; n_i^{(l)})|^2, \tag{3}
\]

where \(L' \leq L \) is a hyper-parameter for the hierarchy. By minimizing this loss, we want our Neural Kernel Field \(\theta_\theta \) to have a gradient which agrees with the normals at the voxel centers (hence regions around the surface), and to have a scalar value near zero at all the input points \(X_m \). Since \(\theta_\theta \) is obtained from the hierarchy, we can use a single LiDAR frame as input and extract a dense scan of a synthetic object as input and a dense noiseless scan of the same object as supervision.

In order to define the loss terms used to supervise our model, we first define two regions of space around the dense points \(X_{\text{dense}} \):

- \(S_\epsilon \): points which are \(\epsilon \) distance or less from \(X_{\text{dense}} \) i.e., \(\{ x | \min_{x_i \in X_{\text{dense}}} \| x - x_i \|_2 < \epsilon \} \),
- \(S_{\text{outside}} \): points which lie within the region surrounding the dense points \(X_{\text{dense}} \) and their sensor origin in \(O_{\text{dense}} \).

Then, given a predicted Neural Kernel Field \(\theta_\theta(x) \), we backpropagate through the following loss functions:

\[
\mathcal{L}_{\text{surf}}(f) = \mathbb{E}_{x \in X_{\text{dense}}} \| f(x) \|_1;
\]

\[
\mathcal{L}_{\text{tsdf}}(f) = \mathbb{E}_{x \in S} \| f(x) - \text{tsdf}(x, X_{\text{dense}}) \|_1 \text{ where tsdf}(x, X_{\text{dense}}) \text{ is the ground-truth truncated signed distance computed from } X_{\text{dense}} \text{ using nearest neighbors;}
\]

We remark that the linear system (4) is sparse due to modulation with the compactly supported \(K_{b}^{(l)} \), and positive definite by construction since it is a Gram matrix. As a result, (4) can be solved very efficiently on a GPU.

Masking module. The predicted Neural Kernel Field \(\theta_\theta \) is defined on the entire voxel hierarchy, however at coarse levels far from the surface, it may contain unwanted geometry. To discard such geometry away from the predicted surface, we add an additional branch to our backbone as \(\varphi : \mathbb{R}^3 \rightarrow \{0, 1\} \) which determines if a point \(x \) should be trimmed (\(\varphi(x) = 0 \)) or kept (\(\varphi(x) = 1 \)). The branch originates from the immediate features of the backbone network and consists of a few linear layers with ReLU activations followed by a sigmoid. When we extract the final surface, we only consider vertices in regions where \(\varphi(x) > 0.5 \).
Our implicit field $f(x)$ is represented as a sum of kernel basis functions on a sparse voxel hierarchy. Each voxel with center x_l contributes one kernel basis function $K_\theta(x, x_l)$ with support in the one-ring around x_l.

- $L_{\text{normal}}(f) = \mathbb{E}_{n \in N_0} \left[1 - \left\langle \frac{\nabla_x f(x)}{\|\nabla_x f(x)\|_2}, n \right\rangle \right]$;
- $L_{\text{outside}}(f) = \mathbb{E}_{x \in S_{\text{outside}}} e^{-\beta\|f(x)\|_1}$, where $\beta = 0.1$;
- $L_{\text{min-surf}}(f) = \mathbb{E}_{x \in S} \left[\frac{\eta\pi^{-1}}{\sqrt{x^2+f(x)^2}} \right]$, where $\eta = 0.5$.

Here L_{surf} ensures that the implicit function is zero near the ground truth surface, L_{out} ensures that the implicit field undergoes a sign change near the surface, L_{normal} ensures the gradient of the predicted implicit agrees with the dense normals, L_{outside} ensures there is no geometry far away from the surface, and $L_{\text{min-surf}}$ acts as a regularizer encouraging the predicted implicit surface to have minimal area.

We additionally compute structure prediction and masking losses which we describe in the Appendix. We train our model in an end-to-end fashion using gradient descent by back-propagating through the sum of all these loss functions.

