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Abstract

In this paper, we delve into semi-supervised 2D human
pose estimation. The previous method ignored two prob-
lems: (i) When conducting interactive training between
large model and lightweight model, the pseudo label of
lightweight model will be used to guide large models. (ii)
The negative impact of noise pseudo labels on training.
Moreover, the labels used for 2D human pose estimation
are relatively complex: keypoint category and keypoint po-
sition. To solve the problems mentioned above, we pro-
pose a semi-supervised 2D human pose estimation frame-
work driven by a position inconsistency pseudo label cor-
rection module (SSPCM). We introduce an additional auxil-
iary teacher and use the pseudo labels generated by the two
teacher model in different periods to calculate the inconsis-
tency score and remove outliers. Then, the two teacher mod-
els are updated through interactive training, and the student
model is updated using the pseudo labels generated by two
teachers. To further improve the performance of the student
model, we use the semi-supervised Cut-Occlude based on
pseudo keypoint perception to generate more hard and ef-
fective samples. In addition, we also proposed a new indoor
overhead fisheye human keypoint dataset WEPDTOF-Pose.
Extensive experiments demonstrate that our method outper-
forms the previous best semi-supervised 2D human pose es-
timation method. We will release the code and dataset at
https://github.com/hlz0606/SSPCM.

*This work was done when the authors were visiting Beike as interns.
†Corresponding author.
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Figure 1. Performance comparison between our method SSPCM
and SOTA method (DataDistill [33], DUAL [46]) on COCO [28]
dataset. On the COCO dataset, using 1000, 5000, and 10000
labeled person instances, our method has increased 2.3mAP,
1.9mAP, and 1.1mAP compared with the previous method.

1. Introduction

2D human pose estimation (HPE) [4, 6, 24, 27, 30, 52]
is a task to estimate all 2D keypoints of the human body
from images. It is a fundamental task of action recognition
[5,10,47], 3D human pose estimation [16,25,29,32,55], etc.
In recent years, thanks to the development of deep learn-
ing [14, 20, 36, 39], 2D human pose estimation has made
significant progress. However, the training of such a task is
known to be data-hungry, where the labelling process is par-
ticularly costly and time-consuming. To solve this problem,
semi-supervised 2D human pose estimation has become an
important research direction. This direction focuses on how
to use a small amount of labeled data and a large amount of
unlabeled data to improve the performance of the model.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Illustration of motivation. (i): (a) Previous interactive training methods [46]. (b) Our architecture. The arrow indicates the
transmission direction of the pseudo label. (ii) and (iii) are the statistics of teacher model predictions (pseudo labels) on COCO dataset.
Ppred represents the keypoint coordinates predicted by the model (based on the heatmap). S represents student model. TA and TB
represent 2 teacher models. Pgt represents the ground truth keypoint coordinates (based on the heatmap). LHM represents the diagonal
length of the heatmap. (ii): The relationship between the quality of the pseudo labels and confidence. (iii): The relationship between the
quality of the pseudo labels and position inconsistency. (iv): Results of the DUAL [46] at different confidence thresholds. (v): One specific
example to demonstrate that the confidence does not represent the localization quality. (a) and (b) are the output results of teacher model
A in different epochs (heatmap of the right ankle). (c) and (d) are the output results of the additional auxiliary teacher model B.

The current state-of-the-art semi-supervised 2D HPE
model [46] is based on consistency learning. Xie et al. [46]
find that by maximizing the similarity between different in-
crements of the image directly, there would be a collaps-
ing problem. The reason is that the decision boundary
passes the high-density areas of the minor class, so more
and more pixels are gradually wrongly classified as back-
grounds. They proposed a simple way to solve this prob-
lem. For each unlabeled image, an easy augmentation Ie
and a hard augmentation Ih are generated, and they are fed
to the network to obtain two heatmap predictions. They use
the accurate predictions on the easy augmentation to teach
the network to learn about the corresponding hard augmen-
tation. In addition, they also proposed a method that can
replace EMA [12] to update the parameters of the teacher
model, called Dual Network. The two models will take
turns to act as teachers’ identities to generate pseudo labels,
and take turns to act as students’ identities.

