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Abstract

Efforts to improve the adversarial robustness of convo-
lutional neural networks have primarily focused on devel-
oping more effective adversarial training methods. In con-
trast, little attention was devoted to analyzing the role of
architectural elements (e.g., topology, depth, and width) on
adversarial robustness. This paper seeks to bridge this gap
and present a holistic study on the impact of architectural
design on adversarial robustness. We focus on residual net-
works and consider architecture design at the block level
as well as at the network scaling level. In both cases, we
first derive insights through systematic experiments. Then
we design a robust residual block, dubbed RobustResBlock,
and a compound scaling rule, dubbed RobustScaling, to
distribute depth and width at the desired FLOP count.
Finally, we combine RobustResBlock and RobustScaling
and present a portfolio of adversarially robust residual
networks, RobustResNets, spanning a broad spectrum of
model capacities. Experimental validation across multiple
datasets and adversarial attacks demonstrate that Robus-
tResNets consistently outperform both the standard WRNs
and other existing robust architectures, achieving state-of-
the-art AutoAttack robust accuracy 63.7% with 500K exter-
nal data while being 2× more compact in terms of parame-
ters. Code is available at this URL.

1. Introduction

Robustness to adversarial attacks is critical for prac-
tical deployments of deep neural networks. Current re-
search on defenses against such attacks has primarily fo-
cused on developing better adversarial training (AT) meth-
ods [19, 27, 32, 35, 39]. These techniques and the insights
derived from them have primarily been developed by fixing
the architecture of the network, typically variants of wide
residual networks (WRNs) [38]. While a significant body
of knowledge exists on designing effective neural networks
for vision tasks under standard empirical risk minimization
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Figure 1. (L) Impact of architectural components on adversar-
ial robustness on CIFAR-10, relative to that of adversarial train-
ing methods. The variations of each component are elaborated in
§4. (R) Progress of SotA robust accuracy against AutoAttack
without additional data on CIFAR-10 with ℓ∞ perturbations of
ϵ = 8/255 chronologically. We show that innovation in architec-
ture (this paper) can improve SotA robust accuracy while simulta-
neously being almost 2× more compact. Zoom in for details.

(ERM) training, i.e., traditional learning without inner op-
timization needed in AT, limited attention has been devoted
to studying the role of architectural components on adver-
sarial robustness. However, as we preview in Figure 1, ar-
chitectural components can impact adversarial robustness as
much as, if not more than, different AT methods. As such,
there is a large void in practitioners’ toolboxes for designing
architectures with better adversarial robustness properties.

The primary goal of this paper is to bridge this knowl-
edge gap by (i) systematically studying the contribution
of architectural components to adversarial robustness, (ii)
identify critical design choices that aid adversarial robust-
ness, and (iii) finally construct a new adversarially robust
network that can serve as a baseline and test bed for study-
ing adversarial robustness. We adopt an empirical approach
and conduct an extensive amount of carefully designed ex-
periments to realize this goal.

We start from the well-founded observation that net-
works with residual connections exhibit more robustness
to adversarial attacks [3], and thus, consider the family of
residual networks. Then we systematically assess the two
main aspects of architecture design, block structure and net-
work scaling, and adversarially train and evaluate more
than 1200 networks. For block structure, we consider the
choice of layers, connections among layers, types of resid-
ual connections, activation, etc. For network scaling, we
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consider the width, depth, and interplay between them. To
ensure the generality of the experimental observations, we
evaluate them on three different datasets and against four
adversarial attacks. To ensure the reliability of the empiri-
cal observations, we repeat each experiment multiple times
with different seeds. Based on our empirical observations,
we identify architectural design principles that significantly
improve the adversarial robustness of residual networks.
Specifically, we make the following new observations:

❶ Placing activation functions before convolutional lay-
ers (i.e., pre-activation) is, in general, more beneficial
with adversarial training, as opposed to post-activation
used in standard ERM training. And sometimes, it can
critically affect block structures such as the basic block
used in WRNs. (§4.1.1, Figure 3a - 3c)

❷ Bottleneck block improves adversarial robustness over
the de-facto basic block used in WRNs. In addition,
both aggregated and hierarchical convolutions derived
under standard ERM training lead to improvements
under adversarial training. (§4.1.1, Figure 3d and 4).

❸ A straightforward application of SE [16] degrades ad-
versarial robustness. Note that this is unlike in standard
ERM training, where SE consistently improves perfor-
mance across most vision tasks when incorporated into
residual networks (§4.1.1, Figure 5).

❺ The performance of smooth activation functions is crit-
ically dependent on adversarial training (AT) settings
and datasets. In particular, removing BN affine param-
eters from weight decay is crucial for the effectiveness
of smooth activation functions under AT. (§4.1.2)

❹ Under the same FLOPs, deep and narrow residual net-
works are adversarially more robust than wide and
shallow networks. Specifically, the optimal ratio be-
tween depth and width is 7 : 3. (§4.2.2)

❻ In summary, architectural design contributes signifi-
cantly to adversarial robustness, particularly the block
topology and network scaling factors.

