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Abstract

In this paper, we propose an efficient event-based motion
estimation framework for various motion models. Differ-
ent from previous works, we design a progressive event-to-
map alignment scheme and utilize the spatio-temporal cor-
relations to align events. In detail, we progressively align
sampled events in an event batch to the time-surface map
and obtain the updated motion model by minimizing a novel
time-surface loss. In addition, a dynamic batch size strat-
egy is applied to adaptively adjust the batch size so that
all events in the batch are consistent with the current mo-
tion model. Our framework has three advantages: a) the
progressive scheme refines motion parameters iteratively,
achieving accurate motion estimation; b) within one iter-
ation, only a small portion of events are involved in opti-
mization, which greatly reduces the total runtime; c) the
dynamic batch size strategy ensures that the constant ve-
locity assumption always holds. We conduct comprehen-
sive experiments to evaluate our framework on challeng-
ing high-speed scenes with three motion models: rotational,
homography, and 6-DOF models. Experimental results
demonstrate that our framework achieves state-of-the-art
estimation accuracy and efficiency. The code is available
at https://github.com/huangxueyan/PEME.

1. Introduction
Event cameras [25, 30, 33], also known as bio-inspired

silicon retinas, are novel vision sensors that asynchronously
respond to pixel-wise brightness changes. Event cameras
have the properties of high temporal resolution and high dy-
namic range, which make event cameras appealing to tackle
many computer vision tasks under challenging conditions,
such as high-speed pose estimation [5, 18, 19], HDR video
generation [27,31,32,34], 3D reconstruction [9,11,26] and
low-latency motion estimation [7, 10, 24].

Event-based motion estimation aims to find the ego-
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Figure 1. Event-based motion estimation. (a): A segment
of the event cloud generated by rotational motion from the
shapes rotation dataset [20]. (b): An event frame generated from
unaligned events. (c): An event frame generated from aligned
events.

motion of the event camera. Since events can be triggered
by the motion of the camera, the alignment of events is
highly correlated with the camera’s motion. The motion es-
timation problem is normally cast to an optimization prob-
lem based on the alignment of events [4]. With correct mo-
tion parameters, events triggered by the same world point
can be aligned to the same pixel, forming an event frame
with sharp edges. As for unaligned events, they generate
blurred edges in the event frame. Fig. 1 shows a segment of
the event cloud as well as two event frames with unaligned
and aligned events.

Many approaches have been proposed for event-based
motion estimation, such as contrast maximization, entropy
minimization, and Poisson point process [6, 8, 22]. These
methods follow the same procedure: slice an event cloud
into batches with a fixed size or a fixed time interval, and
then optimize a loss function with all the events in the batch.
In practice, an event batch usually contains tens of thou-
sands of events. It is very time-consuming and computa-
tionally redundant to involve such an amount of event data
to optimize a motion transformation with 3 or 6 degrees of
freedom (DOF). We observe that events approximately fol-
low the same motion transformation in a short period; thus,
it is probably not necessary to take all the events into ac-
count for motion estimation. From this point of view, we
attempt to utilize sampled events to reduce the computa-
tional burden. To achieve this, we propose a distinct event-
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to-map alignment scheme. In specific, we construct a time-
surface (TS) map that maintains the timestamps of the for-
mer events at each pixel, and warp the later events to align
the former events in the TS map. We measure the degree of
alignment by a novel TS loss and update the motion param-
eters by minimizing the TS loss. We observe that in a short
time interval, the events triggered by the same world point
differ slightly in the timestamps and the coordinates, yield-
ing almost identical residuals and gradient directions when
evaluating the TS loss. Therefore, we can greatly reduce
the computational burden by evaluating the TS loss with a
small fraction of events.

In the alignment procedure, we attempt to warp the later
events backward to the start timestamp tstart and align them
with the former events. But few of the former events are
triggered at tstart due to the spatial sparsity of the event
camera. Moreover, these former events are normally trig-
gered with a slight time shift from tstart, resulting in a slight
drift in the coordinates. To fix this issue, we propose an iter-
ative scheme to update the coordinates of the former events
in the TS map with the latest motion parameters and pro-
gressively evaluate the TS loss based on the latest TS map.