The previous methods [33,46] can improve the accuracy
of student models. However, the previous method has the
following problems: 1) In the practical application of semi-
supervised learning, large model are often used as teacher
and lightweight model as student. Due to the inconsis-
tent model structure, it is hard to use EMA to update the
teacher model. When conducting interactive training be-
tween large model and lightweight model, the pseudo label
of lightweight model will be used to guide large models, as
shown in the (a) of Fig. 2 (i). Although this method can also
improve the performance of the teacher model, it is subop-
timal. 2) The noise labels will harm the model training,
and the student model will overfit the noise labels (caus-
ing confirmation bias [2]). Some previous semi-supervised
classification tasks [22, 37] use the confidence of classifi-

cation to filter pseudo labels. There are a large number of
high-quality pseudo labels in the low confidence region, as
shown in Fig. 2 (ii). When the confidence threshold ex-
ceeds a certain value, the higher the confidence threshold,
the lower the model performance, as shown in the Fig. 2
(iv). By observing (a) and (b) in Fig. 2 (v), we can find that
(b) has a higher confidence, but it is a noise label deviat-
ing from the ground truth (outliers). Therefore, we choose
to filter with a lower threshold. In addition, in recent stud-
ies [17, 23, 34, 42, 48], it has been found that the more in-
consistent the prediction results of different models for the
same object, the more likely the prediction results will be
wrong. To solve above problems, we introduce an addi-
tional auxiliary teacher and use it to generate pseudo labels.
Their parameters are updated through interactive training,
which ensures the difference between the two models, as
shown in the (b) of Fig. 2 (i). The structure of these two
teacher models can be consistent with the student model, or
they can be larger models. Two teacher models may out-
put different results for the same image. Even in different
training periods, the output results of the same model for
the same image will be different. We post-process the N
pseudo labels output by the two teacher models in differ-
ent periods to obtain N prediction results (2D coordinates)
of each keypoint. Then, we calculate the pixel distance be-
tween N prediction results of each keypoint. We use pixel
distance to characterize the degree of position inconsistency
(inconsistency score). We visual the relationship between
the quality of the pseudo labels and position inconsistency,
as shown in Fig. 2 (iii). We select a group of pseudo labels
(2 pseudo labels) with the smallest position inconsistency
for ensemble to obtain the final corrected pseudo labels. In
short, on the basis of filtering based on confidence, PCM
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module selects a set of pseudo labels with the least incon-
sistency to remove outliers. The correction of pseudo labels
of PCM module is similar to ensemble learning, which can
make pseudo labels smoother. It is worth mentioning that
we only use student model when testing.

In addition, we also use the semi-supervised Cut-
Occlude based on pseudo keypoint perception to generate
more hard samples, as shown in Fig. 5. Specifically, we use
the pseudo label of the teacher model to locate the center of
each keypoint in the image. Then, based on this central po-
sition, we cut out the local limb image. We randomly paste
the local limb image to the center of a keypoint in another
image to simulate local occlusion.

Our contributions are as follows:

• We propose a semi-supervised 2D human pose esti-
mation framework driven by a position inconsistency
pseudo label correction module (SSPCM). Especially
when the structure of teacher model and student model
is inconsistent, it is a better solution.

• To further improve the performance of the student
model, we propose the semi-supervised Cut-Occlude
based on pseudo keypoint perception (SSCO) to gen-
erate more hard and effective samples.

• Extensive experiments on MPII [1], COCO [28], and
AI-Challenger [43] have proved that our method out-
performs the previous best semi-supervised 2D human
pose estimation method , as shown in Fig. 1.

• We release a new 2D HPE dataset collected by indoor
overhead fisheye camera based on the WEPDTOF [41]
dataset, which is called WEPDTOF-Pose. We have
conducted lots of experiments on WEPDTOF-Pose,
CEPDOF [11] and BKFisheye datasets (after remov-
ing sensitive information).

2. Related Work
2D human pose estimation. 2D human pose estima-

tion (HPE) [4, 6, 24, 27, 30, 52] is one of the most important
tasks in computer vision. Its purpose is to detect the key-
points of the human body from the image and predict the
correct category. 2D HPE can generally be divided into two
methods: top-down and bottom-up. The top-down method
divides the whole task into two stages: human detection and
keypoint detection. To be specific, we first use human de-
tection to obtain human bbox, and then use human pose es-
timation to obtain the keypoints of each human. For ex-
ample, HRNet [38] proposes a multi-scale feature fusion
structure, which maintains a high-resolution representation
and can achieve very good results on COCO [28] and other
datasets. The bottom-up method is to first detect all the key-
points in the original image, and then assign these keypoints

to the corresponding human body. For example, HigherHR-
Net [7] proposes to use high-resolution feature pyramids to
obtain multi-scale information and uses association embed-
ding [30] to group keypoints. However, 2D HPE needs to la-
bel the keypoints of each human body in the dataset, which
is labor-intensive and expensive. Therefore, we propose a
new semi-supervised 2D human pose estimation framework
to mitigate this problem.