With these insights, we make the following contributions:
• We propose a simple yet effective SE variant, dubbed

residual SE, for adversarial training. Empirically, we
demonstrate that it leads to consistent improvements in
the adversarial robustness of residual networks across
multiple datasets, attacks, and model capacities.

• We propose RobustResBlock, a novel residual block
topology for adversarial robustness. It consistently
outperforms the de-facto basic block in WRNs by ∼
3% robust accuracy across multiple datasets, attacks,
and model capacities.

• We present RobustScaling, the first compound scaling
rule to efficiently scale both network depth and width
for adversarial robustness. Technically, RobustScal-
ing can scale any architecture (e.g., ResNets, VGGs,

DenseNets, etc.). Experimentally, we demonstrate that
RobustScaling is highly effective in scaling WRNs,
where the scaled models yield consistent ∼ 2% im-
provements on robust accuracy while being ∼ 2×
more compact in terms of learnable parameters over
standard WRNs (e.g., WRN-28-10, WRNs-70-16).

• We present a new family of residual networks, dubbed
RobustResNets, achieving state-of-the-art AutoAttack
[5] robust accuracy of 61.1% without generated or ex-
ternal data and 63.7% with 500K external data while
being 2× more compact in terms of parameters.

2. Background and Related Work
This section provides a brief overview of related work.

Readers are referred to Appendix for more details.
Adversarial Training as a Defense. Adversarial training
(AT) has emerged as one of the most effective ways to guard
against adversarial attacks. The basic idea of AT is to lever-
age AEs during the training process of a DNN model. Early
work on AT [19] used inputs perturbed by PGD for train-
ing. Since then, AT techniques have been extended in mul-
tiple directions – customized loss functions to balance the
trade-off between natural and robust accuracy [39] or mak-
ing use of misclassified natural examples [33]; advanced AT
procedures such as early stopping to prevent robust overfit-
ting [24] and weight ensembling [4, 18, 30]; more diverse
data for training by generative modeling [11, 26] or data
augmentation [23].
Robust Architecture. A few attempts have been made to
explore the impact of architectural components on adver-
sarial robustness. From a block structure point of view, (1)
Cazenavette et al. showed that residual connections signifi-
cantly aid adversarial robustness [3]; (2) Xie et al. showed
that smooth activation functions lead to better adversarial
robustness on ImageNet [36], with a similar observation by
Pang et al. on CIFAR-10 with ResNet-18 [21]; (3) Dai et
al. identified that parameterized activation functions have
better robustness properties [6]. However, neither of these
studies verified their corresponding observations across dif-
ferent model capacities and datasets.

From a network’s scaling factors point of view, the pre-
vailing convention favors wide networks, i.e., using WRNs
instead of ResNets (RNs) [31, 39]. However, we argue
that there is no clear consensus on the impact and opti-
mal configurations of scaling factors for adversarial robust-
ness. More specifically, (1) Xie et al. hinted that compound
scaling with a simple strategy would produce a more ro-
bust model than scaling up a single dimension [36]; (2)
Gowal et al. found that deeper models perform better [10];
(3) Huang et al. studied the impact of network scaling fac-
tors and showed that reducing the capacity of the last stage
leads to better adversarial robustness [17]; (4) Mok et al.
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Figure 2. Overview of the architecture components we considered for adversarial robustness: at the network scaling level (Top), the network
has three stages, each with multiple blocks controlled by scaling parameters, i.e., depth and width; at the block level (Bottom), we explore
variants of residual blocks and their components including convolution, activation, kernel size, normalization, etc.

claimed that there is no clear relationship between the width
and the depth of architecture and its robustness [20]; (5)
Zhu et al. showed that width helps robustness in the over-
parameterized regime, but depth can help only under certain
initialization [40]. However, none of these studies provided
a way to simultaneously scale depth and width.

3. Preliminaries
This section describes the experimental setup in terms of

the adopted architectural skeleton and the details on training
and evaluating the networks against adversarial attacks.
Architecture Skeleton: Figure 2 shows the skeleton of the
network that we consider. It comprises a stem (i.e., a single
3 × 3 convolution) and three processing stages. Each stage
is made up of a varying number of convolutional blocks.
We denote the depth (i.e., number of blocks) and width (in
terms of widening factors) of i-th stage by Di and Wi, re-
spectively. We study the effect of the block structure (vari-
ants of residual blocks) and the network scaling (configura-
tions of [D1, D2, D3] and [W1,W2,W3]) on the network’s
adversarial robustness, within this architectural skeleton.
Unless otherwise specified, we use 3 × 3 conv, ReLU, and
BatchNorm as the default choices.
Datasets: We evaluate adversarial robustness on three
datasets, CIFAR-10, CIFAR-100 and Tiny-ImageNet.
Training: We employ two training strategies in this paper,
i.e., baseline and advanced adversarial training (BAT and
AAT). Full details are provided in Appendix.
Evaluation: We consider FGSM [9], 20-step PGD
(PGD20) [19], 40-step CW (CW40) [2], and AutoAttack
(AA) [5] with perturbation constraint ϵ = 8/255. We re-

peat each experiment multiple times and compute the mean
performance to account for noise in evaluating adversarial
robustness. In all results, we show the mean and standard
deviation using markers and shaded regions, respectively.