4. Experiments

Overview. In this section we demonstrate that NKSR fulfills the three main desired properties of practical surface reconstruction method as analyzed in §1: (1) **Accuracy** (§4.1), by training and testing on object-level datasets [5, 33, 70] with varying noise settings. (2) **Scalability** (§4.2), by evaluating on large-scale outdoor driving dataset [16]. (3) **Generalizability** (§4.3), where we train on object-level/outdoor datasets and test on room-level datasets [11, 4] as well as scans with very low densities. Notably, to encourage the practical usage of NKSR, we present a kitchen-sink-model (denoted as ‘Ours -’

1This blue checkmark model will be made publicly available, for free.
Table 1: **ABC/Thingi10K** [33, 70] **comparison.** d_c is multiplied by 10^3. σ is the Gaussian noise added to the sensor depth and L is the largest box length. 10 scans are used to accumulate the point cloud unless specified.

<table>
<thead>
<tr>
<th></th>
<th>ABC (100 shapes)</th>
<th>Thingi10K (100 shapes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\sigma = 0$</td>
<td>$\sigma = 0.05L$</td>
</tr>
<tr>
<td></td>
<td>$d_c \downarrow$</td>
<td>$d_c \downarrow$</td>
</tr>
<tr>
<td>SPSR [32]</td>
<td>7.02 87.5</td>
<td>11.2 72.8</td>
</tr>
<tr>
<td>POCO [3]</td>
<td>5.34 88.3</td>
<td>8.23 75.7</td>
</tr>
<tr>
<td>SAP [42]</td>
<td>6.83 85.0</td>
<td>8.00 79.5</td>
</tr>
<tr>
<td>NKF [58]</td>
<td>6.10 88.1</td>
<td>13.8 62.3</td>
</tr>
<tr>
<td>NSolver [30]</td>
<td>3.92 92.7</td>
<td>6.35 83.1</td>
</tr>
<tr>
<td>Ours</td>
<td>3.68 93.2</td>
<td>6.00 85.4</td>
</tr>
</tbody>
</table>

Ours - ✓ 4.10 92.2 6.44 83.6 9.97 68.1 2.92 96.3 3.34 95.6 8.55 72.7 5.60 89.1 2.54 97.7

Table 2: **ShapeNet** [5] **comparison.** ‘N.’ denotes whether normals N_n are used as input. d_c is multiplied by 10^3.

<table>
<thead>
<tr>
<th></th>
<th>1000 Pts.</th>
<th>3000 Pts.</th>
<th>3000 Pts.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\sigma = 0$</td>
<td>$\sigma = 0.005$</td>
<td>$\sigma = 0.025$</td>
</tr>
<tr>
<td></td>
<td>$d_c \downarrow$</td>
<td>$d_c \downarrow$</td>
<td>$d_c \downarrow$</td>
</tr>
<tr>
<td>N.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ConVONet [43]</td>
<td>6.07 82.3</td>
<td>4.35 88.0</td>
<td>7.31 78.7</td>
</tr>
<tr>
<td>IMLSNet [36]</td>
<td>3.15 91.2</td>
<td>3.03 91.3</td>
<td>6.58 76.0</td>
</tr>
<tr>
<td>SAP [42]</td>
<td>-</td>
<td>3.30 91.1</td>
<td>5.34 82.9</td>
</tr>
<tr>
<td>POCO [3]</td>
<td>3.03 92.7</td>
<td>2.93 92.2</td>
<td>5.82 81.7</td>
</tr>
<tr>
<td>NSolver [30]</td>
<td>2.91 91.9</td>
<td>2.90 91.8</td>
<td>5.06 82.8</td>
</tr>
<tr>
<td>Ours</td>
<td>2.64 93.4</td>
<td>2.71 92.6</td>
<td>4.96 82.9</td>
</tr>
<tr>
<td>SPSR [32]</td>
<td>✓</td>
<td>2.84 88.5</td>
<td>10.7 66.8</td>
</tr>
<tr>
<td>SAP [42]</td>
<td>3.21 92.1</td>
<td>3.16 92.3</td>
<td>4.44 87.1</td>
</tr>
<tr>
<td>NKF [58]</td>
<td>2.65 94.7</td>
<td>3.17 91.2</td>
<td>11.7 67.0</td>
</tr>
<tr>
<td>NSolver [30]</td>
<td>2.47 95.0</td>
<td>2.51 94.1</td>
<td>3.93 87.5</td>
</tr>
<tr>
<td>Ours</td>
<td>2.34 95.6</td>
<td>2.45 94.3</td>
<td>3.87 87.6</td>
</tr>
</tbody>
</table>

Table 3: **CARLA** [16] **comparison.** d_c is the average of Acc. and Comp. (Unit is cm. The smaller the better.)