Semi supervised learning (SSL). Semi-supervised
learning uses a small amount of labeled data and a large
amount of unlabeled data to train the model. The cur-
rent semi-supervised methods are mainly divided into SSL
based on the pseudo label [22, 33, 45, 49] and SSL based
on consistency [3, 21, 35, 37, 40]. SSL based on pseudo
labels generates pseudo labels for unlabeled data through
pretrained models and uses these pseudo labels to further
optimize the model. Consistency-based SSL enables multi-
ple images to be obtained by different data augmentation to
the same image and encourages the model to make similar
predictions about them. For example, FixMatch [37] uses
the model to generate pseudo labels for weakly augmented
unlabeled images. Only when the model produces a predic-
tion with high confidence will the pseudo label be retained.
Then, when a strongly augmented version of the same im-
age is input, the model is trained to predict the pseudo la-
bels. We mainly focus on SSL based on consistency, be-
cause it has superior accuracy in the public benchmark.

Semi-supervised 2D human pose estimation. The goal
of semi-supervised 2D human pose estimation is to opti-
mize the performance of the human pose estimator using
a small amount of labeled data and a large amount of un-
labeled data. Xie et al. [46] find that by maximizing the
similarity between different increments of the image di-
rectly, there would be a collapsing problem. They propose a
Dual [46] network to solve this problem. First, the input im-
age is augmented into a pair of hard and easy data, and the
easy augmentation data is transferred to the teacher model
and the hard augmentation data is transferred to the stu-
dent model to keep the output of the two models consistent.
In addition, they also update the parameters by letting the
two models take turns playing the roles of teachers and stu-
dents, which is better than using EMA [12] directly. How-
ever, they ignore the negative impact of noise pseudo labels
on training. Therefore, we propose a new semi-supervised
training framework and a new data augmentation method.

3. Method
In this section, we first give the definition of the semi-

supervised 2D human pose estimation task (see Sec. 3.1).
Then, in Sec. 3.2, we introduced a semi-supervised 2D hu-
man pose estimation framework based on the position in-
consistency pseudo label correction module. Finally, we in-
troduced the semi-supervised Cut-Occlude based on pseudo
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Figure 3. Overall overview of our SSPCM. In Train Step 1, we use labeled data to train NetworkA, NetworkB, and NetworkC,
and update their parameters. In Train Step 2 and Train Step 3, we use unlabeled data and interactive training to update the parameters of
NetworkA and NetworkB. In Train Step 4, we use NetworkA, NetworkB, and PCM modules to guide NetworkC training. SSCO
is the semi-supervised Cut-Occlude based on pseudo keypoint perception. When testing, we only use NetworkC.

keypoint perception in Sec. 3.3.

3.1. Problem Definition

In semi-supervised 2D human pose estimation (SSHPE),
we obtained a set of labeled data Dl = {(xl

i, y
l
i)}

nl

i=0 and
a set of unlabeled data Du = {(xu

j )}
nu

j=0
, where x and y

represent images and ground truth labels, nl represents the
number of labeled data, and nu represents the number of
unlabeled data. The goal of SSHPE is to train 2D human
pose estimators on labeled and unlabeled data. The loss
function is as follows:

Lall =
∑
i

L(xl
i, y

l
i) + γ ·

∑
j

L(xu
j , y

u
j ) (1)

where xl
i represents labeled data, yli represents ground truth

label, xu
j represents unlabeled data, yuj represents pseudo

label generated by teacher model, γ represents weight of
unsupervised learning, and L represents loss.

3.2. Overview of SSPCM

Fig. 3 shows the overall framework of our SSPCM. We
will introduce SSPCM in detail in this section. As described
in Sec. 1, we introduced an auxiliary NetworkB (fB

θ ) on
the basis of the original NetworkA (fA

θ ) and NetworkC
(fC

θ ), where θ represents network parameters. The three
models have the same network structure, but their param-
eters are independent. In training, the training process for
each batch of data can be divided into 4 stages, as shown in
Fig. 3. Next, we will introduce these 4 steps in detail. The
PCM module will be introduced in Train Step 4.