4. Design of Adversarially Robust ResNets
We decompose the architectural design of adversarially

robust residual networks at the block (i.e., block topology
and components) and network (i.e., depth and width) levels.

4.1. Impact of Block-level Design

Designing a block involves choosing its topology, type
of convolution, activation and normalization, and kernel
size. We examine these elements independently through
controlled experiments and, based on our observations, pro-
pose a novel residual block, dubbed RobustResBlock.

4.1.1 Block Topology

Residual Topology: Fig 2 (a, b, c) shows the primary vari-
ants of residual blocks in the literature, namely, basic [13],
bottleneck [13], and inverted bottleneck [25]. Among them,
the basic block is the de-facto choice for studying adversar-
ial robustness [11, 23, 33, 39]. Surprisingly, the bottleneck
and inverted bottleneck blocks have rarely been employed
for adversarial robustness, despite their well-established ef-
fectiveness under standard ERM training for image classifi-
cation, object detection, etc. [29, 34]. Therefore, we revisit
these residual blocks in the context of adversarial robust-
ness. And for each block, we consider two variants (post-
[13] and pre-activation [14]) corresponding to the place-
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Summary of our Robust Residual Block

Building upon the empirical evidence from
§4.1.1 - §4.1.2, we propose a new resid-
ual block design, dubbed RobustResBlock,
to substitute the basic block in architec-
tures designed for adversarial robustness.
– Block Topology: Bottleneck block with
pre-activation, hierarchically aggregated
convolution, and our residual SE (§4.1.1).
– Activation: ReLU (§4.1.2).
– Normalization: BatchNorm (Appendix).
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ment of activation functions before and after a convolution
(see Fig 2 (d, e) for an illustration). Moreover, we con-
sider models of different capacities by varying the stage-
wise depth Di∈{1,2,3} and width Wi∈{1,2,3} among {4, 5,
7, 11} and {10, 12, 14, 16}, respectively.

Fig 3 compares the adversarial robustness of the above
variants of residual blocks under baseline AT. We observe
that (i) the basic block is susceptible to the location of the
activation function, with pre-activation leading to a sub-
stantial improvement in adversarial robustness (Fig. 3a);
(ii) performance of the bottleneck and inverted bottleneck
blocks are relatively stable w.r.t the position of the acti-
vation function, although pre-activation provides a slight
but noticeable benefit on large-capacity models with bottle-
neck blocks and small-capacity models with inverted bot-
tleneck blocks (Figs. 3b and 3c). Thus, we argue that pre-
activation is preferred over post-activation for adversarial
robustness. Fig 3d compares the three residual blocks with
pre-activation under baseline AT. We observe that the ba-
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(c) Inverted Bottleneck
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Figure 3. Robust accuracy of networks on C-10 with (a) basic,
(b) bottleneck, and (c) inverted bottleneck blocks, with post and
pre-activation. (d) Comparison among blocks with pre-activation.
“No residual” removes the residual connection in the basic block.
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Figure 4. (a, b) show effects of cardinality and scales for a low-
capacity model (Di = 4,Wi = 10). (c, d) Comparing aggregated
(cardinality = 4) and hierarchical (scales = 8) bottleneck to other
blocks. All results are on CIFAR-10.

sic block is more effective in low model-capacity regions,
while the bottleneck block is more effective in high model-
capacity regions. Finally, since the inverted bottleneck does
not outperform the other two blocks under any model ca-
pacity, we do not consider it any further. Additional results
are available in Appendix.
Aggregated and Hierarchical Convolutions: Next, we
consider two enhanced arrangements of convolution, ag-
gregated [37], and hierarchical [8], which have proven to
be effective for residual blocks under standard EMR train-
ing on standard tasks. Aggregated and hierarchical con-
volutions split a regular convolution into multiple parallel
convolutions and hierarchical convolutions; see Fig 2 (g, h)
for visualizations. We incorporate both of them within the
bottleneck block. For each enhancement, experiments with
parameter sweeps were carried out to determine appropri-

8205



Table 1. Break-down of the contribution of each identified topological enhancement. Both basic and bottleneck blocks use pre-activation.
The cardinality for aggregated conv is 4, and the scale for hierarchical conv is 8. All results are for a large model with Di = 11,Wi = 16.