<table>
<thead>
<tr>
<th></th>
<th>Original Acc. Comp.</th>
<th>F-S.</th>
<th>Novel Acc. Comp.</th>
<th>F-S.</th>
<th>Time (sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPSR [32]</td>
<td>8.2 8.0</td>
<td>80.2</td>
<td>8.6 6.6</td>
<td>80.7</td>
<td>0.5</td>
</tr>
<tr>
<td>POCO [3]</td>
<td>10.5 3.6</td>
<td>90.1</td>
<td>9.1 2.9</td>
<td>92.4</td>
<td>420</td>
</tr>
<tr>
<td>SPSR [32]</td>
<td>10.3 16.4</td>
<td>86.5</td>
<td>9.9 12.8</td>
<td>88.3</td>
<td>30</td>
</tr>
<tr>
<td>Ours</td>
<td>5.6 2.2</td>
<td>93.9</td>
<td>3.6 2.1</td>
<td>96.0</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Ours - ✓ 4.1 3.0 94.0 3.6 2.4 96.0 2.6

fittings tightness as reflected by d_c is higher than ours due to the lack of representation power. Our performance gain is mainly based on the gradient-based energy fitting formulation backed up by the natural inductive biases emerging from the learned kernel.

4.2. Scalability: Outdoor Driving Scenes

Dataset. The applicability of NKSR to large-scale datasets is demonstrated using the synthetic CARLA [16] dataset due to the lack of large-scale real-world datasets with ground-truth geometries. To generate such a dataset, we manually pick 3 towns and simulate 10 random drives using the engine. We call these drives the ‘Original’ subset. An additional town along with its 3 drives is used only during evaluation to test generalization, which we denote as the ‘Novel’ subset. For (X_m, O_m), we use a sparse 32-beam LiDAR with 0-5cm ray distance noise and 0-3° pose noise. For (X_{dense}, O_{dense}), we employ a noise-free highly-dense 256-beam LiDAR for ground-truth supervision. The accumulated LiDAR points are cropped into $51.2 \times 51.2 \text{m}^2$ chunks for the ease of benchmarking. Please find more details and visualizations in the Appendix.

Results. We compare our results to TSDF-Fusion, SPSR and the learning-based POCO. While for the latter two baselines we use the same voxel sizes $W = 10$cm as ours, for TSDF-Fusion we find it necessary to increase W to 30cm to reach decent surface completeness. The results are shown in Tab. 3 and visualized in Fig. 7. We compute single-sided

tries from 13 categories, with >30K shapes for training and >8K shapes for testing. Gaussian noise of different standard deviations (denoted as σ) is added to the randomly-subsampled points from the ground truth as input. As many existing learning-based baselines do not need point normals N_n as input, we present a variant of our model that does not take N_n as extra input channels for a fair comparison. The other setting is from [17] where a random subset of \sim5K shapes from ABC [33] is picked for training and testing, and an additional 100 shapes from Thingi10K [70] is used for testing generalization. The input is acquired by simulating ToF sensors with different levels of noise and densities. For the metrics we use the standard Chamfer distance (d_c), F-score (F-S.), normal consistency (N.C.), and intersection-over-union ratio (IoU) as benchmarks.

Results. The comparisons are quantitatively shown in Tab. 1 and Tab. 2, and selectively visualized in Fig. 5 and Fig. 6. Our model reaches state-of-the-art performance on all the datasets. Our baseline, NKF, works well on the noise-free setting but inelegantly degrades with higher noise due to its over-reliance on the raw input normals. On the other hand, SAP and NSolver are more robust under noise, but the
Figure 7: **CARLA** [16] visualization. The insets show zoom-ins captured by the cameras shown in the leftmost column with the corresponding color. The upper 2 rows are from the ‘Novel’ subset and the lower 2 rows are from the ‘Original’ subset.

Table 4: **Room-level dataset** [11, 4] comparison. d_C is multiplied by 10^3.