Train Step 1. NetworkA (fA
θ ), NetworkB (fB

θ ) and
NetworkC (fC

θ ) trains on labeled data and updates param-
eters. The supervision losses are as follows:

Lsup =
∑

n∈N

∥HM
n
gt − HM

n
s1∥2 + ∥HM

n
gt − HM

n
s2∥2 + ∥HM

n
gt − HM

n
s3∥2

(2)
where HMn

gt represents the ground truth of the nth im-
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Figure 4. Position inconsistency pseudo label correction mod-
ule (PCM). (a) Pseudo label of NetworkA output in the last
epoch. (b) Pseudo label of NetworkA output in the current
epoch. (c) Pseudo label of NetworkB output in the last epoch.
(d) Pseudo label of NetworkB output in the current epoch. We
post-process the pseudo labels to get the pseudo keypoint coordi-
nates. Next, we calculate the position inconsistency PI between
pseudo keypoints output by different models and transfer it to the
Selection Module. Then, the Selection Module selects a group of
pseudo labels with the smallest PI and performs pseudo labels fu-
sion to obtain the final corrected pseudo labels.

age in the labeled data. HMn
s1, HMn

s2 and HMn
s3 respec-

tively represent the prediction results of NetworkA (fA
θ ),

NetworkB (fB
θ ) and NetworkC (fC

θ ) on the nth image in
the labeled data.

Train Step 2. First, NetworkA (fA
θ ) is used as the

teacher model (with fixed parameters), and the additional
NetworkB (fB

θ ) is used as the student model (with param-
eter updates). Next, easy data augmentation Auge is per-
formed on unlabeled data Iu, and the predicted pseudo la-
bels HMe1 are obtained by inputting them into NetworkA
(fA

θ ). Then, input unlabeled data Iu into the SSCO module
(detailed in Sec. 3.3) to get the hard sample with occlu-
sion, and hard data augmentation Augh is performed on it.
We input this hard sample into NetworkB (fB

θ ) to get the
prediction results HMh1. Finally, we use Auge→h to map
HMe1 to HMe1→h1 and calculate the consistency loss be-
tween HMe1→h1 and HMh1:

Lunsup1 =
∑
n∈N

∥HMn
e1→h1 −HMn

h1∥
2 (3)

where HMn
e1→h1 represents the pseudo label generated by

NetworkA (fA
θ ) for the nth image in the unlabeled data.

HMn
h1 represents the prediction result of NetworkB (fB

θ )
on the nth image output in unlabeled data. It is worth noting
that when the model is used as a teacher model, the param-
eters are fixed. When the model is used as a student model,
the parameters need to be updated.

Train Step 3. This step is similar to Train Step 2, ex-
cept that we need to exchange the identities of NetworkA
(fA

θ ) and NetworkB (fB
θ ), NetworkB (fB

θ ) as the teacher

model (with fixed parameters), and NetworkA (fA
θ ) as the

student model (with updated parameters). The consistency
loss is as follows:

Lunsup2 =
∑
n∈N

∥HMn
e2→h2 −HMn

h2∥
2 (4)

where HMn
e2→h2 represents the pseudo label generated by

NetworkB (fB
θ ) for the nth image in the unlabeled data.

HMn
h2 represents the prediction result of NetworkA (fA

θ )
on the nth image output in unlabeled data.

Train Step 4. We take NetworkA (fA
θ ) and NetworkB

(fB
θ ) as teacher models (with fixed parameters) and

NetworkC (fC
θ ) as student models (with updated param-

eters). Next, we input the pseudo label HMn
e1→h1 and

HMn
e2→h2 of the same image output by NetworkA (fA

θ )
and NetworkB (fB

θ ) in Train Step 3 and Train Step 4 into
the PCM module. In addition, we also input the pseudo
label HM last,n

e1→h1 and HM last,n
e2→h2 generated by NetworkA

(fA
θ ) and NetworkB (fB

θ ) on this image in the last epoch
into the PCM module. The PCM module is shown in Fig.
4, where HMn

e1→h1 corresponds to Fig. 4 (b), HMn
e2→h2

corresponds to Fig. 4 (d), HM last,n
e1→h1 corresponds to Fig. 4

(a), and HM last,n
e2→h2 corresponds to Fig. 4 (c). Since the out-

put results of the same model in two epochs may be similar,
we only calculate the position inconsistency between dif-
ferent models. We first post-process the generated pseudo
label HM to obtain pseudo keypoint coordinates. Then, we
calculate the pixel distance between different pseudo key-
points. We normalize it with the diagonal length of the
heatmap to obtain the position inconsistency:

PI =
∥argmax(HMA

i,k)− argmax(HMB
j,k)∥

LHM
(5)

where HMA
i,k represents the pseudo label of the Kth key-

point output by NetworkA (fA
θ ) in the ith epoch, and

HMB
j,k represents the pseudo label of the Kth keypoint out-

put by NetworkB (fB
θ ) in the jth epoch. LHM represents

the diagonal length of the heatmap. We select a group of
pseudo labels HMmin1 and HMmin2 with the smallest po-
sition inconsistency (PI), and conduct pseudo label fusion
to obtain the corrected pseudo labels:

HMFinal = 0.5 · (HMmin1 +HMmin2) (6)

We use the same operation as in Train Step 2 to obtain hard
samples with occlusion, and pass them into the NetworkC
(fC

θ ) to get the prediction results HMn
h3. The consistency

loss is as follows:

Lunsup3 =
∑
n∈N

∥HMn
Final −HMn

h3∥
2 (7)

The final loss function is as follows:

LFinal = Lsup +β · (Lunsup1 +Lunsup2 +Lunsup3) (8)
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Figure 5. Semi-supervised Cut-Occlude based on pseudo keypoint
perception (SSCO). (a) and (b) are two images in one batch. (c) is
a hard sample with occlusion.

where β represents weight of unsupervised learning.
Test. NetworkA and NetworkB are used to guide

NetworkC training. When testing, we will only use
NetworkC. Therefore, our method does not increase the
number of parameters or calculations of the model.

3.3. Semi-Supervised Cut-Occlude Based on Pseudo
Keypoint Perception

One of the main difficulties in 2D HPE is occlusion. We
use the semi-supervised Cut-Occlude based on pseudo key-
point perception to provide more hard and effective samples
for student models. Let’s take two images in one batch as an
example, as shown in Fig. 5. First, we input image (a) into
the teacher model to get pseudo labels and obtain the co-
ordinates of each pseudo keypoint through post-processing.
Next, we extract N pseudo keypoint coordinates (x1, y1)
from them (assuming that N is 1), and we take this coor-
dinate as the center of the position to be pasted. Then, we
input image (b) into the teacher model, and we also get N
pseudo keypoint coordinates (x2, y2), which are taken as
the central coordinates of the local limb image. We use this
coordinate to clip a local limb image. After we get the local
limb image, we will paste it to the position (x1, y1) in the
image (a), as shown in Fig. 5 (c). Finally, we input it into
the student model to get the prediction results.

4. Experiments
4.1. Datasets

MPII [1] and AI-Challenger [43]. The MPII dataset
contains 25k images and 40k person instances with 16 key-
points. The AI-Challenger dataset has 210k images and
370K person instances with 14 keypoints. We use MPII
as the labeled set, AI-Challenger as the unlabeled set. The
metric of PCKh@0.5 [1] is reported.

COCO [28]. COCO dataset has 4 subsets: TRAIN ,
V AL, TEST −DEV and TEST −CHALLENGE. In
addition, there are 123K wild unlabeled images (WILD).
We randomly selected 1K, 5K and 10K labeled data from
TRAIN . In some experiments, unlabeled data came from

Figure 6. Left: One image in the WEPDTOF-Pose dataset. Right:
One image in the BKFisheye dataset.

the remaining images of TRAIN . In other experiments, we
used the entire TRAIN as the labeled dataset and WILD
as the unlabeled dataset. The metric of mAP (Average AP
over 10 OKS thresholds) [28] is reported.

CEPDOF [11]. This dataset is an indoor dataset col-
lected by an overhead fisheye camera. It only contains bbox
labels for human detection, without keypoint labels. We
will experiment with this dataset as unlabeled data. Since
the dataset is video data, and the repeatability between adja-
cent frames is high, we conducted 10 times down-sampling
of the original dataset, and filtered person instances whose
height or width is less than 50 pixels. Finally, there are
11878 person instances.

WEPDTOF-Pose. This dataset is a new human body
keypoint dataset based on the WEPDTOF [41] dataset. We
will release it soon. It is an indoor dataset collected by an
indoor overhead fisheye camera. Since the WEPDTOF is
video dataset, and the repeatability between adjacent frames
is high, we conducted 10 times down-sampling of the orig-
inal dataset, and filtered person instances whose height or
width is less than 50 pixels. Then, we annotate the pro-
cessed images, and there are 14 keypoints in total: right
shoulder, right elbow, right wrist, left shoulder, left elbow,
left wrist, right hip, right knee, right ankle, left hip, left
knee, left ankle, head, and lower neck, as shown in Fig. 6
(Left). It consists of WEPDTOF-Pose TRAIN (4688 per-
son instances) and WEPDTOF-Pose TEST (1179 person
instances). The full amount of WEPDTOF-Pose TRAIN
is used as labeled data, and the CEPDOF [11] dataset is used
as unlabeled data for experiments. The metric of mAP [28]
is reported. More details see supplementary material.