Topology Complexity CIFAR-10 CIFAR-100

Basic Bottle Aggr. Hier. SE #P #F Clean PGD20 CW40 Clean PGD20 CW40

✓ 267M 38.8G 85.51±0.19 56.78±0.13 54.52±0.13 56.93±0.49 29.76±0.14 27.24±0.15

✓ 265M 39.0G 85.47±0.21 57.49±0.21 55.07±0.10 59.24±0.36 32.08±0.26 28.61±0.17

✓ ✓ 265M 39.4G 85.47±0.10 57.50±0.28 55.53±0.26 59.27±0.34 31.63±0.36 28.80±0.18

✓ ✓ ✓ 262M 39.3G 86.29±0.07 59.48±0.12 56.94±0.27 59.32±0.13 33.46±0.22 29.65±0.14

✓ ✓ ✓ ✓ 270M 39.3G 86.55±0.10 60.48±0.00 57.78±0.09 60.22±0.57 33.88±0.03 29.91±0.15
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Designs (reduction ratio) #P (M) #F (G) Clean Robust (CW40)

w/o SE 265 39.0 85.47 55.07
Standard SE (r = 16) 296 39.1 84.56 (-0.91) 54.52 (-0.55)
Conv3×3-SE (r = 16) 273 39.1 85.26 (-0.21) 54.77 (-0.40)
Identity-SE (r = 16) 293 39.1 85.20 (-0.27) 54.94 (-0.13)

Our residual SE (r = 16) 296 39.1 85.75 (+0.28) 55.95 (+0.88)
Our residual SE (r = 64) 273 39.1 85.61 (+0.14) 56.05 (+0.98)

(d) Ablation study on SE integration designs.
Figure 5. (a) Standard SE block. (b) Our residual SE adds an
extra skip connection around the SE module. (c) Comparison of
residual blocks w/ and w/o our residual SE. (d) Ablation results
with relative improvement/degradation shown in parentheses.

ate values for their hyperparameters, i.e., cardinality for ag-
gregated (Fig 4a) and scales for hierarchical convolutions
(Fig 4b). Figs 4 (c, d) compare the bottleneck block with ag-
gregated and hierarchical convolutions under baseline AT,
respectively. We observe that the bottleneck block consis-
tently benefits from both enhancements and outperforms the
basic block across a wide spectrum of model-capacity re-
gions. More detailed results can be found in Appendix.
S&E: Next, we consider squeeze-and-excitation (SE) [16],
which emerged as a standard component of modern CNN
architectures [15, 29]. However, we observe (see Table 5d)
that a straightforward application of SE, and all its variants
explored by Hu et al. [16], degrade adversarial robustness.
This is unlike the case in standard ERM training, where SE
consistently improves performance across most vision tasks
when added to residual networks. We hypothesize that this
may be due to the SE layer excessively suppressing or am-
plifying channels. Therefore, we present an alternative vari-
ant of SE, dubbed residual SE, for adversarial robustness.
Fig 5c compares the basic and bottleneck blocks with and
without residual SE under BAT. Results indicate that our
residual SE consistently improves the adversarial robust-
ness of both blocks across different model-capacity regions.
Additional results are available in Appendix.
Summary: We break down the contribution of each iden-
tified topological enhancement, namely, pre-activation, ag-
gregated and hierarchical convolutions, and residual SE in
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Figure 6. (a) - (c) Effect of weight decay on robust accuracy of
models with different activation functions on CIFAR-10. (d) -
(f) Robust accuracy of models with different activation functions
across a range of model capacities. (g) - (i) Robust accuracy under
advanced AT for different activation functions on CIFAR-10.

Table 1. We demonstrate that all these enhancements can be
naturally integrated within the bottleneck topology. Empir-
ically, our final topology yields a ∼3% improvement under
baseline AT over the basic block used in WRNs.

4.1.2 Activation and Normalization

Activation: Since the first demonstration by Xie et al. [36],
several researchers [10, 21, 28] reaffirmed that smooth acti-
vation functions improve adversarial training, which in turn
improves adversarial robustness. However, these observa-
tions are primarily based on CIFAR-10 with low-capacity
models (e.g., ResNet-18 or WRN-34-10) and for a fixed set
of training hyperparameters. We hypothesize that, smooth
or not, different activation functions may perform differ-
ently depending on training hyperparameters, especially
weight decay, as observed by Pang et al. [21]. Therefore,
we revisit the adversarial robustness of smooth and non-
smooth activation functions under appropriate weight decay
settings. We consider ReLU and three smooth activation
functions, SiLU/Swish [11, 23, 36], Softplus [21, 22], and
GELU [1], given their prevalence in the literature.
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Summary of Compound Scaling (RobustScaling)

– Ratio between Depth and Width:
∑

Di :
∑

Wi =

7 : 3 such that #FLOPs ≈ target (§4.2.2).
– Distribution of Depth/Width among stages: D1 :

D2 : D3 = 2 : 2 : 1, W1 : W2 : W3 = 2 : 2.5 : 1 (§4.2.1).
Desired
#FLOPs

Referred
as

Stage 1 Stage 2 Stage 3
D1 W1 D2 W2 D3 W3

R
ob

us
tS

ca
lin

g 5G A1 14 5 14 7 7 3
10G A2 17 7 17 9 8 4
20G A3 22 8 22 11 11 5
40G A4 27 10 28 14 13 6

10 20 30 40
No. of FLOPs (G)

52.0

53.0

54.0

55.0

56.0

%
 C

W
40

 R
ob

us
t A

cc
ur

ac
y

D = 4, W = 10
(WRN-28-10)

D = 5, W = 12
D = 7, W = 14

D = 11, W = 16
(WRN-70-16)

A1

A2

A3
A4

8 ×  fewer #FLOPs

 1.8%
 m

ore
     robust

WRNs
WRNs scaled by
RobustScaling

WRNs
WRNs scaled by
RobustScaling

– Wide or Deep: For a targeted #FLOPs, deep
(but narrow) networks are adversarially more ro-
bust than wide (but shallow) networks.