<table>
<thead>
<tr>
<th>Training Set</th>
<th>ScanNet</th>
<th>Matterport3D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d_C</td>
<td>F-S. \downarrow</td>
</tr>
<tr>
<td>SPSR [32]</td>
<td>-</td>
<td>7.04</td>
</tr>
<tr>
<td>LIG [31]</td>
<td>Shape</td>
<td>6.19</td>
</tr>
<tr>
<td>POCO [3]</td>
<td>Net</td>
<td>6.21</td>
</tr>
<tr>
<td>NKF [58]</td>
<td></td>
<td>6.50</td>
</tr>
<tr>
<td>DOGNN [56]</td>
<td></td>
<td>4.93</td>
</tr>
<tr>
<td>Ours</td>
<td></td>
<td>2.68</td>
</tr>
<tr>
<td>POCO [3]</td>
<td>Synth.</td>
<td>5.96</td>
</tr>
<tr>
<td>NKF [58]</td>
<td>Rooms</td>
<td>9.15</td>
</tr>
<tr>
<td>Ours</td>
<td></td>
<td>5.38</td>
</tr>
<tr>
<td>Ours - Mixed</td>
<td>CARLA</td>
<td>3.20</td>
</tr>
<tr>
<td>Ours - Mixed</td>
<td>Mixed</td>
<td>3.72</td>
</tr>
</tbody>
</table>

Chamfer distance that reflects reconstruction accuracy (Acc.) and completeness (Comp.). We additionally report average running times for each method on the datasets. The mean/min/max number of input points in this setting are 490k/290k/820k. Compared to ours, SPSR is quite sensitive to the noise and sparsity in the input, leaving bumpy and incomplete geometries. Although POCO could reach a similar completeness value, the fitted surfaces fail to faithfully respect the input. The long running time (161x slower than ours) also prohibits POCO from practical use.

4.3. Generalization across Domains and Densities

Across domains. We compare the generalizability of our method with others by directly applying the models trained on ShapeNet and Synthetic Room dataset (Synth. Rooms) [43] to room-level datasets, i.e., ScanNet [11] and...
the test split of Matterport3D [4]. For both datasets we sample 10K points as input, and normalize the scale to roughly match the training set. As shown by the comparisons in Fig. 8 and Tab. 4, the generalization of our method is significantly better than the baselines, with ShapeNet training set reaching the highest accuracy possibly due to its diversity and similar geometric distributions.

Across densities. We test the robustness of our model under sparse input by keeping only one scan of LiDAR frame within a fixed driving distance in our CARLA dataset (‘Novel’ subset). The results are shown in Fig. 10 and Tab. 5. At the level of extreme sparsity our method is still able to reconstruct complete geometry (e.g. the ground) while the baselines start to degrade.

4.4. Ablation Study

We run our method with different feature dimensions d for kernel computation, as well as different voxel sizes W, and the results are shown in Fig. 11. While increasing the

<table>
<thead>
<tr>
<th>Meters / scan</th>
<th>1.5</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSDF-Fusion [32]</td>
<td>80.0</td>
<td>80.7</td>
<td>78.4</td>
<td>74.8</td>
<td>70.6</td>
<td>67.8</td>
</tr>
<tr>
<td>SPSR [32]</td>
<td>88.2</td>
<td>88.3</td>
<td>87.9</td>
<td>86.4</td>
<td>83.3</td>
<td>79.5</td>
</tr>
<tr>
<td>Ours</td>
<td>96.1</td>
<td>96.0</td>
<td>95.4</td>
<td>94.1</td>
<td>92.6</td>
<td>92.0</td>
</tr>
<tr>
<td>IoU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w/o</td>
<td>92.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hier.</td>
<td></td>
<td>(–1.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w/o</td>
<td>91.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grad.</td>
<td></td>
<td>(–1.6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 11: Ablation study. IoU metric is shown. The back arrows indicate the setting we use to obtain Tab. 2.

feature dimension helps reach a slightly better performance, the influence of voxel sizes is more prominent. We try to remove the hierarchies from the linear solver by setting $\{a_i^{(l)} | l > 0\}$ to 0 (‘w/o Hier.’), or remove the gradient-based matrices $Q^T Q$ (‘w/o Grad.’). Both of the settings lead to a degraded performance, showing the effectiveness of our design choices.

5. Conclusion

In this paper we present NKSR, an accurate and scalable surface reconstruction algorithm using the neural kernel field representation. We show by extensive experiments that our method reaches state-of-the-art quality and efficiency, while enjoying good generalization to unseen data. We believe our method further pushes the boundary of the field of 3D reconstruction and makes deep-learning-based surface reconstruction more practical for general use. For future work we will try further improving the reconstruction quality using more expressive kernel models, as well as reducing memory footprint to allow for even larger-scale reconstructions.
References

[51] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. Neural geometric level of