In addition, the choice of event batch size has a signifi-
cant impact on the accuracy. In practice, the batch size or
the batch time interval is set manually, which is mainly de-
termined by two constraints: one is that events in the batch
should share the same motion parameters, i.e., the time in-
terval of the batch must be short enough to hold the con-
stant velocity assumption, and the other is that the batch
must contain sufficient events for the algorithm to execute
normally. Essentially, these two constraints are mutually
exclusive, making it difficult to determine the global batch
size or time interval. To address this problem, we propose
a dynamic batch strategy that can dynamically adjust the
batch size to ensure that the constant velocity assumption
always holds in this batch. We slice unprocessed events
into event bundles with a small size and append these event
bundles into the event batch if they meet the requirement
that their overlap ratio reaches a threshold; otherwise, we
stop merging and output an event batch with a certain num-
ber of bundles. With this strategy, our algorithm can adapt
to the scenes under different conditions, such as different
scene texture richness, camera motion speeds, and camera
spatial resolutions, while for the fixed-size methods, they
need to re-adjust the batch size to accommodate these scene
changes.

We summarize the contributions of this work in the fol-
lowing.

• We present a unified event-based motion estimation
framework that progressively aligns events using a
novel event-to-map scheme with spatio-temporal in-
formation of sampled events.

• We also propose a dynamic batch size strategy to
ensure that the constant velocity assumption always
holds, which is more generalizable to different scene
textures, camera speeds, and camera resolutions com-
pared to the fixed batch strategy.

• Comprehensive experimental results demonstrate that
our framework achieves state-of-the-art performance
both in terms of accuracy and efficiency on publicly
available datasets with three motion models.

• By utilizing a small number of sampled events in each
iteration, our framework is able to achieve real-time
implementation for the rotational model and the 6-
DOF model with standard CPUs.

2. Related Work
Entropy based method. Nunes and Demiris [22, 24] pro-
posed the entropy minimization framework (EMin) to obvi-
ate the need for an explicit intermediate image-based rep-
resentation. They estimate the motion transformations by
minimizing the dispersion of events, measured via a fam-
ily of entropy functions. Since the entropy function has
quadratic complexity, they extended EMin with an approxi-
mated version (AEMin) that searches events within a cer-
tain distance and an online version (IncEMin [23]) that
incrementally estimates the motion parameters, achieving
real-time rotational motion estimation. In contrast, our TS
loss obviates the pair-wise calculation of events, showing
a much lower computational complexity than the entropy
loss. In addition, our approach is capable of conducting
real-time estimations with sampled events and exhibiting
superior accuracy compared to IncEMin.
3D Points based method. Liu et al. [14] considered events
as 3D points in the spatio-temporal space. They proposed a
spatio-temporal registration algorithm (STR) that estimates
rotational motion transformations by splitting events into
early and late parts and registering events one-by-one based
on trimmed iterative closest points [3]. STR requires costly
computation with a nearest-neighbor search strategy. In
addition, it is prone to incorrect registrations with noise
events. In our work, we handle the data association prob-
lem implicitly and we apply a denoising operation on the
TS map to reduce the influence of the noise.
Image based method. To combine events with well-
established frame-based vision tools, some works [6, 8, 13,
17] chose to transform events into an image-based repre-
sentation. Gallego et al. [6, 7] proposed the Contrast Maxi-
mization (CMax) framework, which accumulates events to
produce an image of warped events and maximizes the im-
age contrast with respect to the motion parameters. Cheng
et al. [8] developed a spatio-temporal Poisson point pro-
cess (ST-PPP) that aligns events through a maximum likeli-
hood approach. The hyper-parameter λ of the Poisson pro-
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cess is environment-specific and requires re-measurement
when switching scenes or event cameras. Mitrokhin et al.
[17] proposed a method to estimate similarity transforma-
tions with metrics in the time-image, where they minimize
a time-image loss (i.e., the sum of gradients of the time-
image) with respect to the motion parameters. In [4,29], the
CMax framework was evaluated with twenty more image-
based loss metrics. The contrast loss [6] achieves the best
performance in terms of accuracy and efficiency, while the
time-image loss [17] reports the lowest accuracy. A dis-
tinct difference between our approach and [17] is that our
approach constructs the TS map with the minimum times-
tamps of the events warped at the same pixel. Thus not all
the event timestamps are involved in optimization.

3. Method
We define an event e =

(
xT, t, p

)
with its pixel coor-

dinate x = (x, y)
T, the triggering time t and the polarity

p ∈ {+1,−1} indicating the increase or decrease of the
brightness. Given an event batch ξ = {ek}Ne

k=1 recorded
in a short time interval, we assume that all events in this
batch share the same motion parameters θ (e.g., the veloc-
ity), with which warping an event backward to the start time
tstart can be expressed as

ek → e′k : x′
k =Wb (xk, tk;θ) , (1)

where the warping functionWb is a coordinate transforma-
tion that is compatible with many models, including the ro-
tational, homography, and 6-DOF motion models.