As shown in Fig 6 (a, b, c), we first identify a suit-
able weight decay value for each activation function from
{1, 2, 5} × 10−4. Then we compare performance under
their respective optimal weight decay settings across a wide
range of model capacities on three datasets. The results in
Fig 6 (d, e, f) suggest that, under BAT, smooth activation
functions do not improve performance over ReLU in most
cases, which contrasts with the prevailing consensus. To
verify the generality of our observations, we consider AAT
as described in §3 and repeat the experiment on CIFAR-10.
Now we observe from Fig 6 (g, h, i) that smooth activation
functions, particularly SiLU, start to provide meaningful
improvements over ReLU under advanced AT. To summa-
rize, our empirical findings provide further context to under-
stand the AT conditions under which models with smooth
activation functions outperform ReLU and vice-versa.

4.2. Impact of Network-level Design

Architectural design at the network level involves con-
trolling the width and depth. We approach network-level
scaling from a two-objective perspective of maximizing ad-
versarial robustness and network efficiency. As an illustra-
tion, we consider minimizing FLOPs to improve network
efficiency. A preview of RobustScaling is provided below.

4.2.1 Independent Scaling by Depth or Width

We independently study the relationship between adversar-
ial robustness and network depth (i.e., number of blocks) or
width in terms of widening factors (i.e., number of chan-
nels). We allow the depth of each stage (Di∈{1,2,3}) to vary
among {2, 3, 4, 5, 7, 9, 11}, and the width widening fac-
tor (Wi∈{1,2,3}) to vary among {4, 6, 8, 10, 12, 14, 16, 20},
while fixing the other architecture components to the base-
line settings described in §3. We adversarially train all
possible networks (i.e., 73 = 343 for depth and 83 =
512 for width) using the BAT and present the results in
Figs. 7a and 7e, respectively. Empirically, we observe
that (i) there are no substantial correlations between net-
work depth/width and adversarial robustness, implying that
adding more blocks or channels does not automatically
lead to better adversarial robustness; and (ii) at any given
computational budget, there is a significant variation in
adversarial robustness, suggesting that the distribution of
depth/width between the different stages needs to be care-
fully selected for improving adversarial robustness.

Next, we perform a more detailed analysis of the
depth/width distribution and robust accuracy of networks.
At each level of total network depth/width, we rank the net-
works by their adversarial robustness and visualize the dis-
tribution of the number of blocks/widening factors among
the three stages. We present the results in Fig. 7 and make
the following observations, (i) networks that distribute more
blocks evenly between the first two stages and decrease the
number of blocks in the third stage are ranked at the top
(Fig. 7b), (ii) networks that distribute more blocks in the
third stage and reduce the number of blocks in the first two
stages are ranked last (Fig. 7c), (iii) top-ranked networks
tend to use small widening factors in stage 3 and allocate
larger widening factors to the first two stages, particularly
the second stage (Fig. 7f), and (iv) last-ranked networks
use larger widening factors in the last stage by reducing the
widening factors of the second stage (Fig. 7g).

By averaging the number of blocks/widening factor dis-
tribution in the top-ranked models across all levels of
depth/width, we identify that distributing the depth, i.e., the
number of layers, as D1 : D2 : D3 = 2 : 2 : 1 and width,
in terms of widening factors, as W1 : W2 : W3 = 2 : 2.5 : 1

across the stages leads to robust and efficient models.

4.2.2 Compound Scaling by Depth and Width

Building upon the independent depth/width scaling rules
specified in §4.2.1, for a fixed computational complexity,
compound scaling can be realized as a competition between
network depth and width for resources. We formulate our
goal as searching for an appropriate ratio between total net-
work depth and total network width, i.e., [∑Di :

∑
Wi],

to efficiently allocate computational resources while im-
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(c) Last-Ranked Networks
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(d) Standard Uniform Scaling
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(f) Top-Ranked Networks
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(g) Last-Ranked Networks
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(h) Standard Uniform Scaling
Figure 7. Adversarial robustness of networks with (a) 343 depth and (e) 512 width settings on CIFAR-10. Pareto-efficient models (robust
and compact) are in red squares, inefficient models (sensitive and complex) are in violet triangles, and networks with standard uniform
scaling (D1 = D2 = D3 and W1 = W2 = W3) are in brown diamonds. Rank correlation (Kendall τ ) between depth/width and robust
accuracy is annotated. Distribution among the three stages for models with the efficient (b, f), standard uniform (c, g), and inefficient (d,
h) distribution of depth and width are visualized, where the secondary y-axis with color corresponds to robust accuracy.

proving adversarial robustness. Given a target FLOPs, we
systematically tune the contribution ratio of depth (i.e.,
rD =