BKFisheye. A dataset of a real site scene (after remov-
ing sensitive information) consists of BKFisheye TRAIN
(7330 person instances), BKFisheye TEST (2655 person
instances), and BKFisheye UNLABEL (46923 person in-
stances). This dataset doesn’t contain personal identity or
other personal privacy information. We have mosaic the
faces in the images. The annotation method is consistent
with WEPDTOF-Pose, as shown in Fig. 6 (Right). The
metric of mAP [28] is reported.
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Table 1. AP of different methods on COCO [28] when different
numbers of labels are used. Backbone is ResNet18 [13].

Methods 1K 5K 10K All
Supervised [44] 31.5 46.4 51.1 67.1
PseudoPose [46] 37.2 50.9 56.0 —
DataDistill [33] 37.6 51.6 56.6 —
Cons [46] 42.1 52.3 57.3 —
Dual [46] 44.6 55.6 59.6 —
Ours 46.9 57.5 60.7 —

Table 2. The effects of using different network structures for the
two models (Teacher and Student) on COCO [28]. We report
the AP of the student model.

Methods Teacher Student 1K 5K 10K
Supervised [44] — ResNet18 31.5 46.4 51.1
Supervised [44] — ResNet50 34.4 50.3 56.3
DUAL [46] ResNet18 ResNet18 44.6 55.6 59.6
DUAL [46] ResNet50 ResNet50 48.7 61.2 65.0
DUAL [46] ResNet50 ResNet18 47.2 57.2 60.4
Ours ResNet18 ResNet18 46.9 57.5 60.7
Ours ResNet50 ResNet50 49.4 61.6 65.4
Ours ResNet50 ResNet18 48.3 58.9 61.9

Table 3. Results on the COCO [28] V AL set when all images
from the TRAIN set are used as the labeled set and all images
from the WILD set are used as the unlabeled set.

Method Network AP Ap .5 AR AR .5
Supervised [44] ResNet50 70.9 91.4 74.2 92.3
Dual [46] ResNet50 73.9 92.5 77.0 93.5
Ours ResNet50 74.2 92.7 77.2 93.8
Supervised [44] ResNet101 72.5 92.5 75.6 93.1
Dual [46] ResNet101 75.3 93.6 78.2 94.1
Ours ResNet101 75.5 93.8 78.4 94.2
Supervised [44] ResNet152 73.2 92.5 76.3 93.2
Dual [46] ResNet152 75.5 93.6 78.5 94.3
Ours ResNet152 75.7 93.7 78.6 94.5
Supervised [38] HRNetW48 77.2 93.5 79.9 94.1
Dual [46] HRNetW48 79.2 94.6 81.7 95.1
Ours HRNetW48 79.4 94.8 81.9 95.2

4.2. Implementation Details

Consistent with the previous work [46], we use Sim-
pleBaseline to estimate the heatmap and ResNet [13] and
HRNet [38] as backbones. The input image size is set to
256x192. COCO [28] dataset training is conducted on 4
A100 GPUs, and the batch size is 32. We use the Adam op-
timizer [19] to train these models. The initial learning rate
is 1e-3, which decreases to 1e-4 and 1e-5 at 70 epochs and
90 epochs, respectively, with a total of 100 epochs. When
using the complete COCO [28] dataset, the initial learning
rate is 1e-3, and it drops to 1e-4 and 1e-5 at 300 epochs and
350 epochs, respectively, with a total of 400 epochs. The
fisheye dataset is trained on 1 A100 GPU, and the batch
size is 32. We use the Adam optimizer to train these mod-
els. The initial learning rate is 1e-3, which decreases to 1e-4
and 1e-5 at 140 epochs and 180 epochs, respectively, with a
total of 200 epochs. When testing, do not flip horizontally.

Table 4. Comparison to the SOTA methods on the COCO [28]
TEST−DEV dataset. The COCO TRAIN set is the labeled set
and COCO WILD set is the unlabeled set. The person detection
results are provided by SimpleBaseline (with flipping strategy).

Method Network Input Size AP AR
SB [44] ResNet50 256 × 192 70.2 75.8
HRNet [38] HRNetW48 384 × 288 75.5 80.5
MSPN [26] ResNet50 384 × 288 76.1 81.6
DARK [51] HRNetW48 384 × 288 76.2 81.1
UDP [15] HRNetW48 384 × 288 76.5 81.6
DUAL [46] (+DARK) HRNetW48 384 × 288 77.2 82.2
Ours (+DARK) HRNetW48 384 × 288 77.5 82.4

Table 5. Comparisons on the MPII [1] test set (PCKh@0.5). Our
method uses HRNetW32 [38] as backbone and size is 256 × 256.
The MPII and AIC (w/o labels) [43] dataset are used for training.