3.1. Time-Surface Map and Loss

Time-surface map. In our event-to-map alignment
scheme, we adopt the TS map as the reference template
for alignment. Different from the TS map defined in other
works [12, 35], where they apply an exponential decay ker-
nel on the pixels, our TS map directly sets the pixel value
with the event timestamp and sets a penalty value in the
background. We construct the TS map with the backward
warped events and define the pixel value at the coordinate x
as

Ib(x) = min{tk | 1 ≤ k ≤ Ne, x
′
k = x} , (2)

where x′
k is the coordinate of the warped event e′k. Eq. (2)

indicates that the value of the TS map Ib at the pixel co-
ordinate x is equal to the smallest timestamp of the events
warped to x. For the pixel coordinates without any events
warped to them, we set a high value (e.g., tNe

) as a penalty.
Fig. 2 (a) provides several TS maps for illustration.

Time-surface loss. As aforementioned, with correct mo-
tion parameters, events triggered by the same world point
should be warped to the same pixel, which means that the
later events should closely align with the former events. In

(a) Time-surface map (b) Loss map (c) Event frame
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Figure 2. Evolution of the TS map, loss map, and event frame
with increasing iterations. Events are generated by horizontal slid-
ing motion with velocity θgt (pixels/s). We initialize the estimated
parameter θ0 with a velocity away from θgt, and plot the corre-
sponding TS map, loss map, and event frame at different iterations.

the TS map, the sufficient and easy-to-compute image gra-
dients provide the temporal information of the neighbor-
hood, which can guide the later events toward the former
events. Based on this observation, we propose an optimiza-
tion loss of event alignment, i.e., TS loss, which is measured
in terms of temporal information. The proposed TS loss is
expressed as

L(θ) =
∑
ek∈ξs

Ib (Wb (xk, tk;θ)) , (3)

where ξs is composed of the uniformly sampled events from
ξ. Essentially, the TS loss is the sum of the timestamps ac-
quired from the TS map Ib at the coordinates of the warped
event samples. Since the TS map assigns the pixels warped
by the former events with small timestamps and the back-
ground pixels with a penalty value, the value of our TS loss
can implicitly reflect the degree of alignment between the
later events and the former events. On the one hand, the mo-
tion parameters that warp events closer to the coordinates
of the former events will be rewarded with a smaller loss
value. On the other hand, the parameters that warp events
far from the coordinates of the former events will obtain a
large loss for the penalty value in the background of the TS
map. In addition, the temporal information embedded in the
gradient of the TS map provides the optimization direction
to reduce loss. With the support of abundant and temporally
continuous events in the TS map, the objective function ex-
hibits a smooth loss map, as shown in Fig. 2 (b).

It can be observed that our event-to-map scheme is dif-
ferent from the event-to-event scheme [14] and the map-
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to-map scheme [21]. The event-to-event scheme conducts
the registration event-wisely and measures their alignment
based on their geometric distance. The map-to-map scheme
registers patches from two TS maps defined in [12] and
measures the patch alignment based on the timestamp con-
sistency. Our event-to-map scheme aligns events with the
former events in the TS map according to the TS loss.

Sampling strategy. Due to the low latency, the event
camera can depict a scene at a rate of millions of events
per second. We observe that the events triggered by the
same world point differ slightly in the timestamps and the
coordinates in a short time interval, which leads to very
close residuals and gradient directions when evaluating the
TS loss. This observation gives us an inspiration that we
do not need to evaluate the residuals and gradients of all
events, but only a tiny fraction of them are enough to pro-
vide a good optimization direction. In our algorithm, we
uniformly sample a small number of events in the event
batch and evaluate their TS loss. Since the optimization
process involves only a small number of events, the running
time of our algorithm is greatly reduced while it still main-
tains a competitive accuracy. See the reported experimental
results in Sec. 5.

Bidirectional warping strategy. In constructing the TS
map, the later events are overridden by the early events. To
further utilize these events, similar to the multi-reference
strategy in [28], we utilize a bidirectional warping strategy
that warps events both forward and backward. We denote
Wf as the forward warping function that warps events to
tend. Then we construct the TS map If of the forward
warped events by picking the maximum timestamps of the
events warped at the same coordinates:

If (x) = max{tk | 1 ≤ k ≤ Ne, x
′
k = x} . (4)

Note that the background (i.e., no warped events falling in
it) of If is set with a penalty value of 0. The TS loss with
the bidirectional warping strategy can be expressed as

L(θ) =
∑
ek∈ξs

[
Ib (Wb(xk, tk;θ))− If (Wf (xk, tk;θ))

]
.