∑
Di/(

∑
Di +

∑
Wi)) between [0.3, 0.95) and com-

pare the relative changes in robustness under BAT. From
the results shown in Fig 8, we observe that adversarial ro-
bustness improves monotonically as rD increases and peaks
at approximately rD = 0.7. However, as the rD continues to
increase beyond 0.7, adversarial robustness starts to dete-
riorate rapidly. Accordingly, our compound scaling rule,
dubbed RobustScaling, is obtained by solving:

rD =
D1 +D2 +D3

D1 +D2 +D3 +W1 +W2 +W3

=
2D3 + 2D3 +D3

2D3 + 2D3 +D3 + 2W3 + 2.5W3 +W3
= 0.7

such that the FLOPs
(∑

Di,
∑

Wi

)
≈ the target. A pic-

torial illustration of the compound settings under different
FLOP budgets is provided in Fig 9a, along with the standard
settings (i.e., WRN-28-10, WRN-70-16, etc.) in Fig 9b, the
settings obtained by independently scaling depth and width
in Figs 9c and 9d, respectively. We observe that deep but
narrow networks are preferred over wide but shallow net-
works for adversarial robustness at a given FLOPs budget.

Empirically, we compare our compound scaling to inde-
pendent scaling by depth/width, the standard scaling, and
the existing robust scaling from Huang et al. [17] under
BAT in Fig 10. Note that Huang et al. [17] only report
one network, WRN-34-R. But we apply their (width) scal-
ing rule to other WRN networks at different depths and
obtain a set of WRN-R networks. We observe that Ro-
bustScaling achieves the best trade-off between robustness
and network complexity, yielding networks that offer sub-
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Figure 8. (a, b) Adversarial robustness vs. contribution ratio of
depth (rD) at different FLOP levels, where rD =

∑
Di/(

∑
Di +∑

Wi). A larger rD indicates a deeper (more blocks) but narrower
(fewer channels) network.
stantial improvements in robust accuracy over existing scal-
ing methods while being an order of magnitude more effi-
cient. In particular, WRN-A1 is 3.8× more compact and
efficient than WRN-34-R [17] while being similar in adver-
sarial robustness. Our findings suggest that effective com-
pound policies do exist for scaling networks under adversar-
ial training, and our RobustScaling is one such realization.

5. Adversarially Robust Residual Networks
We use RobustScaling to scale our RobustResBlock to

present a portfolio of adversarially robust residual net-
works, dubbed RobustResNets, spanning a broad spectrum
of model FLOP budgets (i.e., 5G - 40G FLOPs). For ref-
erence, we name them as RobustResNet-A1 to -A4, where
the FLOPs budget is doubled for every subsequent network.
We then compare RobustResNets to a set of representative
robust architectures proposed in the literature. These in-
clude, RobNet [12], RACL [7], AdvRush [20], and WRN-
34-R [17]. Specifically, we align the network complexity
of AdvRush and RACL models by adjusting the number of
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Table 2. Comparison of white-box adversarial robustness under baseline AT with TRADES [39]. The best results are in bold, and relative
improvements over 2nd best result in each section are in red. Results are averaged over three runs with different seeds.

Model
#P
(M)

#F
(G)

CIFAR-10 CIFAR-100

Clean PGD20 CW40 AutoAttack Clean PGD20 CW40 AutoAttack

WRN-28-10 36.5 5.20 84.62±0.06 55.90±0.21 53.15±0.33 51.66±0.29 56.30±0.28 29.91±0.40 26.22±0.23 25.26±0.06

RobNet-large-v2 33.3 5.10 84.57±0.16 52.79±0.08 48.94±0.13 47.48±0.04 55.27±0.02 29.23±0.15 24.63±0.11 23.69±0.19

AdvRush (7@96) 32.6 4.97 84.95±0.12 56.99±0.08 53.27±0.03 52.90±0.11 56.40±0.09 30.40±0.21 26.16±0.03 25.27±0.02

RACL (7@104) 32.5 4.93 83.91±0.32 55.98±0.15 53.22±0.08 51.37±0.11 56.09±0.08 30.38±0.03 26.65±0.02 25.65±0.10

RobustResNet-A1 (ours) 19.2 5.11 85.46 (↑ 0.5) 58.74 (↑ 1.8) 55.72 (↑ 2.6) 54.42 (↑ 1.5) 59.34 (↑ 2.9) 32.70 (↑ 2.3) 27.76 (↑ 1.1) 26.75 (↑ 1.1)

WRN-34-12 66.5 9.60 84.93±0.24 56.01±0.28 53.53±0.15 51.97±0.09 56.08±0.41 29.87±0.23 26.51±0.11 25.47±0.10

WRN-34-R 68.1 19.1 85.80±0.08 57.35±0.09 54.77±0.10 53.23±0.07 58.78±0.11 31.17±0.08 27.33±0.11 26.31±0.03

RobustResNet-A2 (ours) 39.0 10.8 85.80 (↑ 0.0) 59.72 (↑ 2.4) 56.74 (↑ 2.0) 55.49 (↑ 2.3) 59.38 (↑ 0.6) 33.0 (↑ 1.8) 28.71 (↑ 1.4) 27.68 (↑ 1.4)