Method Hea Sho Elb Wri Hip Kne Ank Total
Newell et al. [31] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9
Xiao et al. [44] 98.5 96.6 91.9 87.6 91.1 88.1 84.1 91.5
Ke et al. [18] 98.5 96.8 92.7 88.4 90.6 89.4 86.3 92.1
Sun et al. [38] 98.6 96.9 92.8 89.0 91.5 89.0 85.7 92.3
Zhang et al. [54] 98.6 97.0 92.8 88.8 91.7 89.8 86.6 92.5
Xie et al. [46] 98.7 97.3 93.7 90.2 92.0 90.3 86.5 93.0
Ours 98.7 97.5 94.0 90.6 92.5 91.1 87.1 93.3

Data augmentation. Our data augmentation settings
are consistent with previous work [46]. Easy data aug-
mentation: random rotation (−30◦∼30◦), random scale
(0.75∼1.25). Hard data augmentation: random rotation
(−60◦∼60◦), random scale (0.75∼1.25). The random ro-
tation range used by the fisheye dataset is (−180◦∼180◦).

4.3. Comparison with SOTA Methods

Consistent with the previous work [46], we first use the
ResNet18 [13] model to conduct experiments on the COCO
[28] dataset. We used 1K, 5K, and 10K labeled data for the
experiment, as shown in Table. 1. The results of supervised
training using only labeled data are the worst. Our method
outperforms the best semi-supervised 2D human pose esti-
mation method in 1K, 5K, and 10K settings, and improves
2.3 mAP, 1.9 mAP, and 1.1 mAP respectively.

We evaluate the effect of using different networks in
Table. 2. We use ResNet50 as the Teacher model
and ResNet18 as the Student model. We find that the
ResNet18 model has significantly improved performance.
This is mainly because ResNet50 can provide more accurate
pseudo label for ResNet18 which notably boosts its perfor-
mance. As shown in the Table. 2, we can use large mod-
els as teachers to improve the performance of lightweight
models, and our method goes beyond the previous semi-
supervised method.

Consistent with the previous work [46], we used the
complete COCO [28] TRAIN as the labeled dataset and
WILD as the unlabeled data for experiments, as shown in
Table. 3. It can be seen from Table. 3 that our method is
always better than the best method used in different mod-
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Table 6. Ablation Study. DUAL [46] and JC [46] are the previous
SOTA methods. PCM and SSCO are our methods.

Method Backbone Train Test AP
Baseline [44] ResNet18 COCO 10K COCO 51.1
+DUAL [46] ResNet18 COCO 10K COCO 58.7
+DUAL [46] +JC [46] ResNet18 COCO 10K COCO 59.6
+DUAL [46] +SSCO(Ours) ResNet18 COCO 10K COCO 60.1
+PCM(Ours) ResNet18 COCO 10K COCO 59.6
+PCM(Ours) +Cutout [9] ResNet18 COCO 10K COCO 60.0
+PCM(Ours) +Mixup [53] ResNet18 COCO 10K COCO 58.2
+PCM(Ours) +CutMix [50] ResNet18 COCO 10K COCO 60.5
+PCM(Ours) +Rand Augment [8] ResNet18 COCO 10K COCO 59.9
+PCM(Ours) +JC [46] ResNet18 COCO 10K COCO 60.0
+PCM(Ours) +SSCO(Ours) ResNet18 COCO 10K COCO 60.7
+DUAL [46] +JC [46] ResNet18 COCO 5K COCO 55.6
+PCM(Ours) +SSCO(Ours) ResNet18 COCO 5K COCO 57.5
+DUAL [46] +JC [46] ResNet18 COCO 1K COCO 44.6
+PCM(Ours) +SSCO(Ours) ResNet18 COCO 1K COCO 46.9

Table 7. Hyper-parameter analysis of SSCO module. N represents
the number of local limbs used.