(5)

3.2. Iterative Alignment

We attempt to warp the later events backward to tstart
and align them with the former events. However, few of the
former events are triggered at tstart due to the spatial spar-
sity of the event camera. Moreover, these former events are
normally triggered with a slight time shift from tstart, re-
sulting in a slight drift in the coordinates. Therefore, we can
only obtain rough estimations by aligning the later events
with the slightly drifted former events. As shown in Fig. 2

Algorithm 1 Progressive Spatio-temporal Alignment
Input: an event batch ξ, sampling ratio s, iterations T .
1: i← 0 (initialize the iteration index).
2: θ0 ← 0 (initialize the motion parameters θ0).
3: while i < T do
4: warp the event batch ξ backward to tstart.
5: create the backward TS map Ib using Eq. (2).
6: warp the event batch ξ forward to tend.
7: create the forward TS map If using Eq. (4).
8: uniformly sample sNe events from ξ.
9: find the optimal θ∗ to minimize TS loss in Eq. (5)

with sNe sampled events.
10: θi+1 ← θ∗.
11: i← i+ 1.
12: end while
13: return motion parameters θT .

(b), the drift of the former events leads to inconsistency be-
tween the ground truth θgt and the optimal motion param-
eters θ∗ at the smallest TS loss. To fix this issue, we pro-
pose an iterative scheme to progressively update the former
events in the TS map. In specific, we correct the coordinate
drift by warping the former events to tstart with the latest
motion parameters. Then, the former events can serve as
more accurate targets for the later events to align with. As
the iteration increases, the optimal parameters θ∗ with the
minimum loss value in the loss map get closer to the ground
truth θgt, as shown in Fig. 2 (b). The event-based progres-
sive spatio-temporal alignment algorithm is summarized in
Algorithm 1.

3.3. Dynamic Batch Strategy

With a fixed-size batch strategy, the constant velocity as-
sumption, i.e., all the events in the batch share the same
motion parameters, may not hold during the time span of
the events in low-texture scenes. To fix this issue, Cheng et
al. [8] proposed to estimate the motion parameters with an
affine model, i.e., a uniform acceleration model. However,
a more expressive motion model comes at the cost of more
computing resources and poorer robustness to noise events.
Our algorithm keeps the constant velocity assumption but
allows the batch size to change adaptively. In our dynamic
batch strategy, we first slice the unprocessed events Ψ of
size Ne into several event bundles:

{ξbi | 0 ≤ i < ⌊Ne/Nb⌋; ξbi = {ek}(i+1)Nb

k=iNb
} , (6)

where each event bundle ξbi contains Nb events, and the
floor function ⌊x⌋ outputs the greatest integer less than or
equal to x. Then, we create an event batch with the first
event bundle ξb0, and initialize the motion model with θ0 us-
ing Algorithm 1. The event bundles that are consistent with
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Algorithm 2 Event-based Progressive Spatio-temporal
Alignment With Dynamic Batch Strategy
Input: unprocessed events Ψ.
1: slice Ψ equally into event bundles {ξb0, ξb1, ...} using Eq. (6).
2: set the current event bundle index i to 0.
3: initialize the dynamic batch ξ with the first event bundle ξbi .
4: set the first overlap ratio ri to rinit.
5: while True do
6: obtain the motion parameters θi of ξ using Algorithm 1.
7: warped ξ with θi and create TS map Ii using Eq. (2).
8: warp the next event bundle ξbi+1 with θi.
9: calculate the overlap ratio ri+1 between the TS map Ii

and the warped ξbi+1 using Eq. (7).
10: if ri+1 > ri then append ξbi+1 to ξ.
11: else break the loop.
12: end if
13: i← i+ 1.
14: end while
15: return parameters θi corresponding to the dynamic batch ξ.

the current motion model will be appended to the current
batch. The consistency is measured in terms of the over-
lap ratio ri+1 between the current event bundle ξbi+1 and the
previous TS map Ii, which can be expressed as

ri+1 =
1

Nb

∑
ek∈ξbi+1

| Ii (W(xk, tk;θ)) < th | , (7)

where the threshold th is normally set to the median time
of the event batch. If the overlap ratio of the current bundle
ξbi+1 is higher than that of the previous bundle ξbi , we append
this bundle to the current event batch and finetune the mo-
tion model with Algorithm 1. Otherwise, we stop append-
ing bundles and output the latest motion parameters. The
event-based progressive spatio-temporal alignment with dy-
namic batch strategy is summarized in Algorithm 2. Our
dynamic batch strategy is distinct from [15], where they up-
date an event slice according to the area event counts and
a histogram of average matching distance. In contrast, we
adaptively append the unprocessed events according to their
overlap ratio with the current event batch.

4. Motion Models

In this section, we provide the formulations of different
motion models for our proposed framework with the for-
ward and backward warping strategy.