WRN-46-14 128 18.6 85.22±0.15 56.37±0.18 54.19±0.11 52.63±0.18 56.78±0.47 30.03±0.07 27.27±0.05 26.28±0.03

RobustResNet-A3 (ours) 75.9 19.9 86.79 (↑ 1.6) 60.10 (↑ 3.7) 57.29 (↑ 3.1) 55.84 (↑ 3.2) 60.16 (↑ 3.4) 33.59 (↑ 3.6) 29.58 (↑ 2.3) 28.48 (↑ 2.2)

WRN-70-16 267 38.8 85.51±0.24 56.78±0.16 54.52±0.16 52.80±0.14 56.93±0.61 29.76±0.17 27.20±0.16 26.12±0.24

RobustResNet-A4 (ours) 147 39.4 87.10 (↑ 1.6) 60.26 (↑ 3.5) 57.9 (↑ 3.4) 56.29 (↑ 3.5) 61.66 (↑ 4.7) 34.25 (↑ 4.5) 30.04 (↑ 2.8) 29.00 (↑ 2.9)
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(a) Compound scaling
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(b) Standard scaling
(i.e., WRN-28-10, WRN-70-16)
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(c) Scaling by depth
(D1 : D2 : D3 = 2 : 2 : 1)
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(d) Scaling by width
(W1 : W2 : W3 = 2 : 2.5 : 1)

Figure 9. Visualization of depth and width distribution among the
three stages for (a) our compound scaling, (b) standard scaling,
and (c, d) our independent scaling by depth/width. The secondary
y-axis shows robust accuracy under baseline adversarial training.

repetitions of the normal cell N and the input #channels of
the first normal cell C, denoted as (N@C).

Table 2 presents the results under baseline AT with
TRADES [39]. In general, RobustResNets consis-
tently outperform existing robust networks across multiple
datasets, attacks, and model-capacity regions. In particular,
RobustResNet-A1 achieves 1.5% higher AutoAttack robust
accuracy with 1.7× fewer parameters than AdvRush [20],
a robust block designed by differentiable neural architec-
ture search; RobustResNet-A2 achieves 2.3% higher Au-
toAttack robust accuracy with 1.8× fewer parameters and
FLOPs than WRN-34-R [17]. Additional comparisons are
provided in Appendix.

6. Conclusion

Novel architectural designs played a critical role in the
overwhelming success of CNNs. Despite this knowledge,
studies on adversarial robustness have primarily been lim-
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Figure 10. (a, b) Comparison among standard scaling (blue curve),
existing robust scaling [17] (brown curve), the identified indepen-
dent depth/width scaling (orange/green curve) from §4.2.1, and
the identified RobustScaling (red curve) on C-10. [D1, D2, D3]
and [W1, W2, W3] denote stage-wise depth and width settings,
respectively. For independent depth scaling, we use the width
settings from the standard scaling and vice-versa for independent
width scaling. All scaling strategies are applied to WRNs.

ited to a handful of basic residual networks, thus over-
looking the impact of architecture on adversarial robust-
ness. However, as we demonstrate in this paper, architec-
tural design significantly affects adversarial robustness. We
observed through systematically designed experiments that
many advancements of residual blocks for standard ERM
training translate well to improve adversarial robustness un-
der adversarial training, albeit with minor modifications in
some cases. Based on our observations, we designed Ro-
bustResNets as an alternative baseline as opposed to WRNs,
the de facto architecture of choice for designing adversar-
ially robust networks. RobustResNets afford significant
improvements in adversarial robustness while being more
compact than state-of-the-art solutions.

8209



References
[1] Yutong Bai, Jieru Mei, Alan Yuille, and Cihang Xie. Are

transformers more robust than CNNs? In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Adv.
Neural Inform. Process. Syst., 2021. 5

[2] Nicholas Carlini and David Wagner. Towards evaluating the
robustness of neural networks. In IEEE symposium on secu-
rity and privacy (sp), 2017. 3

[3] George Cazenavette, Calvin Murdock, and Simon Lucey. Ar-
chitectural adversarial robustness: The case for deep pursuit.
In IEEE Conf. Comput. Vis. Pattern Recog., 2021. 1, 2

[4] Tianlong Chen, Zhenyu Zhang, Sijia Liu, Shiyu Chang, and
Zhangyang Wang. Robust overfitting may be mitigated by
properly learned smoothening. In Int. Conf. Learn. Repre-
sent., 2021. 2

[5] Francesco Croce and Matthias Hein. Reliable evalua-
tion of adversarial robustness with an ensemble of diverse
parameter-free attacks. In Int. Conf. Mach. Learn., 2020. 2,
3

[6] Sihui Dai, Saeed Mahloujifar, and Prateek Mittal. Param-
eterizing activation functions for adversarial robustness. In
IEEE Security and Privacy Workshops, 2022. 2