Method N Backbone Train Test AP
+PCM +SSCO 0 ResNet18 COCO 10K COCO 59.6
+PCM +SSCO 1 ResNet18 COCO 10K COCO 60.2
+PCM +SSCO 2 ResNet18 COCO 10K COCO 60.7
+PCM +SSCO 3 ResNet18 COCO 10K COCO 60.4
+PCM +SSCO 4 ResNet18 COCO 10K COCO 60.5

els. Compared with the supervised training only using the
labeled part, the improvement is obvious. We also reported
our results on the COCO [28] TEST − DEV dataset, as
shown in Table. 4. It can be seen that although the pre-
vious methods have achieved high performance, our meth-
ods can still improve performance on this basis and out-
perform the previous methods [15, 26, 38, 44, 46, 51]. In
addition, we also experimented with the MPII [1] training
set as a labeled dataset and the AIC [43] dataset as an un-
labeled dataset, as shown in Table. 5. The results of our
method on the MPII [1] test set exceed those of previous
methods [18, 31, 38, 44, 46, 54].

4.4. Ablation Study

To study the effectiveness of our method, we have con-
ducted a large number of ablation studies. We conducted
the experiment under the setting of COCO 10K. The model
used is ResNet18 [13].

Effect of the PCM. As shown in Table. 6, compared
with the baseline, the results obtained by using the PCM
module increase 8.4 mAP. Then, we compared the results of
using the DUAL [46] module and the PCM module alone.
Our method is 0.8 mAP higher than the best method before.

Effect of the SSCO. As shown in Table. 6, by adding
the SSCO module to the PCM module, 1.2 mAP can be im-
proved. We also added the SSCO module to the previous
best method DUAL [46], which improved 1.4mAP. In addi-
tion, compared with Cutout [9], Mixup [53], CutMix [50],
Rand Augment [8] and JC [46], our SSCO shows better per-
formance. As shown in Table. 7, we carried out the hyper-

Table 8. Comparison to the SOTA methods on the datasets
collected by indoor overhead fisheye camera. WEPDTOF-
Pose TEST and BKFisheye TEST are used as the test set.
WEPDTOF-Pose TRAIN and BKFisheye TRAIN are used as
the labeled set. CEPDOF [11] and BKFisheye UNLABEL are
used as the unlabeled set. Backbone is ResNet18 [13].

Methods Labeled Dataset Unlabeled Dataset AP AR
Supervised [44] WEPDTOF-Pose — 49.5 53.4
Cons [46] WEPDTOF-Pose CEPDOF 54.6 58.1
Dual [46] WEPDTOF-Pose CEPDOF 55.1 59.0
Ours WEPDTOF-Pose CEPDOF 55.6 60.0
Supervised [44] WEPDTOF-Pose — 49.5 53.4
Cons [46] WEPDTOF-Pose BKFisheye UNLABEL 57.2 61.4
Dual [46] WEPDTOF-Pose BKFisheye UNLABEL 57.2 61.5
Ours WEPDTOF-Pose BKFisheye UNLABEL 59.1 63.7
Supervised [44] BKFisheye — 65.2 70.4
Cons [46] BKFisheye BKFisheye UNLABEL 68.2 72.7
Dual [46] BKFisheye BKFisheye UNLABEL 68.4 73.0
Ours BKFisheye BKFisheye UNLABEL 68.7 73.7

parameter analysis of the SSCO module. When we use 2
local limb images, we get the best results.

By observing the table. 6, we can see that the perfor-
mance is improved by adding PCM, SSCO modules, which
verifies the effectiveness of these modules. The less labeled
data we use, the more obvious our method will be.

4.5. Results on WEPDTOF-Pose and BKFisheye
Datasets

To further verify the effectiveness of our method, we
have conducted lots of experiments on WEPDTOF-Pose
and BKFisheye. We use the complete WEPDTOF-Pose
TRAIN as the labeled dataset, and 11878 person instances
in CEPDOF [11] as the unlabeled dataset for experiments,
as shown in Table. 8 (Top). Then, We use the com-
plete WEPDTOF-Pose TRAIN as the labeled dataset, and
BKFisheye UNLABEL as the unlabeled dataset for ex-
periments, as shown in Table. 8 (Middle). In addition,
we also conducted the same experiment on the BKFisheye
dataset (labeled training set is BKFisheye TRAIN , unla-
beled training set is BKFisheye UNLABEL, and the test
set is BKFisheye TEST ), as shown in Table. 8 (Down).

5. Conclusion

In this work, we propose a new semi-supervised 2D hu-
man pose estimation method. We first introduce our pro-
posed semi-supervised 2D human pose estimation frame-
work driven by the position inconsistency pseudo label cor-
rection module. Then, we introduce the semi-supervised
Cut-Occlude based on pseudo keypoint perception. We
have carried out a lot of experiments on datasets of different
scenarios, which proved the effectiveness of our method. In
addition, we released our code and new dataset, hoping to
stimulate more people to study in this field.
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