Rotational Model. In the rotational model, the motion
parameters θ = (ωx, ωy, ωz)

T are the angular velocities
around the (x, y, z) axes. The backward warping function
of the rotational model can be expressed as

Wb (xk, tk;θ) ∝ R−1 (tk − tstart;θ)xk = exp
(
−θ̂ ·∆t

)
xk ,

(8)

where R−1 ∈ SO(3) is the inverse rotational transform
that warps events from tk to tstart, xk = K−1(xT

k , 1)
T is

the calibrated coordinate of xk with the intrinsic matrix K,
exp : so(3)→ SO(3) is the matrix exponential map and θ̂
is the 3 × 3 cross-product matrix associated with θ. Simi-
larly, the forward warping function that warps an event ek
from tk to tend can be parameterized by the same θ:

Wf (xk, tk;θ) ∝ R (tend − tk;θ)xk . (9)

See supplementary material for the mathematical derivation
for Eq. (9).

Homography Model. In the homography model, the es-
timated parameters θ = (vT,wT,nT)T are composed of
the translation velocity v, the angular velocity ω, and the
normalized normal vector n of the plane. The backward
warping function can be parameterized by θ:

Wb (xk, tk;θ) ∝ H−1(tk − tstart;θ) xk , (10)

whereH−1 is the inverse homography transform that warps
events from tk to tstart. The forward warping function in
the homography model can be expressed as

Wf (xk, tk;θ) ∝ H(tend − tstart;θ) · H−1(tk − tstart;θ) xk .
(11)

6-DOF Model. With an additional depth value assigned
to each event, the 6-DOF model can be applied to estimate
the ego-motion of the camera in arbitrary scenes. In the
6-DOF model, the motion parameters θ = (vT,wT)T are
composed of translation velocity v and angular velocity ω
at time tstart. The backward warping function can be pa-
rameterized by θ:

Wb (xk, zk, tk;θ) ∝ T −1(tk − tstart;θ)Pk , (12)

where Pk is the corresponding 3D point of the event ek
with augmented depth and T −1 is the inverse transform that
warps Pk from tk to tstart. The forward warping function
in the 6-DOF model can be expressed as

Wf (xk, zk, tk;θ) ∝ T (tend−tstart;θ)·T −1(tk−tstart;θ)Pk.
(13)

See supplementary material for the mathematical simplifi-
cation of Eq. (13).

5. Experiments
5.1. Datasets

For the rotational model and the homography model, we
adopt the Event-Camera dataset [20], which was acquired
by a DAVIS240 camera with 240 × 180 resolution. This
dataset contains many real-world sequences with fast mo-
tions (up to 1800 deg/s of angular velocity), a high event
rate (up to 8 million events per second) and different scene
textures. Therefore, it has strict requirements on accuracy,
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Method poster rotation dynamic rotation shapes rotation classroom

ew RMSw Time ew RMSw Time ew RMSw Time ew RMSw Time

CMax [6] 8.14 11.67 119.6∗ 4.56 6.64 118.8∗ 29.90 48.90 118.9∗ 4.76 6.09 140.3∗

ST-PPP [8] 7.26 10.37 99.9∗ 3.84 5.19 100.2∗ 38.16 76.50 102.1∗ 4.51 5.77 117.3∗

AEMin [22] 8.52 12.19 28.1 4.50 6.40 32.5 26.25 55.80 49.0 3.85 5.19 25.3
IncEMin [24] 13.96 19.82 4.4 12.26 22.39 4.9 115.02 165.73 8.3 16.61 24.59 3.3
Ours-1k 6.87 10.11 4.3 3.67 4.87 4.0 7.17 10.85 3.1 2.47 3.36 3.2
Ours-30k 6.73 9.98 35.0 3.59 4.78 34.3 7.15 10.62 27.2 2.01 2.61 29.7

RT-CMax [10] 25.59 66.20 1.8 9.70 15.92 1.6 27.93 64.57 2.1 3.80 4.72 1.2
RT-IncEMin [23] 20.64 30.45 1.7 13.15 19.67 2.5 30.40 43.66 2.4 18.57 25.89 1.1
RT-Ours 8.44 12.96 0.5 4.90 6.50 0.7 8.33 11.47 2.0 2.84 3.86 0.3

∗The time is measured in the the Python environment with GPU acceleration.

Table 1. Accuracy and processing time in rotational motion estimation on the Event-Camera dataset [20] and the DVSMOTION20 dataset
[2]. The mean angular velocity error ew over three axes (x, y, z) and the RMS are presented in deg/s. The time in microseconds (µs) is
the average processing time for each event. The best and second best values are in bold and underlined, respectively.

processing speed and generalizability for motion estima-
tion algorithms. In addition, we also evaluate the rotational
model with the DVSMOTION20 dataset [2], which was ac-
quired by a DAVIS346 camera with 346× 260 resolution.