[7] Minjing Dong, Yanxi Li, Yunhe Wang, and Chang Xu.
Adversarially robust neural architectures. arXiv preprint
arXiv:2009.00902, 2020. 7

[8] Shang-Hua Gao, Ming-Ming Cheng, Kai Zhao, Xin-Yu
Zhang, Ming-Hsuan Yang, and Philip Torr. Res2net: A
new multi-scale backbone architecture. IEEE Trans. Pattern
Anal. Mach. Intell., 43(2):652–662, 2021. 4

[9] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In Int.
Conf. Learn. Represent., 2015. 3

[10] Sven Gowal, Chongli Qin, Jonathan Uesato, Timothy Mann,
and Pushmeet Kohli. Uncovering the limits of adversarial
training against norm-bounded adversarial examples. arXiv
preprint arXiv:2010.03593, 2020. 2, 5

[11] Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles, Florian
Stimberg, Dan Andrei Calian, and Timothy Mann. Improv-
ing robustness using generated data. In Adv. Neural Inform.
Process. Syst., 2021. 2, 3, 5

[12] Minghao Guo, Yuzhe Yang, Rui Xu, Ziwei Liu, and Dahua
Lin. When nas meets robustness: In search of robust archi-
tectures against adversarial attacks. In IEEE Conf. Comput.
Vis. Pattern Recog., 2020. 7

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE Conf.
Comput. Vis. Pattern Recog., 2016. 3

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In Eur. Conf.
Comput. Vis., 2016. 3

[15] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-
bilenetv3. In Int. Conf. Comput. Vis., 2019. 5

[16] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua Wu.
Squeeze-and-excitation networks. IEEE Trans. Pattern Anal.
Mach. Intell., 42(8):2011–2023, 2020. 2, 5

[17] Hanxun Huang, Yisen Wang, Sarah Erfani, Quanquan Gu,
James Bailey, and Xingjun Ma. Exploring architectural in-
gredients of adversarially robust deep neural networks. Adv.
Neural Inform. Process. Syst., 2021. 2, 7, 8

[18] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry
Vetrov, and Andrew Gordon Wilson. Averaging weights
leads to wider optima and better generalization. arXiv
preprint arXiv:1803.05407, 2018. 2

[19] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. In Int. Conf. Learn.
Represent., 2018. 1, 2, 3

[20] Jisoo Mok, Byunggook Na, Hyeokjun Choe, and Sungroh
Yoon. Advrush: Searching for adversarially robust neural
architectures. In Int. Conf. Comput. Vis., 2021. 3, 7, 8

[21] Tianyu Pang, Xiao Yang, Yinpeng Dong, Hang Su, and Jun
Zhu. Bag of tricks for adversarial training. In Int. Conf.
Learn. Represent., 2021. 2, 5

[22] Chongli Qin, James Martens, Sven Gowal, Dilip Krishnan,
Krishnamurthy Dvijotham, Alhussein Fawzi, Soham De,
Robert Stanforth, and Pushmeet Kohli. Adversarial robust-
ness through local linearization. Adv. Neural Inform. Pro-
cess. Syst., 2019. 5

[23] Sylvestre-Alvise Rebuffi, Sven Gowal, Dan Andrei Calian,
Florian Stimberg, Olivia Wiles, and Timothy Mann. Data
augmentation can improve robustness. In Adv. Neural In-
form. Process. Syst., 2021. 2, 3, 5

[24] Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in ad-
versarially robust deep learning. In Int. Conf. Mach. Learn.,
2020. 2

[25] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In IEEE Conf. Comput. Vis.
Pattern Recog., 2018. 3

[26] Vikash Sehwag, Saeed Mahloujifar, Tinashe Handina, Sihui
Dai, Chong Xiang, Mung Chiang, and Prateek Mittal. Ro-
bust learning meets generative models: Can proxy distribu-
tions improve adversarial robustness? In Int. Conf. Learn.
Represent., 2022. 2

[27] Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi,
Zheng Xu, John Dickerson, Christoph Studer, Larry S Davis,
Gavin Taylor, and Tom Goldstein. Adversarial training for
free! Adv. Neural Inform. Process. Syst., 32, 2019. 1

[28] Vasu Singla, Sahil Singla, Soheil Feizi, and David Jacobs.
Low curvature activations reduce overfitting in adversarial
training. In Int. Conf. Comput. Vis., 2021. 5

[29] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In Int. Conf.
Mach. Learn., 2019. 3, 5

[30] Hongjun Wang and Yisen Wang. Self-ensemble adversarial
training for improved robustness. In Int. Conf. Learn. Repre-
sent., 2022. 2

[31] Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen
Zhou, and Quanquan Gu. On the convergence and robustness
of adversarial training. arXiv preprint arXiv:2112.08304,
2021. 2

8210



[32] Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun
Ma, and Quanquan Gu. Improving adversarial robustness re-
quires revisiting misclassified examples. In Int. Conf. Learn.
Represent., 2019. 1

[33] Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun
Ma, and Quanquan Gu. Improving adversarial robustness re-
quires revisiting misclassified examples. In Int. Conf. Learn.
Represent., 2020. 2, 3

[34] Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet
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