For the 6-DOF model, we adopt the MVSEC dataset
[36], which collects event streams from stereo event cam-
eras (DAVIS346), accompanied by IMU, LiDAR and GPS
data. In addition, it also provides the depth images gener-
ated from LiDAR data, from which we assign each event a
depth value according to its pixel coordinates.

5.2. Implementation Details

Our experiments can be divided into a real-time track
and a non-real-time track. For the non-real-time track, we
set the fixed-size models of related works with a batch
size Ne = 30k (normally contains a 5ms ∼ 25ms event
stream). In our framework with the dynamic batch size
strategy, we apply the bidirectional warping strategy and set
the iteration number T = 2 in Algorithm 1, the event bundle
size Nb = 5000, and the initial overlap ratio rinit = 50%
in Algorithm 2. In the quantitative comparison, we report
our results with 1k event samples (the minimum processing
time) and 30k event samples (the highest accuracy), respec-
tively. For the real-time track, we fill the batch with the lat-
est and unprocessed events (normally contains 1k ∼ 150k
events) and optimize 1k event samples with iteration num-
ber T = 3 using the unidirectional warping strategy.

In all experiments, we apply Gaussian smoothing for the
TS maps with σ = 0.5 and kernel size of 5. The TS map is
updated every ten optimization steps of the motion parame-
ters. The polarities of events are considered equally in our
algorithm. To reduce noise interference, we only sample
events whose 8-connected neighborhood contains at least
four events. The framework is implemented with C++ on
a standard computer with a 2.9 GHz and 16-Core Intel i7
CPU. For the optimization part, we adopt the open-source

library Ceres [1] with Powell’s dog leg method [16].

5.3. Results

5.3.1 Rotational model

We compare our rotational models with the most recent
works of angular velocity estimation [6, 8, 10, 22–24] in
terms of accuracy and processing time. These two models
are named with Ours-30k and Ours-1k. As for Ours-30k,
we sample 30k events and apply the bidirectional warping
strategy and the dynamic batch size strategy. As for Ours-
1k, we sample 1k events in each optimization iteration. Fol-
lowing the evaluation protocol [8], we utilize the angular
velocity from the IMU as the ground truth. The accuracy is
measured in three error metrics: the mean angular velocity
error ew over three axes and the root-mean-square (RMS)
error. We report the average processing time required for
each event in microseconds (µs). We test these works with
the same batch size Ne = 30k in the non-real-time track,
except for IncEMin [24], which maintains the most recent
10k events for the Event-Camera dataset [20] and 20k for
the DVSMOTION20 dataset [2]. Since EMin [22] requires
the expensive computation of entropy loss, we only report
the results of AEMin [22] and IncEMin [24]. Note that we
adopt the code of CMax and ST-PPP released in [8], which
is implemented with Python and GPU acceleration. For a
fair comparison of processing time with these two meth-
ods, we provide the computational complexity analysis in
Sec. 5.4.

In Tab. 1, Ours-30k achieves the best accuracy among all
the sequences. When the scene changes (shape rotation) or
the camera resolution changes (classroom), other methods
with the fixed-size strategy suffer from a large drop in ac-
curacy. Our method can dynamically adjust the batch size
to adapt to these environmental changes and achieve higher
accuracy. For the processing time comparison, Ours-1k re-
ports the minimum average processing time of 3.66 µs per
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Method ARPE ARRE RMSw Time
tr

an
sl

at
io

n CMax [6] 39.23 0.0108 17.14 118.3∗

AEmin [22] 27.24 0.0140 24.92 33.1
Ours-1k 26.80 0.0117 16.59 5.9
Ours-30k 20.59 0.0097 13.28 42.1

6d
of

CMax [6] 48.58 0.0150 51.47 118.0∗

AEmin [22] 46.80 0.0147 43.82 32.2
Ours-1k 28.48 0.0157 22.51 5.4
Ours-30k 22.62 0.0138 22.54 36.7

hd
r

CMax [6] 45.51 0.0124 22.08 107.6∗

AEmin [22] 50.04 0.0243 46.20 33.5
Ours-1k 25.44 0.0138 26.55 5.5
Ours-30k 22.86 0.0122 17.08 38.1

∗The time is measured in the Python environment with GPU acceleration.

Table 2. Accuracy and processing time of motion estimation in
planar scenes from the poster sequences of the Event-Camera
dataset [20]. The time in microseconds (µs) is the average pro-
cessing time for each event. The best results are in bold.

event. Meanwhile, it maintains high accuracy and outper-
forms IncEMin [24] (with the second minimum processing
time) by a large margin. For the real-time track, we compare
it with other methods that can achieve real-time process-
ing [10, 23], as shown at the bottom of Tab. 1. In the real-
time implementation, the optimization stops when the next
batch arrives, which can decrease the accuracy for insuffi-
cient optimization time. Our model shows an improvement
of approximately 50% in RMS compared with the second
best performance method.

5.3.2 Homography model

We compare our homography model with CMax [6] and
AEMin [22] in three planar scenes. We evaluate the accu-
racy in three error metrics: RMSw, relative rotation error
(RRE =

∥∥logm
(
RT

estRgt

)∥∥), where logm denotes the ma-
trix log, and relative pose error (RPE = arccos

test·tgt
∥test∥·∥tgt∥ ).

Since IncEMin [24] is not yet applicable in planar scenes,
we only report the results of AEMin. Note that the CMax
with homography model is based on the PyTorch implemen-
tation from [8], and we only compare its accuracy.

In Tab. 2, Ours-30k shows a significant improvement
and achieves a new state-of-the-art accuracy based on these
three metrics. Even with 1k events involved in each it-
eration, Ours-1k still outperforms AEMin in the transla-
tion and hdr sequences with about 18% processing time of
AEMin.

5.3.3 6-DOF model

We quantitatively compare our 6-DOF model with CMax
[6], AEMin [22] and IncEMin [24] in terms of accuracy and
processing time. The accuracy is measured with five met-
rics: RMSw and RRE to measure the rotation error, RMSv ,
RPE and endpoint error (EE = ∥test − tgt∥) to measure
translation error. Note that CMax with the 6-DOF model

Method RMSw RMSv ARPE ARRE AEE Time

in
do

or
fly

in
g1

CMax [6] 1.75 0.072 11.72 0.0077 0.11 135.0∗

AEmin [22] 1.38 0.069 10.86 0.0062 0.11 712.8
IncEMin [24] 1.65 0.085 13.75 0.0075 0.13 4.7
Ours-1k 1.07 0.040 7.74 0.0061 0.06 2.9
Ours-30k 1.05 0.039 7.49 0.0060 0.06 26.9
RT-Ours 1.45 0.053 7.86 0.0067 0.08 1.3

ou
td

oo
r

dr
iv

in
g1

CMax [6] 14.19 1.225 15.41 0.0228 1.55 143.3∗

AEmin [22] 4.00 0.677 9.39 0.0137 0.98 424.1
IncEMin [24] 4.05 1.035 15.75 0.0096 1.49 52.2
Ours-1k 2.73 0.606 7.96 0.0077 0.93 3.9
Ours-30k 2.72 0.598 7.83 0.0076 0.92 36.5
RT-Ours 2.85 0.630 8.26 0.0080 0.96 1.2

∗The time is measured in the Python environment with GPU acceleration.

Table 3. Accuracy and processing time of motion estimation of the
6-DOF model in the MVSEC dataset [36]. The time in microsec-
onds (µs) is the average processing time for each event. The best
results are in bold.

(a) Estimated translation velocity (m/s) vs time (s)   (b) Estimated 6-DOF trajectories

Ground truth
Ours-30k
AEMin

Ground truth Ours-30k AEMin

x

y

z

Figure 3. Estimation results of the 6-DOF model with the in-
door flying1 sequence [36]. (a): estimated translation velocity.
(b): the corresponding accumulated translation trajectories.

is implemented on the PyTorch implementation from [8].
We list its processing time for reference and only com-
pare it with its accuracy. We set the batch size Ne = 30k
for AEMin and CMax, except for IncEMin, which main-
tains 15k and 30k events for the indoor flying1 and the out-
door driving1 sequences.

In Tab. 3, Ours-30k consistently outperforms the oth-
ers in all metrics. Even the real-time implementation of
our 6-DOF model, which involves 1k events with 3 iter-
ations using the unidirectional warping strategy, achieves
state-of-the-art accuracy with real-time processing, show-
ing a promising method in event-based motion estimation.

In Fig. 3 (a), we qualitatively compare the estimated
translation velocity with the ground truth on the in-
door flying1 sequence for the first 35 seconds. Then, we in-
tegrate these velocities with their batch duration and plot the
3D trajectories in Fig. 3 (b). Since the estimated velocities
are based on event batches, the drifts can be accumulated
with increasing time. Even then, our trajectory follows the
ground truth closely and exhibits small drifts than AEMin.

5.4. Computational Complexity

The computational complexity in our framework mainly
consists of two parts: generating the TS map in Eq. (2),
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CMax [6] ST-PPP [8] EM [22] AEM [22] Ours-1k Ours-30k

Complexity Ne Ne N2
e Nek

d 0.26Ne 2.2Ne

Time 1.4 5.1 891 8.4 0.4 5.4

Table 4. Comparison of computational complexity and evaluation
time with Ne events. For comparability, all algorithms are imple-
mented in C++, and the evaluation time in milliseconds (ms) is
the duration for one loss evaluation. For simplicity, we show the
specific value of the coefficients of our framework.

which involves Ne events; optimizing the loss function in
Eq. (3), which involves sNe events. In our experiments,
for every 10 optimizing steps on the motion parameters,
we update the TS map. On average, the computational
complexity for each loss evaluation of our framework is
O ((0.1 + s)2Ne), where the factor 2 is due to the bidi-
rectional warping strategy. The sampling ratio s is typ-
ically set to 0.03, i.e., sampling 1k events from a batch
with Ne = 30k. In Tab. 4, we demonstrate the compu-
tational complexity of the related works in the rotational
model [6, 8, 22] and compare the evaluation time for each
loss evaluation with 30k events. For comparison, we reim-
plement the loss function of CMax [6] and ST-PPP [8] in
C++. The results show that our approach with 1k event
samples achieves the minimum computational complexity
as the least evaluation time.

5.5. Ablation Study

In Tab. 5, we present ablation studies on the rotational
model with the sampling strategy, bidirectional warping
strategy and dynamic batch size strategy. For the ablation
of the sampling strategy, we apply different event sampling
numbers in Algorithm 1. Their results are reported at the top
of Tab. 5, where the symbol ‘Ours-1k’ denotes our method
with 1k event samples. It shows that the accuracy increases
with more sampling events. However, the slight increase in
accuracy comes at the cost of several times the computation
effort. Surprisingly, our algorithm still retains competitive
performance, even with 0.1k event samples involved in the
optimization. This result also confirms our judgement that
we do not need to evaluate the residuals and gradients of all
events. Only a tiny fraction of them are enough to provide a
good optimization direction. The sampling strategy may be
the key to implementing event-based motion estimation al-
gorithms in some computation-limited and time-critical ap-
plications.

At the bottom of Tab. 5, we present ablation studies of
the bidirectional warping strategy and the dynamic batch
size strategy. For a fair comparison, we fix the same event
sampling number in these experiments. Under both the dy-
namic batch size strategy and the fixed-size strategy, the re-
sults of the bidirectional warping strategy are better than
those of the unidirectional warping strategy in accuracy, but
it comes at the cost of nearly twice the averaging process-

Method warp batch poster rotation shapes rotation

ew RMSw Time ew RMSw Time

Ours-0.1k b d 7.22 10.23 1.9 7.39 10.92 1.4
Ours-1k b d 6.87 10.11 4.3 7.17 10.85 3.1
Ours-10k b d 6.76 9.99 11.9 7.11 10.55 12.2

Ours-30k b d 6.73 9.98 35.7 7.15 10.62 27.4
Ours-30k u d 7.91 11.05 15.9 10.62 15.08 15.4
Ours-30k b f 7.47 10.21 29.0 11.85 18.39 25.6
Ours-30k u f 8.15 11.10 16.2 14.51 22.41 12.0

Table 5. Ablations on the rotational model with the sampling strat-
egy, bidirectional warping strategy and dynamic batch size strat-
egy on the Event-Camera dataset [20]. The symbols ‘u’ and ‘b’
denote the unidirectional and the bidirectional warping strategies,
respectively. The symbols ‘f’ and ‘d’ denote the fixed-size and the
dynamic batch size strategies, respectively.

ing time. To balance the tradeoff between the accuracy and
the computation cost with the bidirectional strategy, we can
apply a small event sampling number to reduce the compu-
tational burden and achieve higher accuracy.

In the experiments with the dynamic batch size strategy,
the batch size can be adaptively change from 10k to 150k.
As shown in Tab. 5, the results of the dynamic batch size
strategy report higher accuracy than the fixed-size strategy.
Especially in the shape rotation sequence, the time span of
a batch with 30k events can be dozens of milliseconds so
that all the events may not share the same motion parame-
ters. Our dynamic batch size strategy obviates such globally
fixed parameters and has better generalizability to the scene
textures and the camera speeds. The processing time of the
dynamic batch size strategy is similar to that of the fixed-
size strategy in these two sequences.

6. Conclusion
In this work, we propose a unified event-based motion

estimation framework for various motion models. With a
novel event-to-map alignment scheme, our framework can
efficiently perform motion estimations with a small num-
ber of sampled events, which allows us to achieve real-time
performance for the rotational model and the 6-DOF model
with standard CPUs. We also propose a dynamic batch
size strategy to make our algorithm more generalizable to
different scenes textures, camera speeds, and camera res-
olutions. Comprehensive experimental results demonstrate
that our framework achieves state-of-the-art performance in
terms of accuracy and efficiency. We believe that the pro-
posed framework is a promising approach for computation-
limited and time-demanding applications such as SLAM
and robotics.
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